Award Number: DAMD17-00-1-0429

TITLE: Radiolabeled Herceptin to Increase Treatment Efficacy in Breast Cancer Patients with Low Tumor HER-2/neu Expression

PRINCIPAL INVESTIGATOR: David Scheinberg, M.D., Ph.D.
George Sgouros, Ph.D.

CONTRACTING ORGANIZATION: Sloan-Kettering Institute for Cancer Research
New York, NY 10021

REPORT DATE: July 2005

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
14. ABSTRACT

The primary objective of the proposal is to evaluate the efficacy and feasibility of using radiolabeled Herceptin antibody to target rapidly accessible breast carcinoma cells or micrometastases. By using Herceptin to specifically deliver radiation we anticipate that the efficacy of Herceptin will be extended to include breast cancer cells that are not high HER-2/neu antigen expressors. This hypothesis will be tested using the spheroid model to simulate rapidly accessible micrometastases. An alpha-particle emitting radionuclide will be used to enhance tumor cell kill. Tasks 1-6 have been completed. The animal model previously used towards task 5 was a HER-2/neu expressing ovarian carcinoma. The PI has identified an appropriate disseminated breast carcinoma animal model and used this to satisfy tasks 5 and 6. Because the PI (Sgouros) relocated in 2003, progress was been delayed. A sub-contract was established with Hopkins to complete the tasks of the proposal. The sub-contract mechanism is being used because after discussions with the contracting officer this was deemed the most expeditious approach to providing funds for the PI to complete the work at Hopkins. Dr. Sgouros recently received a favorable priority score (156, 8.5%ile) on an NIH R01 grant application to extend these initial studies to more detailed pre-clinical studies that would incorporate dosimetry and modelling.

15. SUBJECT TERMS

Herceptin, HER-2/neu, alpha-particle emitters, Bi-213, micrometastases

16. SECURITY CLASSIFICATION OF:

a. REPORT U
b. ABSTRACT U
c. THIS PAGE U

17. LIMITATION OF ABSTRACT UU

18. NUMBER OF PAGES 32

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td></td>
</tr>
<tr>
<td>SF 298</td>
<td></td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>5-12</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>13</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>13</td>
</tr>
<tr>
<td>Conclusions</td>
<td>14</td>
</tr>
<tr>
<td>Appendix</td>
<td>15</td>
</tr>
</tbody>
</table>
INTRODUCTION

In combination with chemotherapy, the antitumor activity of Herceptin (anti-Her-2/neu), a humanized monoclonal antibody directed against HER-2/neu, has been effective in treatment of breast cancer cells overexpressing HER-2/neu. This promising, FDA approved, and commercially available antibody may be effective in eradicating pre-vascularized micrometastatic disease when labeled with a short lived alpha particle emitter. Alpha particles are very effective in sterilizing cells, and 1 to 3 particles transversing the cell is enough for cell kill. Therefore, this treatment approach may have the potential of eradicating micrometastatic disease both of non-overexpressing and overexpressing breast cancer cells.

In 2003, the PI moved to Johns Hopkins University, School of Medicine. The grant remained at Sloan-Kettering Institute to avoid the paperwork and expense associated with transferring the grant, instead funds were sub-contracted to Johns Hopkins and the PI has completed the work at Hopkins. This grant has led to two peer-reviewed publications, 2 abstracts and a fundable priority score (156, 8.5%ile) on an NIH R01 grant application to continue the pre-clinical animal studies. Tasks 1-5, related to the spheroid work were completed. Tasks 6 was completed using a more realistic transgenic micromet. breast cancer model and task 7, which was not completed has been was incorporated into the NIH R01 grant application. This final report summarizes work performed on task 6

BODY
C.1 Metastatic neu-N animal model

Using the neu-N animal model procured by R. Todd Reilly, co-investigator on this application, and also the neu-expressing NT2 tumor cell line, developed by Reilly et al., the PI’s lab has established a neu-N animal model that exhibits liver and (osteolytic) bone metastases within 3.5 to 4 weeks following LCV injection of 10^5 NT2 tumor cells. Details regarding injection methodology and anatomical delineation of the injection site are provided in Section D. Approximately 50 to 70% of attempts are successful (bright red blood at syringe tip) and 80% of successful injections lead to bone (Fig. 1a and b) and liver (Fig. 2) metastases.

Approximately 50 to 70% of attempts are successful (bright red blood at syringe tip) and 80% of successful injections lead to bone (Fig. 1a and b) and liver (Fig. 2) metastases.

Micro PET FDG imaging was performed to evaluate the distribution of metastatic disease within mice, as determined by enhanced $[^{18}F]$fluorodeoxyglucose uptake (Fig. 3).
Fig. 3. FDG μPET images of a mouse, 4 weeks after LCV injection of tumor cells. Multiple sites of high uptake are evident along the spinal column (arrowheads, panel 2, sagittal). A coronal slice through the liver, also shows focal uptake in the liver (arrowheads, panel 3, coronal). (The liver of this animal is depicted in Fig. 2.) Consistent with the known high metabolic activity of brain (B) and heart (H), these organs show high uptake. Since FDG is excreted through the urine, the kidneys and bladder are also well visualized (extended arrows in the coronal MIP image, panel 5). Residual activity in the tail is also observed and most, likely represents external contamination of the tail during injection. Likewise, the apparent region of high uptake (*), seen on panels 2 – 4, most likely represents external contamination since no tumor was detected in this region by palpation or by subsequent necropsy of the animal. MRI imaging of this animal confirmed the skeletal metastases, histopath confirmation has been obtained.

MRI of the mouse shown in Fig. 3 was performed on a 4.7 T unit for anatomical confirmation (Fig. 4) of FDG observations. Images were collected approximately 3 hours after the end of FDG imaging. Over the region imaged, the MR images were consistent with widespread metastases within and emanating from the marrow spaces of the lower vertebral bodies. Tumor was also seen emanating from marrow spaces in the hind limbs. Although not highlighted in figure 3, the multiple regions of focal uptake seen in panel 5 of Fig. 3 are consistent with the images shown on Fig. 4 and with the subsequent histopathology (not shown). Upon necropsy, multiple foci of disease were also visible about the hind limbs of this animal. No tumors could be detected by external observation of the mouse. At the time of MR imaging, however, this animal did exhibit hind limb paralysis and also a swollen abdomen, subsequently attributed to ascites accumulation resulting from onset of liver failure (Fig. 2).
As demonstrated above, the combination of FDG and MR imaging makes it possible to survey the whole body for regions of possible tumor metastases and to then confirm selected sites by MRI. Based on the imaging studies performed to date (and presented in figures 3 and 4), the investigators propose to use FDG-µPET and MR imaging to evaluate tumor response, in vivo, in randomly selected mice at 1 and 6 weeks after therapy (Aim 4-A-iv.).

C.2 Antibody chelation and radiolabeling

The antibody that will be used in the proposed studies is 7.16.4. This murine antibody targets p185, the 185kD transmembrane glycoprotein product of the neu oncogene (83). The hybridoma for this antibody was originally provided to Dr. Todd Reilly, collaborator on this grant, by Dr. Mark Greene of the University of Pennsylvania, School of Medicine. Dr. Reilly and co-workers have arranged with Lofstram Labs (Gaithersburg, MD) for the on-going production of this antibody and it is available to the PI at modest cost. In collaboration with Dr. Martin Brechbiel, 7.16.4 has been conjugated to CHXA-DTPA, the chelate that holds Bi-213, In-111 and Y-86. A 70% recovery was obtained from the chelate conjugation reaction and a CHXA-chelate-to-protein ratio of 1.23 was obtained. Chelate-conjugated anti-rat IgG was used as a control antibody. A labeling efficiency averaging 60%, with specific activity ranging from 8-18 mCi/mg and radiochemical purity > 90% have been achieved. Detailed results were presented in the first submission and are not presented here to save space for new preliminary studies.

C.3 Optical imaging of NT2 tumor cell line

GFP & luciferin transfection of NT2 cells has been achieved to investigate the possibility of using this approach to monitor disease progression. Although expression was achieved (results not shown - were shown in first submission for GFP), the resulting cells exhibited reduced metastatic potential and LCV injection of transfected cells did not yield bone and liver metastases. As a result, we do not propose to use fluorescence or chemoluminescence imaging at this time. We will continue our effort to develop this approach, however.

C.4 NT2 cell radiosensitivity

The modeling, dosimetry and dose-response analyses required to translate observations in mice into the human (Aim 5) requires an assessment of the radiosensitivity of tumor metastases to alpha-particle irradiation. Survival curves for NT2 cells exposed to alpha and external beam photon irradiation were obtained. 1. External Beam: NT2 cells at about 75% confluence were irradiated with external beam (Gammacell 40 Cesium irradiator; dose-rate = 0.8 Gy/min) at various doses. Cells were then trypsinized and transferred to 25 cm² T-flask (6 flasks per dose) at 200-5000 cells/flask depending on dosage. The T-flasks were then incubated at 37 °C for 10 days. Cells were fixed with 95% ethanol and stained with 1% crystal violet in 95% ethanol. Colonies containing at least 50 cells were counted. 2. Alpha-Particle: NT2 cells were plated at 1.5 x 10⁴ cells/well (3 wells per dose) in square bottom 96 well plates (Falcon 35-3072). Radiolabeled mAb (control, 213Bi labeled IgG) was added to reach activity concentration ranging from 0.01 μCi/ml – 20 μCi/ml. The plate was then incubated at 37 °C for 24 hours. The procedure described above for externally irradiated cells was then followed. A non-specific antibody was used in these studies to simplify conversion from μCi/ml to Gy. With non-specific antibody irradiating plated adherent cells, the mean absorbed dose is simply given by: \(\frac{A_0}{\lambda} * E_\alpha \frac{1}{2} \), where \(A_0 \) is the initial \(213^{Bi} \) concentration; \(\lambda \) is the physical decay constant (\(=ln(2)/T_{1/2} \)) for \(213^{Bi} \) and \(E_\alpha \) is the energy emitted as alphas per decay of \(213^{Bi} \). The factor of \(\frac{1}{2} \) is applied because the cells are adherent and are, therefore, irradiated only from one side. A microdosimetric treatment is not necessary because the concentration of alpha emitters is sufficiently high (84). Cell survival results are summarized in figure 5. The linear quadratic model, \(SF=exp(-\alpha D-\beta D^2) \), was fit to the external beam data, yielding: \(\alpha=0.0645 \text{Gy}^{-1}, \beta=0.0662 \text{Gy}^2 \), \(\alpha/\beta = 0.98 \text{Gy} \). The \(\alpha/\beta \) value is consistent with late responding tissue, meaning that fractionation of external beam radiation would not be an appropriate strategy for treating tumors derived from this cell line. The alpha-particle curve, on the other hand does not exhibit a shoulder; and a fit to the curve gives \(z_0 = 0.9 \text{ Gy} \). This is consistent with the well established failure to repair alpha-particle damage. Fractionation in this situation would be highly effective.

