The best-known unmanned aerial vehicles (UAVs), Predator and Global Hawk, are large, multi-million dollar aircraft managed as theater/national assets. With synthetic aperture radar (SAR), electro-optic/infrared (EO/IR), and signals intelligence (SIGINT) payloads, these UAVs have proven their worth in battlefields from Bosnia to Afghanistan and Iraq. This success has led to surge in proposed UAV missions and designs using a layered approach with multiple classes of UAVs to provide persistent narrow and wide ISR (intelligence, surveillance, reconnaissance) coverage. Programs such as the Future Combat System (FCS) include a large role for tactical UAVs, small UAVs, and unmanned ground vehicles (UGVs). The smaller, cheaper unmanned vehicles can be deployed at the brigade or company level to “see over the next hill.” With many vehicles and many sensors, network bandwidth becomes an issue. So future UAVs will include aided/automatic target recognition (AiTR/ATR) capabilities to reduce both communication bandwidth and latency.

Large UAVs such as Global Hawk and Predator have been successful using today’s HPEC solutions. Global Hawk currently uses a 9U VME system with PowerPC processors for SAR and EO/IR processing, while the Predator is a bit smaller, using a 6U VME system for TESAR processing. The challenge is to provide similar processing power for much smaller UAVs, many of which have less than ½ the payload weight and ¼ the volume of the Predator (see examples in Table 1). Note that only a small portion of the payload is allocated for signal and image processing. For example, the TESAR image processor on the Predator is just 55 pounds, less than 1/10 of the total payload weight.
Processing Challenges in Shrinking HPEC Systems into Small UAVs

Authors
Mercury Computer Systems, Inc. 199 Riverneck Road, Chelmsford, MA 01824

Abstract
Table 1: UAV Payloads

<table>
<thead>
<tr>
<th>UAV</th>
<th>Global Hawk</th>
<th>Predator B</th>
<th>Heron A</th>
<th>Hunter</th>
<th>Eagle Eye</th>
<th>Fire-scout</th>
<th>Sentry</th>
<th>Dragon Warrior</th>
<th>Dragon Eye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (ft)</td>
<td>44.4</td>
<td>36</td>
<td>26</td>
<td>22</td>
<td>17</td>
<td>23</td>
<td>8.4</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Wingspan (ft)</td>
<td>116</td>
<td>66</td>
<td>54</td>
<td>29</td>
<td>17</td>
<td>20</td>
<td>12.8</td>
<td>9</td>
<td>3.8</td>
</tr>
<tr>
<td>Height (ft)</td>
<td>14</td>
<td>9.5</td>
<td>5.9</td>
<td>5.6</td>
<td>5.5</td>
<td>9.5</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Payload Weight (lbs)</td>
<td>1000</td>
<td>800</td>
<td>550</td>
<td>250</td>
<td>200</td>
<td>200</td>
<td>75</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>Max Altitude (ft)</td>
<td>65k</td>
<td>50k</td>
<td>25k</td>
<td>15k</td>
<td>20k</td>
<td>20k</td>
<td>15k</td>
<td>4k</td>
<td>1.2k</td>
</tr>
<tr>
<td>Sensors</td>
<td>EO/IR SAR ISAR SIGINT MTS</td>
</tr>
<tr>
<td>Endurance (hrs)</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Max Airspeed (kts)</td>
<td>320</td>
<td>220</td>
<td>120</td>
<td>100</td>
<td>220</td>
<td>120</td>
<td>100</td>
<td>70</td>
<td>35</td>
</tr>
</tbody>
</table>

In the past, we have relied on Moore’s Law to help us out. We could wait a couple of years and the technology improvements in the electronics would have enabled significant shrinking of size. However, we’ve come to a point where Moore’s Law effects still increase absolute performance, but not performance per Watt, per pound, or per cubic foot. Although the number of transistors available is increasing, the power consumption is increasing at almost the same rate (see figure 1). The increased infrastructure to handle the power distribution and heat extraction incurs a penalty in size and weight. Alternative approaches are needed.

