SAE AADL: An Industry Standard for Embedded Systems Engineering

Peter Feiler
Software Engineering Institute
phf@sei.cmu.edu
412-268-7790
SAE AADL: An Industry Standard for Embedded Systems Engineering

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
SAE AADL: An Industry Standard for Embedded Systems Engineering

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
Carnegie Mellon University Software Engineering Institute

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University Software Engineering Institute

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR’S ACRONYM(S)
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document contains color images.

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 Unclassified

 b. ABSTRACT
 Unclassified

 c. THIS PAGE
 Unclassified

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
25

19a. NAME OF RESPONSIBLE PERSON
-

*Standard Form 298 (Rev. 8-98)
Prepared by ANSI Z39-18*
SAE AADL Standard
An Enabler of Predictable Model-Based System Engineering

• Notation for specification of task and communication architectures of Real-time, Embedded, Fault-tolerant, Secure, Safety-critical, Software-intensive systems

• Fields of application: Avionics, Automotive, Aerospace, Autonomous systems, …

• Based on 15 Years of DARPA funded technologies

• Standard approved by SAE in Sept 2004

• www.aadl.info
SAE AS-2C AADL Subcommittee

- Bruce Lewis (US Army AMRDEC): Chair
- Peter Feiler (SEI): technical lead, author & editor
- Steve Vestal (Honeywell): co-author
- Ed Colbert (USC): UML Profile of AADL
- Joyce Tokar (Pyrrhus Software): Ada & C Annex

Other Voting Members

- Boeing, Rockwell, Honeywell, Lockheed Martin, Raytheon, Smith Industries, General Dynamics, Airbus, Axlog, European Space Agency, TNI, Dassault, EADS, High Integrity Solutions

Coordination with

- NATO Aviation, NATO Plug and Play, French Government COTRE, SAE AS-1 Weapons Plug and Play, OMG UML & SysML
Potential Users

• Airbus
• European Space Agency
• Rockwell Collins
• Lockheed Martin
• Smith Industries
• Raytheon
• Boeing FCS
• Common Missile
• System Plug and Play

New System Engineering Approach incorporates AADL

Modeling of Satellite Systems, Architecture Verification - ASSERT

Modeling of Avionics Computer System

Embedded System Engineering & AADL

Apply AADL for systems integration modeling & analysis

NATO/SAE AS1 Weapon System Integration
A Partitioned Portable Architecture

Strong Partitioning
- Timing Protection
- OS Call Restrictions
- Memory Protection

Interoperability/Portability
- Tailored Runtime Executive
- Standard RTOS API
- Application Components
MetaH: Proof of Concepts for AADL

1991 DARPA DSSA program begins
1992 Partitioned PFP target (Tartan MAR/i960MC)
1994 Multi-processor target (VME i960MC)
1995 Slack stealing scheduler
1998 Portable Ada 95 and POSIX middleware configurations
1998 Extensibility through MetaH-ACME Mapping
1998 Reliability modeling extension
1999 Hybrid automata verification of core middleware modules

Numerous evaluation and demonstration projects, e.g.
- Missile G&C reference architecture, demos, others (AMCOM SED)
- Hybrid automata formal verification (AFOSR, Honeywell)
- Missile defense (Boeing)
- Fighter guidance SW fault tolerance (DARPA, CMU, Lockheed-Martin)
- Incremental Upgrade of Legacy Systems (AFRL, Boeing, Honeywell)
- Comanche study (AMCOM, Comanche PO, Boeing, Honeywell)
- Tactical Mobile Robotics (DARPA, Honeywell, Georgia Tech)
- Advanced Intercept Technology CWE (BMDO, MaxTech)
- Adaptive Computer Systems (DARPA, Honeywell)
- Avionics System Performance Management (AFRL, Honeywell)
- Ada Software Integrated Development/Verification (AFRL, Honeywell)
- FMS reference architecture (Honeywell)
- JSF vehicle control (Honeywell)
- IFMU reengineering (Honeywell)
AADL in Context

Research ADLs
• MetaH
 – Real-time, modal, system family
 – Analysis & generation
 – RMA based scheduling
• Rapide, Wright, ..
 – Behavioral validation
• ADL Interchange
 – ACME

Industrial Strength
• UML 2.0, UML-RT
• HOOD/STOOD
• SDL

© 2004 by Carnegie Mellon University
www.aadl.info
AADL: The Language

Components with precise semantics
 – Thread, thread group, process, system, processor, device, memory, bus, data, subprogram

Completely defined interfaces & interactions
 – Data & event flow, synchronous call/return, shared access
 – End-to-End flow specifications

Real-time Task Scheduling
 – Supports different scheduling protocols incl. GRMA, EDF
 – Defines scheduling properties and execution semantics

Modal, configurable systems
 – Modes to model transition between statically known states & configurations

Component evolution & large scale development support

AADL language extensibility
Thread Execution Semantics

- Dispatch protocols
- Nominal & recovery
- Fault handling
- Resource locking
- Mode switching
- Initialization & finalization
Execution Platform Bindings

Co-location constraints in support of redundant systems

Processor, memory, and connection bindings

Flight Mgr

Weapons Mgr

Warnings Annunciations

MFD Pilot

MFD Copilot

Mission Processor

Display Processor

Display Processor

Pilot Display

CoPilot Display

1553

High speed network

1553 bus

© 2004 by Carnegie Mellon University
An Avionics System Case Study

- Migration from static timeline to preemptive scheduling
 - Identified issues with shared variable communication
 - Migration potential from polling tasks to event-driven tasks
- Flexibility, predictability & efficiency of port-based communication
 - Defined communication timing semantics
 - Support for deterministic transfer & optimized buffers
- Effectiveness of connection & flow semantics
 - Support end-to-end latency analysis
- Analyzable fault-tolerant redundancy patterns
 - Orthogonal architecture view without model clutter
A Naïve Thread-based Design