Fig. 5 Cell survival; circle = external beam (0.8Gy/min); triangles = \(213^{Bi} \) exposure. Line = fit to linear-quadratic model.
A relative biological efficacy (RBE) of 3.5, consistent with published studies of other cell lines (85), is derived from these data.

C.5 NT2 spheroid dose-response

The response of NT2 spheroids to 213Bi alpha-particle irradiation was assessed. Spheroid studies will be used in this work to relate tumor response observed, in vivo, to that seen, in vitro. The requirement for nutrient and oxygen diffusion limits the maximum distance between viable tumor cells and a vascular supply to approximately 100-200 μm. Correspondingly, initial studies have concentrated on 200 micron diameter spheroids. NT2 tumor cell spheroids were formed and cultivated by liquid overlay culture (86-88). On day 5-7 after inoculation, spheroids with diameters of 200 ± 25 μm were selected and transferred to 35 mm petri dishes. 12 spheroids per plate were used for radiation treatment. Radiolabeled mAb (control, 213Bi labeled IgG) was added to reach the activity concentrations ranging from 0.2 MBq/ml to 1.0 MBq/ml. The petri dishes were incubated at 37 °C for 24 hours. The spheroids were then washed and transferred to 24-well plates, individually. The growth of each spheroid was monitored with an inverted phase contrast microscope fitted with an ocular scale. Results are depicted in figure 6. It is important to note that the spheroid studies described above were performed using an irrelevant antibody, analogous studies using 213Bi-labeled-7.16.4 are currently in progress. Such work will complement the in vivo studies proposed in this grant by providing an in vitro model that may be used to support the dosimetric modeling proposed in Aim 5.

C.6 Modeling/Dosimetry Studies

Preliminary modeling/dosimetry calculations have been performed to evaluate the feasibility of using a potentially cross-reactive antibody to target metastatic disease with a short-lived alpha-particle emitter. Modeling is performed by using a multicompartmental model to solve the macrodistribution of antibody and then providing the output of this lumped parameter model as boundary conditions for a distributed parameter model that accounts for antibody diffusion and binding into a cluster of antigen positive tumor cells as well as a competing cluster of antigen-positive cross-reactive tumor cells. In turn, the results of this model are provided as input to a Monte Carlo model that performs a microdosimetric calculation to evaluate the specific energy distribution delivered to the tumor and normal cell populations. These data are then used to evaluate tumor control probability and to assess the likelihood of toxicity. The impact of unbound 213Bi-labeled antibody on normal tissue that is in rapid access with IV injected antibody (e.g., marrow or liver parenchyma) is examined by considering the specific energy distribution of unbound antibody to a cluster of cells compared with specifically targeted antibody. All calculations are performed for intact antibody. The analyses are founded upon work previously performed by the PI (33,35,89-91). The preliminary results presented here demonstrate, theoretically, that the proposed approach is feasible. The studies also illustrate the modeling/dosimetry tools that will be used in analyzing the data collected in Aims 1-4. Figure 7 illustrates the compartmental models used to simulate the macrodistribution of antibody and to provide boundary conditions for the distributed parameter cell model.

Fig. 6 Spheroid growth curves following exposure to different concentrations of 213Bi irrelevant IgG (upper left corner of each panel, in MBq/ml). Each curve depicts the growth history of an individual spheroid.

Fig. 7 A) 2-comp model of Ab binding to plasma-accessible tumor mets. Ab1, free Ab in plasma; AbAg1, Ab bound to tumor met antigen (Ag1); k(2,1) & k(1,2) = Ab-Ag1 Met. binding & dissociation constants; k_{inf} = Ab inf rate, $k(0,1)$ = plasma Ab clearance rate. B) 4-comp model that includes cross-reactive normal tissue and its extracellular fluid (ECF) compartment. Ab extravasates from plasma to ECF before binding to cross-reactive tissue antigen (Ag2). k(3,1), k(1,3) = extravasation & intravasation rates; k(3,4), k(4,3) = binding & dissociation constants for cross-reactive tissue. C) The spherical cell model representing pre-vascularized or vascularized tumor cluster (with cells no more than 100 μm from a capillary), and cross-reactive normal tissue. The sphere has a 100 μm radius and 2146 7 μm.-radius cells.
The Monte Carlo (MC) code used to generate microdosimetric distributions of specific energy was validated against previously published results in which analytical solutions were obtained for tumor cells in suspension with alpha emissions on the surface of the cells or in the medium. Results comparing MC to analytical calculations are shown in figure 8.

The results shown above demonstrate that the Monte Carlo model used in the microdosimetry calculations yields results consistent with those obtained by analytical calculation (solid lines in 8 A and 8 B). Macroscopic and microscopic antibody kinetics are depicted in figure 9 for different tumor burdens. The impact of tumor burden on plasma and extracellular fluid kinetics is illustrated in A, C and E. Penetration of antibody into spherical cell clusters is shown in panels B, D and F. Parameter values for these calculations were obtained from references (33,91). In the analyses proposed in Aim 5, these literature values (e.g., antigen concentration) will be replaced by actual measured values (e.g. Aim 1).

Comparing the first row (A and B) of simulations, above, with the second row (C and D), the results demonstrate that cross-reactive tissue will increase the clearance of antibody from plasma (as shown in C) and reduce the penetration of antibody into tumor clusters (note both cross reactive tissue and tumor were assumed to have the same target receptor expression). The last row of simulations shows that the added step of extravasation into normal organ ECF (E) yields a substantially reduced cross-reactive tissue penetration (F). The quantity of interest, however, in terms of tumor efficacy and normal tissue toxicity is absorbed dose. This is obtained by first considering the radioactivity concentration. In figure 10, kinetics of Ab penetration into tumor and cross-reactive normal tissue cell clusters are used to obtain the radioactivity concentration of 211Bi.

Fig. 8 3-D MC calculations of cell surface (circle) or the extracellular space (triangle) 211Bi single hit distribution compared to distributions obtained with geometrical analysis (lines) (Roese paper). B) Multi-hit distribution of 211Bi on cell surface (16 hits, circle) or in extracellular space (64 hits, square) as compared to distributions obtained by convolution of the single hit distribution (lines).

Fig. 9 Kinetics of Ab plasma clearance, diffusion and saturable binding in the compartmental and distributed parameter (i.e., spherical) models. Two compartment model. A) Ab 24 hr plasma clearance after a half hour infusion of 43.8 nmol (6.6 mg) antibody with tumor burden ranging from 0.1g to 50g. B) Ab 24 hr diffusion in a spherical tumor of radius 100 μm with tumor burden 1 g considering saturable binding and using the kinetics shown in A to give the concentration of Ab at the spheroid surface as a function of time. Four compartment model. C) Kinetics of Ab plasma clearance as in A while including a 20 g cross-reactive normal tissue compartment. Conservatively, the Ag density of the cross-reactive tissue is set the same as tumor. D) Antibody diffusion in a spherical tumor of radius 100 μm using parameters in C with 1 g tumor burden. E) Corresponding kinetics of free Ab in the extracellular fluid compartment of cross-reactive tissue. F) Diffusion of Ab in a spherical cross-reactive normal tissue within 24 hr using the same parameters as in D.

Fig. 10 Radioactivity of alpha emitter 211Bi labeled antibody (total injected activity 2.22x10⁶ MBq; 60 mCi) in a spherical tumor/normal tissue cluster of 100 μm radius with the same diffusion kinetics as in Figure 9D and 9F. A) 211Bi (half life=45.6min) activity from cell-bound Ab in plasma accessible tumor metastases. and B) 211Bi activity from cell bound antibody in cross-reactive normal tissue on the extravascular side of basement membrane.

Sgouros, George, Ph.D.
Figure 11 depicts the spatial distribution of energy deposition per cell within tumor and cross reactive normal tissue.

The results depicted above provide substantial insight into the targeting of metastatic tumor cells and the potential toxicity of normal organs. In panel A, we see that, due to the range of 212Bi αs, the energy deposited per cell is insensitive to the exact position of the decay (surface vs cytosolic), also, since the cells are assumed close-packed the contribution from decays within the interstitial space of the cluster is negligible. Of greater interest, however, is the observation that the contribution from non-specific decays, outside the cluster, is 10- to 12-fold lower than that received if the Ab is on the surface or within the cytosol. This result is consistent with previous studies (14,45); it corresponds to the situation of targeting tumor clusters in the liver or marrow when the Ab is minimally cross-reactive with these tissues. Freely circulating Ab will irradiate these rapidly accessible organ spaces substantially less than tumor cells contained within them. The inset graph of panel A depicts the absorbed dose histogram. The plot shows that almost all cells within the cluster receive an absorbed dose between 10 and 30 Gy; no cells receive zero dose. The max dose from outside the spheroid (solid triangles), in contrast, is ≈ 1Gy, substantially less than the min dose to cells in the cluster. Panel B depicts the absorbed dose profile across a normal cross-reactive tissue that is only accessible after the Ab has extravasated across normal organ vasculature. The peak in energy deposition just after 20 μm from the cluster center reflects the Bragg peak, a characteristic increase in the energy deposition near the end of an α-track associated with a rapid increase in LET as the α slows down; not seen in panel A, since energy deposition is spread out. The dose-range of irradiated cells in this case is 10 to 20-fold lower than that obtained in panel A; the majority of cells receive no absorbed dose (inset). The interaction between tumor burden, antibody administered and the size of the metastases on tumor control and normal organ toxicity is examined in figure 12.

Panel A shows that for rapidly accessible tumors that are 75 μm in radius or less, tumor burdens up to 15 g may be effectively treated. If the typical met size is 100 μm in radius, then the TCP is $\approx 90\%$ for microscopic disease, for treatment described in the legend. This rapidly drops to zero as the tumor burden increases. As shown in panel B, however, increasing the Ab, even if the activity is kept at 60 mCi, increases TCP to 35%. Increasing both activity and Ab yields TCP $> 90\%$. As α is increased beyond an optimal level, however, efficacy is reduced. The optimal Ab will depend upon tumor burden and in the case of panel B, above, corresponds to that which will saturate Ag sites on 20g of tumor cells. In all simulations depicted above, the 80 to 90% of the cells making up a 10 to 20 g cross-reactive normal tissue are expected to survive, whether this corresponds to prohibitive toxicity will depend upon the normal organ and the specific population of cells that are affected.