One approach is to leverage field-programmable gate arrays (FPGAs) as programmable processors. For some front-end signal and image processing functions, FPGAs have been shown to provide a 10-20 fold performance boost over a PowerPC G4 processor. However, some front-end tasks, like filter weight computation, and most back-end processing still performs much better on a PowerPC processor. Given the higher power consumption of an FPGA, there is a limit on the number of FPGAs that can be used in a system. In trying to fit the most processing power in the smallest space for a given application, the trick is not only trying to find the optimum balance between FPGAs and PowerPCs, but also exactly which model of each chip to choose.
Most evaluations of FPGA chips focus on the number of logic cells, slices, and processor blocks. An example comparison of Xilinx FPGAs is shown in Figure 2. For embedded signal and image processing applications, more critical elements tend to be the number of multiplier blocks and the size of the block RAM. This leads to different component selection, as shown in Figure 3.

The slot limitations on space-constrained systems also lend to integration of the analog-to-digital conversion and general I/O with the processing. This is especially important for multi-channel systems. That sensor I/O can be part of the base-board design along with processors or be a separate mezzanine card. A separate mezzanine card gains board real estate but restricts the power and cooling available to each card.

This presentation will provide a detailed set of trade-offs in computational capabilities, I/O capabilities, and memory capacities distributed between FPGAs and PowerPCs for sample applications of SAR image formation and SIGINT channelized receiver throughout.
Figure 2: Typical comparison of FPGA attributes.

Figure 3: Focusing on RAM and multiplier blocks for FPGA computing.
Processing Challenges in Shrinking HPEC Systems into Small Platforms

Stephen Pearce & Richard Jaenicke
Mercury Computer Systems, Inc.

High Performance Embedded Computing (HPEC) Conference
September 28, 2004

The Ultimate Performance Machine
Target Applications

- COMINT/ESM
- Software Radio
- Radar
- ELINT/ESM/RWR
- EO/IR Imagery

... and other HPEC challenges, such as ATR, to reduce sensor communication bandwidth/latency needs.
Target Platform Types

- UAVs
- Helicopters
- Man-pack/Brief-case
 - e.g., Humvee
- Small Vehicle
 - e.g., ARC-210 radio
- Manned aircraft
 - e.g., F-18 (POD)
- Airborne Pods
 - e.g., RAPTOR
 - JSF
 - F-16
 - SH60
 - Prophet
 - Litening Pod
Platforms with SWAP Constraints - UAVs

<table>
<thead>
<tr>
<th>UAV</th>
<th>Global Hawk</th>
<th>Predator B</th>
<th>Heron A</th>
<th>Hunter</th>
<th>Eagle Eye</th>
<th>Fire Scout</th>
<th>Sentry</th>
<th>Dragon Warrior</th>
<th>Dragon Eye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (ft)</td>
<td>44.4</td>
<td>36</td>
<td>26</td>
<td>22</td>
<td>17</td>
<td>23</td>
<td>8.4</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Wingspan (ft)</td>
<td>116</td>
<td>66</td>
<td>54</td>
<td>29</td>
<td>17</td>
<td>20</td>
<td>12.8</td>
<td>9</td>
<td>3.8</td>
</tr>
<tr>
<td>Height (ft)</td>
<td>14</td>
<td>9.5</td>
<td>5.9</td>
<td>5.6</td>
<td>5.5</td>
<td>9.5</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Payload Weight (lbs)</td>
<td>1000</td>
<td>800</td>
<td>550</td>
<td>250</td>
<td>200</td>
<td>200</td>
<td>75</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>Max Altitude (ft)</td>
<td>65k</td>
<td>50k</td>
<td>25k</td>
<td>15k</td>
<td>20k</td>
<td>20k</td>
<td>15k</td>
<td>4k</td>
<td>1.2k</td>
</tr>
<tr>
<td>Sensors</td>
<td>EO/IR SAR ISAR SIGINT MTS</td>
<td>EO/IR</td>
<td>EO/IR</td>
<td>EO/IR</td>
</tr>
<tr>
<td>Endurance (hrs)</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Max Airspeed (kts)</td>
<td>320</td>
<td>220</td>
<td>120</td>
<td>100</td>
<td>220</td>
<td>120</td>
<td>100</td>
<td>70</td>
<td>35</td>
</tr>
</tbody>
</table>

- **UAVs height is very small; tends to lead to smaller system designs than 6U arrayed on base of fuselage/wings**
- **Payload weight is small, thus weight constrained solutions are demanded**
- **UAVs tend to fly fairly high. A consequence is that without life support environments (no man) at this altitude, conduction cooled becomes mandatory.**
- **All traditional HPEC applications are represented on all the platforms.**
Historically, have relied on Moore’s Law. Could wait and technology improvements would enable significant miniaturization. However, we observed increases in absolute performance are accompanied by increases in power, and by consequence weight and volume.