From other Partitions

Pr 1	20Hz
Pr 2	20Hz
Pr 3	10Hz
Pr 4	20Hz
Pr 5	5Hz
Pr 6	2Hz

Shared data area

Potential non-deterministic communication due to preemption
Potential priority inversion due to priority assignment
Tasks must complete within frame => cyclic executive behavior

To other Partitions

Navigation Sensor Processing
Integrated Navigation
Guidance Processing
Flight Plan Processing
Aircraft Performance Calculation
Data Stream Latency Analysis

• Flow specifications in AADL
 – Properties on flows: expected & actual end-to-end latency
 – Properties on ports: expected incoming & estimated output latency

• End-to-end latency contributors
 – Delayed connections result in sampling latency
 – Immediate periodic & aperiodic sequences result in cumulative execution time latency

• Phase delay shift & oscillation
 – Noticeable at flow merge points
 – Variation interpreted as noisy signal to controller

Potential hazard

Latency calculation & jitter accumulation
Other Flow Characteristics

• Miss rate of data stream
 – Accommodates incomplete sensor readings
 – Allows for controlled deadline misses
• State vs. state delta communication
 – Data reduction technique
 – Implies requirement for guaranteed delivery
• Data accuracy
 – Reading accuracy
 – Computational error accumulation
• Message acknowledgment semantics
 – In terms of flow steps
Redundancy Specification

- Redundancy abstraction
- Co-location constraints on execution platform binding
Primary/Backup Patterns

Passive Backup

CSS1 Primary

SS1.1

SS1.2

CSS1 Backup

SS1.1

SS1.2

Hot Standby

CSS1 Primary

SS1.1

SS1.2

CSS1 Backup

SS1.1

SS1.2

Continuous State Exchange

CSS1

SS1.1

State

SS1.2

Voted Output

CSS1

SS1.1

SS1.2

SS1.3
Primary Backup Synchronization

- External and internal mode control
- Errors reported as events
- Supports reasoning about Primary/Backup logic

- **Primary**
 - WAM state
 - 20Hz

- **Backup**
 - WAM state
 - 20Hz

- **Mode**
 - Init/restart
 - 20Hz

- **Observer**
 - Primaryok
 - Primaryfail

© 2004 by Carnegie Mellon University
AADL Language Extensions

• New properties through property sets
• Sublanguage extension
 – Annex subclauses expressed in an annex-specific sublanguage
• Project-specific language extensions
• Language extensions as approved SAE AADL standard annexes
• Examples
 – Reliability modeling
 – ARINC 653
 – Behavior
 – Constraint sublanguage
Example Annex Extension

THREAD t
FEATURES
 sem1 : DATA ACCESS semaphore;
 sem2 : DATA ACCESS semaphore;
END t;

THREAD IMPLEMENTATION t.t1
PROPERTIES
 Period => 13.96ms;
 cotre::Priority => 1;
 cotre::Phase => 0.0ms;
 Dispatch_Protocol => Periodic;

ANNEX cotre.behavior {**
STATES
 s0, s1, s2, s3, s4, s5, s6, s7, s8 : STATE;
 s0 : INITIAL STATE;
TRANSITIONS
 s0 -[]-> s1 { PERIODIC_WAIT };
 s1 -[]-> s2 { COMPUTATION(1.9ms, 1.9ms) };
 s2 -[sem1.wait ! (-1.0ms)]-> s3;
 s3 -[]-> s4 { COMPUTATION(0.1ms, 0.1ms) };
 s4 -[sem2.wait ! (-1.0ms)]-> s5;
 s5 -[]-> s6 { COMPUTATION(2.5ms, 2.5ms) };
 s6 -[sem2.release !]-> s7;
 s7 -[]-> s8 { COMPUTATION(1.5ms, 1.5ms) };
 s8 -[sem1.release !]-> s0;
**};
END t.t1;

COTRE thread properties

COTRE behavioral annex

Courtesy of
Reliability Modeling Approach

Error state & occurrence model as AADL extension
- Error states and transitions
- Fault events & occurrence rates
- Error propagation rates
- Masking of subcomponent and propagation errors

Architecture model provides
- Dependency information
- Isolation analysis
- Basis for stochastic process model generation

Reflects hazard analysis, component failure modes & effects analysis
An XML-Based AADL Tool Strategy

- Textual AADL
- Graphical AADL Editor
 - Semantic Checking
 - Declarative AADL XML
 - Architecture Import/Export
 - AADL Instance XML
 - AADL Runtime Generator
 - Scheduling Analysis
 - Reliability Analysis
 - Safety Analysis
 - Filter to Markov Analysis
 - Project-Specific In-House
 - Commercial Tool like TimeWiz
 - Execution Platform Binding

© 2004 by Carnegie Mellon University

www.aadl.info
Open Source AADL Tool Environment

• OSATE is
 – Developed by the Software Engineering Institute
 – Available at under a no cost Common Public License (CPL)
 – Implemented on top of Eclipse Release 3 (www.eclipse.org)
 – Generated from an AADL meta model using the Eclipse Modeling Framework (EMF)
 – A textual & graphical AADL front-end with semantic & XML/XMI support
 – Extensible through architecture analysis & generation plug-ins

• OSATE offers
 – Low cost entrypoint to the use of SAE AADL
SAE AADL and OSATE: Enablers of Embedded Systems Research

- Industry standard architecture modeling notation & model interchange format facilitates
 - Interchange of architecture models between contractors & subcontractors
 - Common architecture model for non-functional system property analysis from different perspectives
 - In-house prototyping of project specific architecture analysis & generation
 - Architecture research with access to industrial models & industry exposure to research results