Theoretical studies presented in this section are preliminary and are included primarily to highlight the analytical strengths of the group and to illustrate the approaches that will be used to evaluate data obtained from the studies proposed in this application.
C.5 Ab Biodistribution, In Vivo: \mu SPECT/\mu CT imaging of 111In-labeled 7.16.4 Ab has been performed. Imaging was performed using the Gamma Medica X-SPECT system, fitted with a custom-designed and fabricated pinhole collimator for 111In imaging. Iterative reconstruction was performed using in-house developed software.

Specific targeting of Ab is shown, in vivo, by the distinct targeting of a 1.5-cm diam subQ tumor, inoculated 22 days prior to imaging (Fig 13). At 1 hr no tumor localization is detected. At 6 hr Ab localization was seen at discrete points between the tumor mass and the trunk of the animal (not shown). At 24 hr intense uptake is seen within the tumor nodule with minimal to no activity elsewhere; localization persists to 48 hr (not shown).

In contrast to the delayed Ab uptake seen for the subQ tumor, metastatic disease in the femoral joint of a mouse inoculated by LCV injection is seen as early as 1 hr post-injection (Fig 14). The focal point of intensity persists through 48 h. Tumor-free mice do not show such focal points of Ab localization (not shown). Although these results are highly preliminary and control (irrelevant and excess cold Ab) studies are needed as well as earlier imaging times that are relevant to the 45.6 min half-life of 213Bi, the results are consistent with the basic hypothesis of this proposal — early and rapid targeting of metastases with delayed localization to cross-reactive tissue (in this case simulated by the sub-Q tumor).

C.6 AR/Histopath-based microdosimetry: The 2nd reviewer found that the failure to propose microdosimetry at the morphological level using AR and histopath was a significant weakness in Aim 5. As shown in the methods section of Aim 5, such an analysis is now included. Preliminary AR/Histopath-based microdosimetry has been performed. One mouse bearing a subcutaneous tumor (three weeks after inoculated with 106 NT2 cells) was injected with 65 \mu Ci/20\mu g 111In-7.16.4. One hour after injection, the animal was sacrificed and the excised tumor was snap frozen on dry ice, embedded in O.C.T. and successive 20 \mu m sections were cut on a cryomicrotome. The slides were exposed on Kodak MS films for 24h and then stained with H&E. Histology and AR images of seven successive sections were taken at X80 and registered to each other. The size of each image is 1996x1444 pixels with calibrated 0.192 \mu m/pixel. The center coordinate and size of each cell nucleus was identified with imaging analysis software (ImageJ, NIH) on each of the successive histopath images. Each AR image was divided into 20x20 pixels boxes and the mean gray values of each box were measured and saved as input with 2D coordinates of the box centers. All positions of cell nuclei were assigned with a third coordinate ranging from 10\mu m to 130\mu m with 20\mu m separation to correspond to the slice thickness. The third coordinates of activity sources were randomly assigned assuming uniform distribution of activity in a box ±10\mu m off the slide plane. Thus, both cell nuclei and activity positions used as input became three-dimensional. Since only tumor tissue was involved in the calculation, uniform density was assumed throughout the image and the density input matrix was not required in this situation. Standards were used to relate pixel value to activity concentration; \gamma C of slides was also performed as a check on quantitation. Alpha-particle MC transport was carried out in this 3-D space of 384\mu mx278\mu mx140\mu m containing seven successive slides. Every alpha-particle track was followed with continuous slowing down approximation and energy deposited along the track when the alpha-particle crossed a target cell nucleus was calculated as shown in the methods (Aim 5, AR-based microdosimetry). The distribution of specific absorbed dose per cell was obtained by averaging 0.7 million decays in the simulation volume. The tumor control probability (TCP) was evaluated from: \text{TCP} = \exp(-\bar{N}) \text{, where } \bar{N} \text{ is the average number of surviving cells, obtained by: } \bar{N} = N_0 \int \bar{f}_e(z) \exp(-z/z_0) dz \text{, where } N_0 = 4664 \text{ is the total number of cells.
identified in these slides, \(f_n(z) \, dz \) is the number of tumor cells that are exposed to a total dose between \(z \) and \(z + dz \) Gy, and \(z_o \) is the deposited specific energy that is able to reduce the cell survival probability to 37\%, i.e. cell radiosensitivity. Tumor control probability at different cell sensitivity was also calculated for the cells in the simulation volume with various cumulative activities ranging from 0.1 million to 2.0 million decays. Figure 15 depicts a sample H&E-stained histology slide, the processed slide to identify cell nuclei, and the corresponding AR image. The activity concentration in the tumor at 1 h was 2.2 %IA/g; 20-fold less than the value at 24 h (also obtained from AR and \(\gamma \)C – not shown). A fully 3-D microdosimetry calculation was performed involving another 6 slide sets (not shown), spanning 130 \(\mu \)m. The frequency distribution of specific energy deposition in cell nuclei is shown in Fig. 16A. As shown by the distribution, all cell nuclei experience at least one alpha-particle hit (\(\delta = 0 \)). The mean specific energy, \(\langle z \rangle \), per disintegration is \(7 \times 10^{-5} \) Gy/Bq-s. The frequency distribution was used to derive the tumor control probability which is plotted as a function of total cumulated activity in the tumor and for different values of the radiosensitivity, \(z_o \) (Fig 16B). As reported in the cell survival studies (Section C.4), \(z_o = 0.9 \) Gy for the NT2 cell line used in these studies.

It is important to note that the microdosimetry results presented are highly preliminary and intended primarily to demonstrate the ability to perform the kind of analysis requested by reviewer 2. The investigators anticipate a number of refinements to the initial methodology used to obtain these results. First, we anticipate using liquid emulsion AR to increase the resolution of the AR. We also expect to have an estimated cumulated activity from the \(\gamma \)C studies. This will provide a single TCP value, rather than a cumulated activity dependent function. Finally, this methodology will be applied to tissue sections that include normal tissue so as to provide cell kill estimates for both tumor cell and normal cell nuclei. Although not specifically proposed in this application we will also examine the possibility of direct liquid emulsion microautoradiography of \(^{213}\)Bi-labeled antibody.
KEY RESEARCH ACCOMPLISHMENTS (prior and current reporting period)

- Generated and characterized the growth of spheroids expressing different levels of HER-2/neu receptor.
- Evaluated the radiosensitivities of the three cell lines used for generating the spheroids.
- Characterized antibody penetration kinetics into HER-2/neu expressing spheroids.
- Evaluated the response of HER-2/neu expressing spheroids to Herceptin and to Ac-225 labeled antibody.
- Demonstrated the feasibility of controlling tumor cell clusters with intermediate expression of HER-2/neu using Ac-225-labeled Herceptin.
- Demonstrated that Dexamethasone increased spheroid radiosensitivity.
- Demonstrated microPET imaging of HER-2/neu expressing tumor and MRI-based size determinations.
- Identified and characterized a transgenic disseminated breast cancer model for therapeutic studies.
- Performed imaging studies demonstrating early, within 1 hr, detection of micrometastatic disease in the bone marrow of mice.
- Based on this work, obtained a fundable score on an NIH RO1 grant application to continue pre-clinical studies of Bi-213-labeled Herceptin against micrometastases.

REPORTABLE OUTCOMES FOR ENTIRE PROJECT PERIOD

Peer-reviewed publications:

Abstracts:

Pending Grants

NIH R01, “Targeted Alpha-Particle Emitter Therapy of Metastases” (priority score 156, percentile rank = 8.5%) 5 years, 1,250,000 total direct costs

CONCLUSIONS

Tasks 1-6 were completed and demonstrated that it should be possible to eradicate breast cancer metastases with low HER2/neu expression. A grant application has received a score that is well within the funding range to move to more detailed pre-clinical studies. The PI is in discussion with physician collaborator (Dr. Richard Wahl) to initiate a Phase 1 study of this approach in breast cancer patients.

SO WHAT?

These preliminary studies suggest that by using Herceptin antibody radiolabeled with an alpha-particle emitter it may be possible to treat breast cancer patients whose tumor does not demonstrate high expression of HER-2/neu. Long term NIH support has been obtained to move towards pre-clinical studies for clinical trial implementation. The PI is in discussion with physician collaborator (Dr. Richard Wahl) to initiate a Phase 1 study of this approach in breast cancer patients. Support from the army’s breast cancer research program is very likely to lead to a clinical trial of this strategy within one to two years.
Appendix Material

Pharmacokinetics and Biodistribution of 86Y-Trastuzumab for 90Y Dosimetry in an Ovarian Carcinoma Model: Correlative MicroPET and MRI

Stig Palm, PhD; Richard M. Enmon, Jr., PhD; Cornelia Matei, SB; Katherine S. Kolbert, MS; Su Xu, PhD; Pat B. Zanzonico, PhD; Ronald L. Finn, PhD; Jason A. Koutcher, MD, PhD; Steven M. Larson, MD; and George Sgouros, PhD.

Preclinical biodistribution and pharmacokinetics of investigational radiopharmaceuticals are typically obtained by longitudinal animal studies. These have required the sacrifice of multiple animals at each time point. Advances in small-animal imaging have made it possible to evaluate the biodistribution of radiopharmaceuticals across time in individual animals, in vivo. MicroPET and MRI-based preclinical biodistribution and localization data were obtained and used to assess the therapeutic potential of 86Y-trastuzumab monoclonal antibody (mAb) (anti-HER2/neu) against ovarian carcinoma.