Number of transistors available is increasing, but power consumption is increasing at almost same rate. Increased infrastructure to handle power distribution and heat extraction incurs a penalty in size and weight. Alternative approaches are needed.

One approach: leverage field-programmable gate arrays (FPGAs) as programmable processors.

For some signal/image processing functions, FPGAs shown to provide a 10-20 fold performance boost over a PowerPC G4 processor. However, some tasks, e.g. filter weight computation, back-end processing, still perform better on a PowerPC.

In trying to maximize processing power in smallest space, trick is not only trying to find optimum balance between FPGAs and PowerPCs, but also exactly which model of each chip to choose.
The popular comparison....

These are the resources most often receiving attention when people look at Xilinx parts.
FPGA Selection

- **But what really matters**

For embedded signal/image processing applications, more critical elements tend to be number of multiplier blocks and block RAM size.

- Leads to different component selection favoring Pro range.
Scaling the Processing

Current PPC-only Solutions (e.g. 6U VME chassis)

- 500 MHz class PPC x 4 = 16 GFLOPS per slot =>
 - 6 slot=96 GFLOPS
 - 12 slot=192 GFLOPS
 - 20 slot=320 GFLOPS

Future PPC-only Solutions

- 2x 1GHz class PPC per board or 2 FPGA per board =>
 - 2 slot=96-216 GFLOPS
 - 4 slot=112-616 GFLOPS
 - 8 slot=224-1232 GFLOPS

=> Future FPGA + PPC exploitation on 3U better than existing 6U

Future Heterogeneous Solutions

- 4x 1 GHz class PPC per board or 2 FPGA per board =>
 - 6 slot=192-1032 GFLOPS
 - 12 slot=384-2232 GFLOPS
 - 20 slot=640-3832 GFLOPS

=> FPGA + PPC exploitation on VME

Similar Processing — smaller system

2-4x processing — same system dimensions

Assumptions

- FPGA= Equivalent 40-100 GFLOPS
- 500 MHz PPC=4 GFLOPS

2-10x processing — same system dimensions

Assumptions

- 500 MHz class PPC x 4
 - = 16 GFLOPS per slot =>
 - 6 slot=96 GFLOPS
 - 12 slot=192 GFLOPS
 - 20 slot=320 GFLOPS

Future PPC-only Solutions

- 4x 1.5 GHz class PPC = 48 GFLOPS per slot =>
 - 6 slot=288 GFLOPS
 - 12 slot=576 GFLOPS
 - 20 slot=960 GFLOPS

=> PPC exploitation of VITA 46

- 2x 1GHz class PPC per board or 2 FPGA per board =>
 - 2 slot=96-216 GFLOPS
 - 4 slot=112-616 GFLOPS
 - 8 slot=224-1232 GFLOPS

=> Future FPGA + PPC exploitation on 3U better than existing 6U

- 4x 1 GHz class PPC per board or 2 FPGA per board =>
 - 6 slot=192-1032 GFLOPS
 - 12 slot=384-2232 GFLOPS
 - 20 slot=640-3832 GFLOPS

=> FPGA + PPC exploitation on VME

Assumptions

- FPGA= Equivalent 40-100 GFLOPS
- 500 MHz PPC=4 GFLOPS

500 MHz class PPC x 4
 - = 16 GFLOPS per slot =>
 - 6 slot=96 GFLOPS
 - 12 slot=192 GFLOPS
 - 20 slot=320 GFLOPS

Future Heterogeneous Solutions

- 4x 1 GHz class PPC per board or 2 FPGA per board =>
 - 6 slot=192-1032 GFLOPS
 - 12 slot=384-2232 GFLOPS
 - 20 slot=640-3832 GFLOPS