Methods: Female nude mice were inoculated intraperitoneally with 5×10^6 ovarian carcinoma cells (SKOV3). Fourteen days after inoculation, 12–18 MBq 86Y-labeled trastuzumab mAb was injected intraperitoneally. Tumor-free mice, injected with 86Y-trastuzumab, and tumor-bearing mice injected with labeled, irrelevant mAb or 86Y-trastuzumab + 100-fold excess unlabeled trastuzumab were used as controls. Eight microPET studies per animal were collected over 72 h. Standard and background images were collected for calibration. MicroPET images were registered with MR images acquired on a 1.5-T whole-body MR scanner. For selected time points, 4.7-T small-animal MR images were also obtained. Images were analyzed and registered using software developed in-house. At completion of imaging, suspected tumor lesions were dissected for histopathologic confirmation. Blood, excised normal organs, and tumor nodules were measured by y-counting. Tissue uptake was expressed relative to the blood concentration (percentage of injected activity per gram of tissue [%IA/g]/%IA/g blood). 86Y-Trastuzumab pharmacokinetics were used to perform 86Y-trastuzumab dosimetry.

Results: Intraperitoneal injection of mAb led to rapid blood-pool uptake (5–9 h) followed by tumor localization (28–32 h), as confirmed by registered MR images. Tumor uptake was greatest for 86Y-trastuzumab (7 ± 1); excess unlabeled trastuzumab yielded a 70% reduction. Tumor uptake for the irrelevant mAb was 0.4 ± 0.1. The concentration in normal organs relative to blood ranged from 0 to 1.4 across all studies, with maximum uptake in spleen. The absorbed dose to the kidneys was 0.31 Gy/MBq 86Y-trastuzumab. The liver received 0.48 Gy/MBq, and the spleen received 0.56 Gy/MBq. Absorbed dose to tumors varied from 0.10 Gy/MBq for radius = 0.1 mm to 3.7 Gy/MBq for radius = 5 mm. Conclusion: For all injected compounds, the relative microPET image intensity of the tumor matched the subsequently determined 86Y uptake. Coregistration with MR images confirmed the position of 86Y uptake relative to various organs. Radiolabeled trastuzumab mAb was shown to localize to sites of disease with minimal normal organ uptake. Dosimetry calculations showed a strong dependence on tumor size. These results demonstrate the usefulness of combined microPET and MRI for the evaluation of novel therapeutics.

Key Words: microPET; trastuzumab; 86Y; ovarian carcinoma; pharmacokinetics

Pharmacokinetics and biodistribution of radiopharmaceuticals in preclinical animal studies have generally been obtained by extraction of selected organs and scintillation counting for radioactivity at different times after injection. This approach requires the sacrifice of multiple animals at each time point, precludes the ability to monitor biodistribution in individual animals, and is partially susceptible to selection bias because unexpected accumulation of radioactivity in tissue not collected for scintillation counting will be missed. The availability of small-animal imaging instrumentation and positron-emitting analogs of therapeutic radionuclides (e.g., 86Y and 124I for 90Y and 131I, respectively) has made it possible to obtain preclinical pharmacokinetics noninvasively using imaging-based methods. The advantages of such an approach include the ability to monitor kinetics in individual animals over time and the ability to...
obtain whole-body images of biodistribution, thereby reducing the likelihood that areas of unexpected radiopharmaceutical accumulation will be missed. Together, these increase the statistical power of each measurement, reducing total animal requirements. The disadvantages include a reduction in quantitative accuracy and difficulty in placing the radioactivity distribution in the proper anatomic context. The latter difficulty arises because of resolution limitations and because images of radionuclide distribution do not typically provide detailed anatomic information.

In this work, the positron-emitting radionuclide 86Y, in conjunction with small-animal PET (microPET) imaging, is used to evaluate pharmacokinetics and dosimetry of 90Y-trastuzumab in a disseminated ovarian carcinoma model. MRI, in conjunction with image registration, was used to correlate the radiolabeled monoclonal antibody (mAb) distribution with anatomy. At the end of imaging, the animals were killed and conventional organ biodistribution information was obtained by γ-counting. The combination of these approaches satisfactorily addressed the issues of anatomic localization and quantitative accuracy.

86Y has a 14.7-h half-life ($t_{1/2}$) and decays by positron emission. The relatively long half-life allows the acquisition of PET images 2–3 d after injection. Being isotopes of the same element, 86Y is chemically identical to 86Y, a pure β-particle-emitting radionuclide that is under investigation for use in targeted radionuclide therapy (1,2). A drawback of using 86Y is that the lack of emitted photons makes it difficult to study the biodistribution of the injected compound. To overcome this obstacle, alternative nuclides have been used. The most commonly used is 111In; however, with PET cameras becoming more available, the use of the positron emitter 86Y has been suggested as a better substitute. A nuclide of the same element is expected to behave chemically identically and thus serve better than a nuclide of another element. Comparisons between these 2 86Y substitutes—that is, 111In and 86Y—have recently been made (3,4).

The anti-HER2/neu mAb, trastuzumab, has demonstrated efficacy in the treatment of cancer patients whose disease exhibits high levels of HER2/neu expression (5,6). In several studies, trastuzumab has been shown to potentiate chemotherapy (7,8). The possibility of using radiolabeled anti-HER2/neu mAbs for cancer therapy has been previously considered (9).

MATERIALS AND METHODS

Cell Culture and Tumor Inoculation

The human ovarian carcinoma cell line SKOV3-NMP2 was provided by Dr. Paul Borchardt (Memorial Sloan-Kettering Cancer Center [MSKCC]). Subclone NMP2 was originally created at the University of Texas M.D. Anderson Cancer Center by passage of the line through nude mice and selected for this study because of enhanced tumorigenicity (10). Stock T-flask cultures were propagated at 37°C, in 95% relative humidity, and in 5% CO$_2$ in RPMI 1640 medium (Invitrogen) supplemented with 10% fetal calf serum (Sigma), 100 units/mL penicillin, and 100 mg/mL streptomycin (Gemini Bio-Products). Cell concentrations were determined by counting trypsinized cells with a hemocytometer. Tumor inoculum was prepared as a single-cell suspension at 1.106 cells/mL in complete RPMI 1640 medium. Each 4- to 6-wk-old female BALB/c nude mouse (Taconic) received 0.5 mL inoculum (5.106 cells) administered by intraperitoneal injection. Animals receiving 0.5 mL of media alone served as negative controls.

Mice were housed in filter top cages and provided with sterile food and water. Animals were maintained according to the regulations of the Research Animal Resource Center at MSKCC, and animal protocols were approved by the Institutional Animal Care and Use Committee.

Preparation of Radioimmunoconjugate

mAb–chelate conjugates were provided as gifts: humanized anti-HER-2, trastuzumab (Herceptin; Genentech, Inc.), was provided by Dr. Paul Borchardt and prepared according to Borchardt et al. (11); humanized anti-CD33, HuM195 (Protein Design Labs, Inc.), was provided by Dr. Michael McDevitt (MSKCC) and prepared according to McDevitt et al. (12). A backbone-substituted derivative of diethylenetriamine pentaacetic acid (DTPA), 2-(4-isothiocyanatobenzyl)DTPA (SCN-CHX-A-DTPA), served as the chelate in all conjugation reactions. mAb conjugate was typically supplied at 7–10 mg/mL. 86Y was produced by irradiating isotope-enriched 86SrCO$_3$ (97.02% 86Sr) with 15-MeV protons in the cyclotron facility (model CS-15; Cyclotron Corp.) of MSKCC (13). The 86Y was dissolved in 0.2–0.4 mL of 50 mmol/L HCl, generating 86YCl$_3$. The radioactivity was measured with a dose calibrator (model CRC-15R; Capintec) and a NaI(Tl) γ-counter (model 5003, Cobra II; Packard).

Radiolabeling protocols were based on those developed in Nkulia et al. (14,15). These references similarly outline methods for assessing reaction efficiency using instant thin-layer chromatography (ITLC) and for evaluating final immunoactivity of the product. Briefly, 0.2–0.3 mL of 3 mol/L ammonium acetate was added to the 86YCl$_3$ solution to adjust to pH -5.5. Approximately 200 μg of mAb conjugate were added and the reaction was allowed to proceed at 25°C for 30 min. The reaction was quenched by the addition of 0.040 mL of 10 mmol/L ethylenediaminetetraacetic acid. Radiolabeled mAb was purified from unbound isotope by size-exclusion chromatography using a 10-DG size-exclusion column (Bio-Rad Laboratories, Inc.). Minimum reaction efficiency was 70% as determined by ITLC. The radioactivity of the eluent was determined as previously described. Specific activity varied from 0.7 to 1.0 MBq/µg. Immunoactivity as determined by acid wash was >90%.

MicroPET Imaging

Two weeks after tumor inoculation, each mouse received 15 MBq (~20 µg) labeled mAb in 0.5 mL RPMI 1640 medium administered intraperitoneally. Mice receiving radiolabeled HuM195 prepared similarly or 15 MBq free 86Y in 0.5 mL medium served as negative controls. A competitive control was created by adding an additional 2 mg unlabeled mAb to the injectate (excess cold control). For each experiment, a 20-mL glass scintillation vial filled with medium and containing 15 MBq 86Y-trastuzumab was used as a standard. The microPET scanner used in these studies was not fitted with a transmission source; therefore, transmission studies were not collected for attenuation correction of the emission data.
Time-dependent distribution and localization of mAb were determined by 8 microPET imaging sessions over the course of 3 d. During each session a background scan and an image of the standard were also acquired. With the exception of the background, a minimum of 15-10^6 true counts per scan were collected to ensure adequate image quality. This required acquisition times of 2-5 min on day 0, 10-20 min on day 1, and 40 min on day 2 or 3 after injection. The mice were initially anesthetized using an isoflurane (Forane; Baxter) loaded vaporizer (Veteqip) attached to an incubation chamber. The mice were then placed on the imaging table and were kept anesthetized during the image acquisition by switching the vaporizer to a fitted nose cone.

MRI

On day 5 or 6 after injection, each mouse was imaged on a 1.5-T whole-body MR scanner (Signa; General Electric Medical Systems) to provide anatomic images for registration with PET scans. Five or 6 mice were anesthetized using 106 mg/kg ketamine and 5.5 mg/kg acepromazine, placed in an in-house-fabricated mouse coil designed for imaging up to 13 mice simultaneously (16), and imaged in a single 30- to 40-min session. Imaging parameters included a field of view of 8 × 8 mm, slice thickness of 1.5 mm, slice interval of 0.5 mm, imaging matrix of 512 × 512, a fast spin echo pulse sequence with a repetition interval (TR) of 4,500-11,000 ms, echo time (TE) ranged 96–102 ms, and 4 excitations per phase-encoding step. Selected mice were further imaged on a small-animal 4.7-T MR scanner (Omega; General Electric Medical Systems). A T2-weighted pulse sequence was also used on the 4.7-T scanner with a TR of 3,500 ms, TE of 40 ms, 1-mm-thick slice, imaging matrix of 256 × 256, and a 3-cm field of view.

Image Analysis and MicroPET Activity Quantitation

Image reconstruction was performed by filtered backprojection. In-house-developed software, MIAU (17) and 3-dimensional internal dosimetry (3D-ID) package (18), were used to quantitate reconstructed images and also for registration to MR studies. Whole-body clearance kinetics were obtained from the summed counts in each scan at each time point. Total counts were corrected for dead time and background. The decay-corrected total counts for the standard obtained in this manner varied by <2% over 72 h. Relative activity concentrations over the injection site, heart, and tumor were obtained by drawing regions of interests (ROIs). MicroPET quantitation can be influenced by the position of tissue relative to the central axis of the camera and also by the surrounding tissue, due to differential sensitivity and attenuation, respectively. Direct comparison of tumor to organ activity concentration was therefore not made; rather, only relative changes in the activity concentration in these tissues over time were evaluated. To minimize partial-volume effects arising because the activity containing volume (e.g., tumor nodes) is below the intrinsic resolution of the scanner, ROIs were consistently drawn to enclose a 30- to 40-μL volume.

Excised Organ Quantitation

Mice were killed on day 6 after injection by CO2 intoxication for dissection. Blood was collected via cardiac puncture. Organ, muscle, and tumor tissues were washed in phosphate-buffered saline and weighed. The samples were then counted for photons in a γ-counter (model 5003, Cobra II; Packard). Two 100-μL aliquots of the 20-μL imaging standard were used for calibration of γ-counting results. Results are expressed as the radioactivity concentration in each organ divided by the concentration in blood.

Dosimetry

186Y-Trastuzumab kinetics and biodistribution were used to estimate absorbed doses for trastuzumab labeled with 186Y, the therapeutically relevant radionuclide. Absorbed doses were estimated for the liver, kidneys, spleen, and tumor. A time–activity curve for blood was generated by determining the relative activity concentration from ROIs over the heart on repeated microPET images. The curve was then scaled to fit the activity concentration in collected blood at the time of dissection by extrapolating the monoexponential clearance phase of the curve. The activity concentration in liver, spleen, and kidneys was determined by γ-counting after dissection. The shape of the blood time–activity curve was used to construct a time–activity curve for each organ. The curve was scaled so that the activity concentration of the curve yielded the measured concentration at the time of dissection.

Tumor kinetics were obtained using the tumor ROI. Activity concentration in dissected tumor was fit to an extrapolated plateau in the time–activity curve. All curves were converted to represent physical-decay–corrected 186Y-trastuzumab uptake (% injected activity per gram tissue, %IA/g). Assuming the same distribution for 186Y-trastuzumab, the cumulated activity concentration (A/g) was calculated by integrating the decay-corrected uptake curves with the physical half-life of 186Y:

$$\frac{A}{g} = \int_0^\infty A_0 \cdot \frac{f(t)}{100} \cdot e^{-\lambda t} dt,$$

where A_0 is the total amount of 186Y-trastuzumab activity injected in the mouse (Bq), $f(t)$ is the time-dependent uptake of 186Y-trastuzumab (%IA/g), and λ is the decay constant of 186Y ($3.0038 \times 10^{-6} \text{ s}^{-1}$).

Absorbed doses were calculated following the MIRD formalism (19). Absorbed fractions of electron energy emitted from a homogeneous distribution of 186Y in spheres of various sizes (20) were used for tumor absorbed dose calculations. Recently published murine-specific S factors (21) were used to calculate self and cross-organ absorbed dose for liver, spleen, and kidneys. In the work cited, murine S factors were generated on the basis of the anatomic structure of an actual mouse as defined by noninvasive, high-resolution MRI. Using the previously developed 3D-ID package (18), organ contours were drawn and the resulting 3-dimensional organ volumes were convolved with individual radioisotope point kernels to calculate the S-factor values.

RESULTS

Tumor Take

The efficiency of tumor formation in this ovarian carcinoma model was 100% (n = 23). A consistent tumor distribution pattern was observed with histologically confirmed tumor nodules always appearing within 2–3 wk on the ventral side of the spleen (Fig. 1). Tumor was also frequently found dispersed within the mesentery with small (~1 mm), dense tumor nodules forming a “beads-on-a-string” configuration.

MicroPET Imaging

Time-sequential microPET images of coronal slices selected through the same plane (2 or 3 slices, ~1 mm, above
This first becomes visible within 3 h and is most intense at ~20 h after injection. Over this same time course tumor nodules become visible, first in the intestinal area and subsequently (e.g., by 30–40 h after injection) in the vicinity of the spleen. Tumor nodules were consistently visualized around the spleen in all animals. By 71 h, activity in the circulation is reduced and radioactivity persists at histopathologically confirmed tumor sites. In the 71-h image, the localization that is observed near the injection site corresponds to subcutaneous tumor nodules that occur as a result of the intraperitoneal tumor cell inoculation.

Corresponding coronal slices for several different control experiments are also shown on Figure 2. In mice injected with a 100-fold excess of unlabeled trastuzumab (n = 3), tumor localization was less apparent. In tumor-free mice (n = 3), the radioactivity distribution over time was similar to that of the tumor-bearing mice with the exception that the dominant signal intensity arose from activity in the circulation; accumulation at sites that would typically contain tumor nodules was not evident. The distribution pattern seen with the irrelevant, anti-CD33 mAb (n = 6) was similarly dominated by activity in the circulation.
Images obtained after the administration of free 68Y (likely to be 68Y-phosphate on injection; $n = 4$) showed, as expected, accumulation in bone. The whole skeleton was visualized in these studies, with a slightly higher uptake around the various joints. These studies were useful in ensuring that the pattern observed with the specific mAb was due to radiolabeled mAb localization rather than localization of free 68Y, as might arise because of degradation of the chelated mAb. Such a pattern was only observed to a small extent, at 43 h after injection for the irrelevant control studies.

MRI

Figure 3, illustrates the typical tumor distribution observed in our model. In Fig. 3A, high-resolution transverse MR image slices obtained at 1.5 T are registered to corresponding microPET slices, providing anatomic context regarding the location of tumor nodules. The images in Fig. 3B depict multiple small (<1-mm diameter) tumor nodules associated with the spleen (left panel) and the mesentery (right panel).

Pharmacokinetics

Whole-body clearance was determined from the total counts in each image set. The specific mAb had the slowest clearance ($t_{1/2} = 160 \pm 10$ h [mean ± SE]), but not significantly different from that of the irrelevant HuM195 ($t_{1/2} = 150 \pm 50$ h) or free 68Y ($t_{1/2} = 140 \pm 50$ h). Controls with an excess of unlabeled specific mAb had a more rapid whole-body clearance ($t_{1/2} = 90 \pm 20$ h), similar to that of specific mAb in nontumor-bearing mice ($t_{1/2} = 110 \pm 50$ h).

The group of mice receiving the specific mAb was evaluated for tumor and organ dosimetry. Initially, the activity concentration over the injection site decreased rapidly, reflecting redistribution in the circulation. This was followed by a slow uptake to a plateau level due to tumor at the trocar wound site (Fig. 4A). Blood kinetics showed a rapid uptake phase, followed by a slow clearance. Tumor had an essentially instantaneous uptake, slowly increasing to the stable maximum activity concentration at around 40 h after injection (Fig. 4B).
Biodistribution

The radioactivity distribution, obtained by well scintillation (γ) counting of excised tissues is shown in Figure 5. Uptake was represented as the organ-to-blood activity concentration ratio. The highest uptake, 7.4 ± 0.9 (mean ± SE), was found for 86Y-trastuzumab specific mAb on tumor. When a 100-fold excess of unlabeled trastuzumab mAb was added, the uptake in tumor was reduced to 2.2 ± 0.1. With the irrelevant, anti-CD33 mAb the uptake was 0.4 ± 0.1.

Spleen had the second highest uptake for the specific mAb with an activity concentration 1.4 ± 0.2 greater than that of blood. The irrelevant mAb gave a slightly lower value of 0.7 ± 0.1. The increased specific uptake may be due to the accumulation of mAb in sites of occult disease within the spleen. Organ-to-blood activity concentration ratios for free 86Y approached infinity due to the exceedingly low radioactivity concentration in blood.

Dosimetry

Absorbed dose to tumor and select organs was calculated for mice receiving 86Y-trastuzumab. Activity concentrations determined from γ-counting dissected tissue was used to scale the ROI contents of the microPET images. The absorbed dose to the kidneys was 0.31 Gy/MBq 86Y-trastuzumab. The liver received 0.48 Gy/MBq, and the spleen received 0.56 Gy/MBq. Because tumors varied in size, calculations were made for spheres of various radii. 86Y activity was assumed to be uniformly distributed throughout the spheres. Absorbed dose to tumors varied from 0.10 Gy/MBq for radius $= 0.1$ mm to 3.7 Gy/MBq for radius $= 5$ mm. Results are summarized in Table 1.

DISCUSSION

There is now a preponderance of evidence to suggest that radioimmunotherapy will be most successful in the treatment

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbed Doses to Organs and Tumors of Varying Sizes After Intraperitoneal Injection of 86Y-Trastuzumab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organ or tumor</th>
<th>Radius (mm)</th>
<th>Absorbed fraction</th>
<th>Dose (Gy/MBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor</td>
<td>0.1</td>
<td>0.017</td>
<td>0.10</td>
</tr>
<tr>
<td>Tumor</td>
<td>0.5</td>
<td>0.084</td>
<td>0.48</td>
</tr>
<tr>
<td>Tumor</td>
<td>1.0</td>
<td>0.17</td>
<td>0.98</td>
</tr>
<tr>
<td>Tumor</td>
<td>3.0</td>
<td>0.45</td>
<td>2.6</td>
</tr>
<tr>
<td>Tumor</td>
<td>5.0</td>
<td>0.63</td>
<td>3.7</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td>0.69</td>
<td>0.48</td>
</tr>
<tr>
<td>Kidneys</td>
<td></td>
<td>0.52</td>
<td>0.31</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td>0.34</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Calculation based on pharmacokinetics and biodistribution of intraperitoneally injected 86Y-trastuzumab.
of micrometastatic disease (22–24). Most animal models evaluating tumor response rely on tumor volume measurements obtained by external, caliper-based measurements. Because this approach is not amenable to the evaluation of therapy against micrometastases, the preclinical evaluation of such is usually performed by assessing animal morbidity, secondary to beled trastuzumab mAb was shown to localize to sites of targeted antigen is expressed on tumor cells. These conditions dependently on the mAb chosen, accessibility of the tumor cells to the injected mAb, and the degree to which the targeted antigen is expressed on tumor cells. These conditions are analogous to the conditions required for successful imaging in patients.

This approach is fundamentally different from studies examining gene expression, in which a reporter gene is cotransfected with the gene sequence to be studied and perform dosimetry of micrometastases at clinically relevant dimensions, noninvasively.

The ability to visualize disease with this approach is critically dependent on the mAb chosen, accessibility of the tumor cells to the injected mAb, and the degree to which the targeted antigen is expressed on tumor cells. These conditions are analogous to the conditions required for successful imaging in patients.

Relative to other small-animal imaging modalities (e.g., optical and MRI), microPET is characterized by a very high sensitivity but limited resolution. The high sensitivity is of great advantage in the detection of minimal disease over the whole body. Using microPET to identify the sites of metastatic spread and then using MRI to image these sites at high resolution, it is possible to use these 2 modalities in a complementary fashion.

The β-particle emitter, 90Y, is one of the most frequently used radionuclides for targeted radionuclide therapy (22,28–30). Recently, the Food and Drug Administration approved use of the 90Y-anti-CD20 mAb (90Y-ibritumomab tiuxetan [Zevalin]; IDEC Pharmaceutical Corp.) for treating various non-Hodgkin’s lymphomas (31). 90Y does not emit photons that can be used to obtain pharmacokinetics; biodistribution for dosimetry calculations is, therefore, typically obtained by imaging using the surrogate radiometal 111In. Although this radionuclide has been shown to have a generally similar behavior to 99Y, several differences have been noted (3,4,32). Using the chemically identical positron emitter, 86Y, the true distribution of the therapeutic radionuclide, 99Y, is used in this work.

The methodology outlined in this work for microPET-based dosimetry overcomes several important limitations in direct microPET quantitation. As noted by the methods, microPET quantitation can be influenced by the position of tissue relative to the central axis of the camera and also by the tissue surrounding the ROI. In imaging micrometastases, wherein the activity containing volume is below the intrinsic resolution of the camera, partial-volume effects also become important. These concerns were addressed by relating the time course of PET measurements to γ-counting results and by maintaining ROIs that were greater than the apparent intensity volume.

CONCLUSION

For all injected compounds, the relative microPET image intensity of the tumor matched the subsequently determined 9Y uptake. Coregistration with MR images confirmed the position of 99Y uptake relative to various organs. Radiolabeled trastuzumab mAb was shown to localize to sites of disease with minimal normal organ uptake. Dosimetry calculations showed a strong dependence on tumor size. These results demonstrate the usefulness of combined microPET and MRI for the evaluation of novel therapeutics.

ACKNOWLEDGMENTS

We thank Virginia Pellegrini, BS, for providing excellent assistance with cell culture. This work was supported, in part, by National Institutes of Health/National Cancer Institute grants CA-08748, R24CA83084, R01CA62444, and P01CA86438; by U.S. Army grant DAMD17-00-1-0429; by Department of Energy grant DE-FG02-86ER-60407; and by a Swedish Cancer Society Fellowship.

REFERENCES

85Y-TRASTUZUMAB IN AN OVARIAN CANCER MODEL • Palm et al. 1155
Alpha-Particle Emitting Atomic Generator (Actinium-225)-Labeled Trastuzumab (Herceptin) Targeting of Breast Cancer Spheroids: Efficacy versus HER2/neu Expression

Åse M. Ballangrud, Wei-Hong Yang, Stig Palm, Richard Enmon, Paul E. Borchardt, Virginia A. Pellegrini, Michael R. McDevitt, David A. Scheinberg, and George Sgouros
Memorial Sloan-Kettering Cancer Center, New York, New York

ABSTRACT

Purpose: The humanized monoclonal antibody, trastuzumab (Herceptin), directed against HER2/neu, has been effective in the treatment of breast cancer malignancies. However, clinical activity has depended on HER2/neu expression. Radiolabeled trastuzumab has been considered previously as a potential agent for radioimmunotherapy. The objective of this study was to investigate the efficacy of trastuzumab labeled with the α-particle emitting atomic generator, actinium-225 (225Ac), against breast cancer spheroids with different HER2/neu expression levels. 225Ac has a 10-day half-life and a decay scheme yielding four α-particles.

Experimental Design: The breast carcinoma cell lines MCF7, MDA-MB-361 (MDA), and BT-474 (BT) with relative HER2/neu expression (by flow cytometry) of 1:4:18 were used. Spheroids of these cell lines were incubated with different concentrations of 225Ac-trastuzumab, and spheroid growth was measured by light microscopy over a 50-day period.

Results: The activity concentration required to yield a 50% reduction in spheroid volume at day 35 was 18.1, 1.9, and 0.6 kBq/ml (490, 52, 14 nCi/ml) for MCF7, MDA, and BT spheroids, respectively. MCF7 spheroids continued growing but with a 20–30 day growth delay at 18.5 kBq/ml. MDA spheroid growth was delayed by 30–40 days at 3.7 kBq/ml; at 18.5 kBq/ml, 12 of 12 spheroids disaggregated after 70 days and cells remaining from each spheroid failed to form colonies within 2 weeks of being transferred to adherent dishes. Eight of 10 BT spheroids failed to regrow at 1.85 kBq/ml. All of the BT spheroids at activity concentrations 3.7 kBq/ml failed to regrow and to form colonies. The radioactivity of these three lines as spheroids was evaluated as the activity concentration required to reduce the treated to untreated spheroid volume ratio to 0.37, denoted DVR37. An external beam radioactivity of 2 Gy was found for spheroids of all three of the cell lines. After α-particle irradiation a DVR37 of 1.5, 3.6, and 2.0 kBq/ml was determined for MCF7, MDA, and BT, respectively.

Conclusion: These studies suggest that 225Ac-labeled trastuzumab may be a potent therapeutic agent against metastatic breast cancer cells exhibiting intermediate to high HER2/neu expression.

INTRODUCTION

The humanized monoclonal antibody, trastuzumab, directed against HER2/neu, particularly in combination with chemotherapy, has been effective in the treatment of breast cancer malignancies overexpressing HER2/neu (1–4). This work examines a treatment approach using trastuzumab labeled with the α-particle emitting atomic generator, actinium-225 (225Ac), to eradicate breast cancer metastases expressing variable levels of HER2/neu.

The HER2/neu oncoprotein encodes a transmembrane protein (p185HER2) with extensive homology to the epidermal growth factor receptor. Amplification and overexpression of HER2/neu have been documented in many human tumors, most notably in breast cancer (5, 6). The expression of HER2/neu is relatively stable over time and is generally congruent at different metastatic sites (5, 7). However, HER2/neu protein has also been identified on cell membranes of epithelial cells in the gastrointestinal, respiratory, reproductive, and urinary tract, as well as in the skin, breast, and placenta. HER2/neu expression levels in these normal tissues are similar to the levels found in nonamplified, nonoverexpressing breast cancers cells (6). Approximately 30% of breast cancer patients have tumors overexpressing the HER2/neu receptor. Trastuzumab treatment has been limited to these patients because of the cross-reactivity with normal tissues noted above. HER2/neu has been considered previously as a target for radioimmunotherapy against breast cancer. The radionuclides,131I,125I, 186Re (8, 9), the positron-emitter, 86Y (10), and also 212Pb (11), of which the daughter, 210Bi, decays by α-particle emission, have been labeled to antibodies targeting HER2/neu and investigated in animal models. The α-particle emitting atomic generator, 225Ac, has a 10-day half-life, and each decay of 225Ac leads to the emission of four α-particles (Fig. 1), greatly increasing its efficacy over previously considered α-particle emitters (12–14). Studies, in vitro and in animal models, have shown that this radionuclide is ~1000-fold more effective per unit radioactivity than 212Pb, a first generation α-emitter that is currently under clinical inves-
Response of HER2/neu Spheroids to 225Ac-Trastuzumab

225Ac (10 d)
5.8 MeV

221Fr (4.9 m)
6.4 MeV

217At (32 ms)
7.1 MeV

213Bi (45.6 m)
5.8 MeV 98%

213Po (4.3 μs)
8.4 MeV

209TI (2.2 m)
209Pb (3.3 h)

209Bi (stable)

Fig. 1. Simplified decay scheme for actinium-225 (225Ac). The arrows designate decay by α-particle emission; the average energy of emitted α-particles is shown next to each arrow.

Studies in animals, however, have also shown that depending on the administration route, target, and chelation chemistry, it is also substantially more toxic (17-19). The increased efficacy arises because 225Ac has a longer half-life (10 days versus 45.6 min for 213Bi), increasing the total number of decays per unit of radioactivity, allowing prolonged irradiation of targeted cells, and because its decay leads to the release of three α-particle emitting daughters. The toxicity arises because chelate conjugated antibody delivery of this radionuclide can only retain, within the chelate, the first of the four α-emitting atoms. The chelation of the radionuclide is disrupted upon transformation of the parent atom, and emission of the first α. Subsequent α-emitting daughter atoms are, therefore, free to possibly distribute elsewhere in the body and potentially irradiate normal organs. This will be mitigated if the radiolabeled antibody is internalized, because charged daughter atoms produced intracellularly are retained within the cell (18).

Such a treatment strategy has been investigated, in vitro, using the spheroid model to represent rapidly accessible, intravascularly distributed tumor cell clusters (20). In anticipation of variable HER2/neu expression in a particular population of breast carcinoma cells, efficacy against cells with different HER2/neu expression levels has been examined. In contrast to traditional radioimmunotherapy with β-particle emitters, which kill cells over a large, multi-mm range, α-particles can kill individual cells; therefore, antigen density on the target cell will play an accordingly greater role in efficacy.

MATERIALS AND METHODS

Cells. The breast carcinoma cell lines MCF7, MDA-MB-361 (MDA), and BT-474 (BT) were purchased from the American Type Culture Collection (Manassas, VA). MCF7 monolayer cultures were incubated in MEM with NEAA (Memorial Sloan-Kettering Cancer Center Media Lab, New York, NY), MDA in l-15 (Memorial Sloan-Kettering Cancer Center Media Lab), and BT in RPMI with 10 mM HEPES, 1 mM NA pyruvate, 2 mM l-glutamine, 1.5g/liter bicarbonate, and 4.5g/liter glucose (MSKCC Media Lab). The medium for all of the cell lines was supplemented with 10% fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin. The cell cultures were kept at 37°C in a humidified 5% CO2 and 95% air incubator.

Spheroids. Spheroids were initiated using the liquid overlay technique of Yuhas et al. (21) and Ballangrud et al. (22). Approximately 106 cells, obtained by trypsinization from growing monolayer cultures, were seeded into 100-mm dishes coated with a thin layer of 1% agar (Bacto Agar; Difco, Detroit, MI) with 15 ml of medium. The medium used was the same as for monolayer cultures. After 5-7 days, spheroids with approximate diameters of 200 ± 20 μm were selected under an inverted phase-contrast microscope with an ocular scale using an Eppendorf pipette. The selected spheroids were transferred to 35-mm bacteriological Petri dishes in 2-ml medium for treatment.

Spheroids selected for disaggregation were centrifuged at 100 × g for 1 min to remove medium. The pellet was then suspended and gently mixed in preheated (37°C) PBS containing PBS.
Fig. 3 A, confocal microscopy images of spheroids (6~ 200 mm) after 1-, 3-, and 5-h incubation with 10 µg/ml trastuzumab-FITC. The black or gray regions reflect presence of trastuzumab. Individual cells are clearly outlined in the surface layer of MDA-MB-361 (MDA) and BT-474 (BT) spheroids, consistent with cell-surface localization of HER2/neu. At 10 µg/ml trastuzumab-FITC, no uptake of trastuzumab was observed in MCF7 spheroids. Also shown, trastuzumab concentration profiles across the spheroid equator after 1-, 3-, and 5-h incubation with 10 µg/ml trastuzumab-FITC for (B) MDA and (C) BT spheroids. The mean of five individual spheroid measurements are depicted; bars, ±SE.

Flow Cytometry. The relative level of HER2/neu expression for the three cell lines was determined using the Becton-Dickinson FACSCalibur Analyzer (Franklin Lakes, NJ). HER2/neu expression was determined for cells from both monolayer culture and from disaggregated spheroids. All of the washes and incubations were performed in FACS buffer (PBS + 0.5% BSA + 0.02% NaN₃). Cells were washed twice and resuspended at 1–2 × 10⁶ cells/ml. A 100-µl aliquot was incubated with trastuzumab for 0.5 h on ice. Cells were again washed twice and resuspended in 100 µl buffer. The secondary, fluorescently tagged antibody, against the Fc portion of human IgG (Sigma; F-9512), was added and the suspension incubated on ice for 0.5 h. After a final two washes, cells were resuspended in 2 ml of cold buffer and analyzed. A total of 10,000 events were collected for each cell line.

Antibodies. Trastuzumab (anti-HER2/neu; Genentech, Inc., South San Francisco, CA) was used as the specific anti-
Response of HER2/new Spheroids to 225Ac-Trastuzumab

Fig. 4 Surviving fraction of MCF7, MDA-MB-361 (MDA), and BT-474 (BT) cells in monolayer cultures are shown after (A) acute doses of external beam radiation and (B) 24-h incubation with 3.7, 18.5, and 37 kBq/ml actinium-225-labeled nonspecific antibody, corresponding to absorbed doses of 0.7, 3.4, and 6.8 Gy. The data are shown as a function of radial distance from the center of the spheroid. Five spheroids were imaged for each time point, fitting a monoexponential function to this portion of the curve. The average pixel intensity in each ring was corrected for light attenuation as described previously (24).

To determine the radiosensitivity of the different cell lines, monolayer cultures were exposed to acute doses of 3, 6, 9, or 12 Gy photon irradiation using a cesium irradiator at a dose rate of 0.8 Gy/min (Cis-137 Model 68; J. Shepherd and Associates, Glendale, CA). The survival fraction of the surviving fraction curve (i.e., the D_0 value) was obtained by fitting a monoexponential function to this portion of the curve. The radiochemical purity of 225Ac-DOTA-trastuzumab was ≥90% as determined by instant TLC methods, and the immunoreactivity of the labeled product was between 70% and 80% as determined by cell-based assay methods (25).

Table 1 Dose, D_0, required to reduce surviving fraction of cells in monolayer cultures following external beam and α-particle irradiation to 0.37

<table>
<thead>
<tr>
<th>Cell line</th>
<th>External beam D_0 (Gy)</th>
<th>α-Particle D_0 (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF7</td>
<td>0.76 ± 0.07</td>
<td>0.27 ± 0.02</td>
</tr>
<tr>
<td>MDA*</td>
<td>1.38 ± 0.01</td>
<td>0.33 ± 0.03</td>
</tr>
<tr>
<td>BT</td>
<td>1.21 ± 0.01</td>
<td>0.37 ± 0.05</td>
</tr>
</tbody>
</table>

*MDA, MDA-MB-361; BT, BT-474.

Radiosensitivity. The radiosensitivity of the different cell lines was determined in monolayer cultures using the colony-forming assay (26). Depending on the radiation dose, between 10^3 and 10^7 cells were plated in monolayer cultures. External beam radiosensitivity was determined after exposure to acute doses of 3, 6, 9, or 12 Gy photon irradiation using a cesium irradiator at a dose rate of 0.8 Gy/min (Cis-137 Model 68; J. Shepherd and Associates, Glendale, CA). The absorbed dose required to yield ≥37% survival in the log-linear portion of the surviving fraction curve (i.e., the D_0 value) was obtained by fitting a monoexponential function to this portion of the curve.

Confocal Microscopy. Spheroids of diameter 200 µm were incubated with 10 µg/ml FITC- (F7250; Sigma, St. Louis, MO) conjugated trastuzumab for 1, 3, and 5 h and imaged by confocal microscope (Zeiss LSM 510; Carl Zeiss, Inc. Oberkochen, Germany) while still in incubation medium. A 3-µm-thick optical section was acquired at the center of each spheroid. Five spheroids were imaged for each time point. Antibody concentration as a function of radial distance was obtained using MIAU, a software package developed in-house (23). The method has been described previously (24). Briefly, an erosion element is used to follow the exterior contour of each spheroid, and the average pixel intensity in each ring is converted to antibody concentration by calibration with the known external concentration of antibody. The antibody concentration as a function of distance from the rim of the spheroid was corrected for light attenuation as described previously (24).

225Ac. 225Ac was obtained from the Department of Energy (Oak Ridge National Laboratory, Oak Ridge, TN) and was supplied as a dried nitrate residue. The 225Ac activity was measured with a Squibb CRC-17 Radioisotope Calibrator (E.R. Squibb and Sons, Inc., Princeton, NJ) set at 775 and multiplying the displayed activity value by 5. The 225Ac nitrate residue was dissolved in 0.1 ml of 0.2 M Optima grade HCl (Fisher Scientific, Pittsburgh, PA). Metal-free water used for this and all of the other solutions was obtained from a Purelab Plus system (United States Filter Corp., Lowell, MA) and was sterile filtered.

Radiolabeling. Details regarding the radiolabeling methodology are described in reference (13).

The first step in construct preparation was the 225Ac-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-neocarzinostatin chelation reaction. The bifunctional isothiocyanato-derived 2B-DOTA, 2-(p-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid was obtained from Microcyclics (Dallas, TX). 225Ac dissolved in 0.2 M HCl was mixed with 200–500 mg of 10 g/liter DOTA-neocarzinostatin in metal-free water, 0.015–0.020 ml of 150 g/liter stock α-ascorbic acid, and 0.025–0.150 ml of 2 M tetra-methylammonium acetate. The mixture was then heated to 60°C for 30–45 min.

The second step in construct preparation was the 225Ac-DOTA-neocarzinostatin reaction with the IgG. The 225Ac-DOTA-neocarzinostatin chelation reaction was mixed with 0.5–1.0 mg of the IgG, 0.015–0.020 ml of 150 g/liter stock α-ascorbic acid, and 0.025–0.150 ml of 1 M carbonate buffer. The reaction mixture was then heated to 36°C for 30–60 min. At the end of the reaction period, the mixture was treated with a 0.020-ml addition of 10 mM diethylenetriaminepentaacetic acid to complex any free metals during the size exclusion chromatographic purification using a 10-DG size exclusion column with a 1% human serum albumin as the mobile phase.

The radiochemical purity of 225Ac-DOTA-trastuzumab was ≥90% as determined by instant TLC methods, and the immunoreactivity of the labeled product was between 70% and 80% as determined by cell-based assay methods (25).

Body. HuM195 (anti-CD33; Protein Design Laboratories, Inc., Sunnyview, CA) and J591 (anti-PSMA; generously supplied by Dr. Neil Bander, Department of Urology, New York Presbyterian Hospital-Weill Medical College of Cornell University and Ludwig Institute for Cancer Research, New York, NY) were used as nonspecific controls.

Metal-free water used for this and all of the other solutions was obtained from a Purelab Plus system (United States Filter Corp., Lowell, MA). Metal-free water used for this and all of the other solutions was obtained from a Purelab Plus system (United States Filter Corp., Lowell, MA) and was sterile filtered.
Monolayer cultures incubated with 3.7, 18.5, and 37 kBq/ml 225Ac-labeled nonspecific antibody for 24 h were used to determine α-particle radiosensitivity. Over a 24-h period, 6.7% of the total number of 225Ac atoms will have decayed. Because the longest-lived daughter, Bi-213, has a half-life of 45.6 min, all of the daughters generated during this period will also decay. Assuming, therefore, that each decay of 225Ac deposits one-half of 225Ac on 1:4:18 (MCF7:MDA:BT); the corresponding expression ratios 225Ac on 10 µg/ml trastuzumab (specific antibody) for 1 h. Spheroids exposed to 18.50 kBq/ml 225Ac on 10 µg/ml irrelevant antibody (radioactive control), 10 µg/ml unlabeled trastuzumab (unlabeled antibody control), and untreated spheroids (control) were followed in the same manner. Twenty-four or 12 spheroids were used in each experiment. After incubation, the spheroids were washed three times by suspension in fresh medium and placed in separate wells of a 24-well plate. The medium in each well was replaced, and individual spheroid volume measurements were performed twice per week. An inverted phase microscope fitted with an ocular micrometer was used to determine the major and minor diameter d_{max} and d_{min}, respectively, of each spheroid. Spheroid volume was calculated as $V = \pi d_{\text{max}}^2 d_{\text{min}} / 6$. Volume monitoring was stopped once a spheroid diameter exceeded 1 mm or when the spheroid fragmented to individual cells or smaller (2–3-cell) clusters. The viability of such fragments was assessed in an outgrowth assay by plating the cell clusters on to adherent dishes, incubating for 2 weeks, and then evaluating for colony formation or outgrowth.

RESULTS

The relative HER2/neu cell-surface expression of MCF7, MDA, and BT cells derived from monolayer culture and from disaggregated spheroids is depicted in Fig. 2. The highest HER2/neu expressing cell line, BT, shows a decrease in the number of HER2/neu sites (relative to MDA) and also a greater variability in cell surface expression in cells derived from spheroids compared with cells from monolayer culture. The relative expression of HER2/neu in cells derived from monolayers is 1:4:18 (MCF7:MDA:BT); the corresponding expression ratios for cells derived from spheroids are 1:6:12.

Penetration of trastuzumab into spheroids was evaluated by

Fig. 5 Spheroid response to external beam irradiation (•, untreated; □, 3 Gy; △, 6 Gy; ○, 9 Gy; ◆, 12 Gy) and increasing concentrations of actinium-225-labeled nonspecific antibody (●, untreated; □, 1.85 kBq/ml; Δ, 3.70 kBq/ml; ○, 9.25 kBq/ml; ◆, 18.5 kBq/ml).

External beam

Alpha-particles

<table>
<thead>
<tr>
<th>MC7</th>
<th>MDA</th>
<th>BT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>5.0</td>
<td>10.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (d)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MDA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
measuring FITC-labeled trastuzumab by confocal microscopy. Images acquired through the equator of 200-μm diameter spheroids incubated for 1, 3, and 5 h with 10 μg/ml trastuzumab-FITC are shown for MDA and BT spheroids in Fig. 3f. The cells on the spheroid rim are clearly outlined, consistent with antibody localization to cell-surface HER2/neu. Trastuzumab has penetrated ~1, 2, and 3 cell layers after 1-, 3-, and 5-h incubation, respectively. FITC intensity was converted to antibody concentration as described in “Materials and Methods.”

The results are depicted in Fig. 3, B and C. After 1-h incubation, the concentration of antibody on the surface of BT spheroids is greater than twice that on the surface of MDA spheroids. At a depth of 20 μm, the antibody concentration in BT spheroids is 5-fold greater than in MDA spheroids.

To examine for a possible differential sensitivity to unlabeled trastuzumab antibody, spheroids of the three cell lines were incubated for 1 h in 10, 50, 100, and 500 μg/ml. No impact on spheroid growth was observed (data not shown).

To discriminate between inherent radiosensitivity of the different cell lines and increased targeting due to the differential expression of HER2/neu, the radiosensitivity of each cell line was determined in monolayer cultures as well as by following spheroid growth after external beam irradiation and after incubation with 225Ac-labeled nonspecific antibody. The surviving fraction of cells in monolayer culture is plotted versus mean absorbed dose for photons and α-particles in Figs. 4, A and B, respectively. The dose, Do, required to yield a surviving fraction of 37% is listed in Table 1. MCF7 cells are 2-fold and 2.4-fold more sensitive to external beam radiation than MDA and BT cells, respectively. Although this cell line is also more sensitive to α-particle radiation than MDA and BT, the differences in radiosensitivity are less pronounced.

Spheroid response to 3, 6, 9, and 12 Gy external beam irradiation and increasing concentrations of 225Ac-labeled nonspecific antibody (24 h incubation) is depicted in Fig. 5. Fifty days after a 12 Gy external dose, outgrowth assays for MCF7 and BT spheroids showed viable cells, whereas no colonies were formed for MDA spheroids. At the two highest concentrations of 225Ac-labeled nonspecific radiolabeled antibody, outgrowth assays for MCF7 and MDA spheroids yielded no colonies; for BT the same result was obtained only at the highest radioactivity concentration used. The dose required to reduce the volume ratio of treated to untreated spheroids to 0.37, denoted DVR37, was used as a measure of spheroid radiosensitivity and is listed in Table 2. The DVR37 results show no difference among spheroids of the three cell lines in sensitivity to external beam irradiation. Differences in volume response to α-particle irradiation are seen, however, with MCF7 almost a factor of 2 more sensitive than MDA.

Table 2. Dose required to reduce the treated to untreated spheroid volume ratio to 0.37 (DVR37).

<table>
<thead>
<tr>
<th>Cell line</th>
<th>External beam DVR37 (Gy)</th>
<th>α-Particle DVR37 (kBq/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF7</td>
<td>2.2 ± 0.2</td>
<td>1.6 ± 0.3</td>
</tr>
<tr>
<td>MDA</td>
<td>2.1 ± 0.1</td>
<td>3.0 ± 0.8</td>
</tr>
<tr>
<td>BT</td>
<td>2.7 ± 0.4</td>
<td>2.5 ± 0.7</td>
</tr>
</tbody>
</table>

*MDA, MDA-MB-361; BT, BT-474.

Median growth curves for MCF7, MDA, and BT spheroids incubated 1 h with 0.37 (○), 1.85 (●), and 18.5 (▲) kBq/ml actinium-225 on 10 μg/ml trastuzumab or 18.5 kBq/ml on nonspecific antibody (radioactive control; ●).

Median growth curves for spheroids incubated 1 h with 0.37 (○), 1.85 (●), 3.7 (▲), and 18.5 (▲) kBq/ml actinium-225 on 10 μg/ml trastuzumab or 18.5 kBq/ml on nonspecific antibody (radioactive control) are depicted in Fig. 6. At day 35, the median volume of spheroids treated with 18.5 kBq/ml 225Ac-trastuzumab relative to spheroids incubated for 1 h with 225Ac-labeled nonspecific antibody (radioactive control) was 52%, 1.4%, and 0.3% for MCF7, MDA and BT, respectively. The 225Ac activity concentration required to yield a 50% reduction in spheroid volume relative to the radioactive controls at day 35 was 18.1, 1.9, and 0.6 kBq/ml (490, 52, 14 nCi/ml) for MCF7, MDA, and BT spheroids, respectively. Growth of individual spheroids after 1 h of incubation with increasing concentrations of 225Ac on 10 μg/ml trastuzumab are shown in Fig. 7. The variability in response of individual spheroids was minimal. At an activity concentration of 1.85 kBq/ml, 2 of 12 BT spheroids were viable; no colonies were observed at 3.7 and 18.5 kBq/ml for this cell line. Likewise, no colonies were observed for MDA spheroids treated at 18.5 kBq/ml. Fig. 8 depicts optical microscope images of MDA spheroids after 225Ac-trastuzumab treatment. By 21 days after incubation with 3.7 kBq/ml sloughing of cells may be observed; by 42 days, however, the spheroid appears to have recovered. At 18.5 kBq/ml, however, no such recovery is observed.
DISCUSSION

Trastuzumab-mediated targeting of 225Ac to disseminated breast cancer will be a viable therapeutic approach in humans only if two fundamental problems are addressed. First, the high background expression of HER2/neu in normal tissues must be obviated, as this cross-reactivity is likely to lead to α-particle irradiation of normal tissues. Second, the potential toxicity associated with the distribution of free, α-particle emitting daughters resulting from the decay of 225Ac must be overcome.

Both of these requirements may be met by targeting rapidly accessible micrometastatic disease in a treatment schedule in which i.v. administered 225Ac-trastuzumab is allowed to distribute for several hours and is then cleared from the circulation, either by direct physical means such as plasmapheresis or immunoadsorption (27, 28). Extravasation of intact antibody into normal tissue parenchyma generally requires 24–48 h (29). By rapidly decreasing the concentration of circulating antibody, binding to normal cross-reactive tissues would be reduced sub-

Fig. 7 Growth of individual spheroids after 1 h incubation with actinium-225-trastuzumab. Each curve corresponds to an individual spheroid. Twelve spheroids were used per experiment.

Fig. 8 Microscope images of two treated (3.7 kBq/ml and 18.5 kBq/ml) and one untreated (control) MDA-MB-361 spheroid after 1, 21, 42, and 59 days of 1-h incubation with actinium-225 (225Ac)-trastuzumab.
stantially, whereas also reducing the 225Ac concentration in the circulation and, therefore, the subsequent concentrations of free daughters.

We have used the spheroid model as a preliminary in vitro model to examine the feasibility of targeting breast cancer micrometastases using trastuzumab labeled with the atomic α-particle generator, 225Ac. In particular, the efficacy against tumor cell clusters with different expression levels of HER2/neu was examined. As demonstrated by flow cytometry, the three cell lines considered approximated low (MDA), intermediate (MDA MB-361), and high (BT-474) HER2/neu expressing metastases. The 1:4:18 relative cell-surface HER2/neu expression in low HER2/neu-expressing spheroids was examined. As demonstrated by flow cytometry, the three to

As in other studies investigating the relationship between HER2/neu expression and growth inhibition using chemotherapeutic and biological agents (30), the response of spheroids to 225Ac-trastuzumab was found to be highly dependent on HER2/neu expression. It was possible to sterilize spheroids with intermediate HER2/neu expression and to induce a growth delay in low HER2/neu-expressing spheroids by increasing the specific activity of the radiolabeled antibody. A very high specificity relative to the radioactive controls was observed. This is because targeted spheroids are exposed to the atomic α-particle generator for a prolonged time period due to binding and retention of the antibody. Longer radioactive control exposure durations such as the 24-h period used in the radiosensitivity measurements showed volume reductions similar to those obtained with the 1 h specific antibody incubation. The very high specificity seen with a short exposure time supports the clearing strategy outlined above.

In conclusion, we have demonstrated the ability to increase the efficacy of trastuzumab against clusters of tumors cells expressing intermediate levels of HER2/neu by labeling trastuzumab with the α-particle emitting atomic generator, 225Ac. These results suggest that an 225Ac concentration in the range 0.6–2 kBq/ml (20–75 nCi/ml) may be sufficient to achieve a substantial reduction in the number of tumor cells with intermediate HER2/neu expression. This translates to approximately 0.07–0.3 mCi for human administration. On the basis of animal studies, we expect that this activity concentration will be clinically implementable.

ACKNOWLEDGMENTS

We thank P. Jan Hendrikx of the Memorial Sloan-Kettering Cancer Center Flow Cytometry Core Facility for assistance with the flow cytometry studies. The Department of Energy and Medactinium, Inc., is also acknowledged for providing the Ac-225 used in these studies.

REFERENCES