=> FPGA + PPC exploitation on VME

- 2x 1GHz class PPC per board or 2 FPGA per board =>
 - 2 slot=96-216 GFLOPS
 - 4 slot=112-616 GFLOPS
 - 8 slot=224-1232 GFLOPS

=> Future FPGA + PPC exploitation on 3U better than existing 6U

Similar Processing — smaller system

2-4x processing — same system dimensions

Assumptions

- FPGA= Equivalent 40-100 GFLOPS
- 500 MHz PPC=4 GFLOPS

2-10x processing — same system dimensions

Assumptions

- 500 MHz class PPC x 4
 - = 16 GFLOPS per slot =>
 - 6 slot=96 GFLOPS
 - 12 slot=192 GFLOPS
 - 20 slot=320 GFLOPS

Future PPC-only Solutions

- 4x 1.5 GHz class PPC = 48 GFLOPS per slot =>
 - 6 slot=288 GFLOPS
 - 12 slot=576 GFLOPS
 - 20 slot=960 GFLOPS

=> PPC exploitation of VITA 46

- 2x 1GHz class PPC per board or 2 FPGA per board =>
 - 2 slot=96-216 GFLOPS
 - 4 slot=112-616 GFLOPS
 - 8 slot=224-1232 GFLOPS

=> Future FPGA + PPC exploitation on 3U better than existing 6U

Similar Processing — smaller system

2-4x processing — same system dimensions

Assumptions

- FPGA= Equivalent 40-100 GFLOPS
- 500 MHz PPC=4 GFLOPS

2-10x processing — same system dimensions

Assumptions

- 500 MHz class PPC x 4
 - = 16 GFLOPS per slot =>
 - 6 slot=96 GFLOPS
 - 12 slot=192 GFLOPS
 - 20 slot=320 GFLOPS

Future PPC-only Solutions

- 4x 1.5 GHz class PPC = 48 GFLOPS per slot =>
 - 6 slot=288 GFLOPS
 - 12 slot=576 GFLOPS
 - 20 slot=960 GFLOPS

=> PPC exploitation of VITA 46

- 2x 1GHz class PPC per board or 2 FPGA per board =>
 - 2 slot=96-216 GFLOPS
 - 4 slot=112-616 GFLOPS
 - 8 slot=224-1232 GFLOPS

=> Future FPGA + PPC exploitation on 3U better than existing 6U

Similar Processing — smaller system

2-4x processing — same system dimensions

Assumptions

- FPGA= Equivalent 40-100 GFLOPS
- 500 MHz PPC=4 GFLOPS

2-10x processing — same system dimensions

Assumptions

- 500 MHz class PPC x 4
 - = 16 GFLOPS per slot =>
 - 6 slot=96 GFLOPS
 - 12 slot=192 GFLOPS
 - 20 slot=320 GFLOPS

Future PPC-only Solutions

- 4x 1.5 GHz class PPC = 48 GFLOPS per slot =>
 - 6 slot=288 GFLOPS
 - 12 slot=576 GFLOPS
 - 20 slot=960 GFLOPS

=> PPC exploitation of VITA 46

- 2x 1GHz class PPC per board or 2 FPGA per board =>
 - 2 slot=96-216 GFLOPS
 - 4 slot=112-616 GFLOPS
 - 8 slot=224-1232 GFLOPS

=> Future FPGA + PPC exploitation on 3U better than existing 6U

Similar Processing — smaller system

2-4x processing — same system dimensions

Assumptions

- FPGA= Equivalent 40-100 GFLOPS
- 500 MHz PPC=4 GFLOPS

2-10x processing — same system dimensions

Assumptions

- 500 MHz class PPC x 4
 - = 16 GFLOPS per slot =>
 - 6 slot=96 GFLOPS
 - 12 slot=192 GFLOPS
 - 20 slot=320 GFLOPS

Future PPC-only Solutions

- 4x 1.5 GHz class PPC = 48 GFLOPS per slot =>
 - 6 slot=288 GFLOPS
 - 12 slot=576 GFLOPS
 - 20 slot=960 GFLOPS

=> PPC exploitation of VITA 46

- 2x 1GHz class PPC per board or 2 FPGA per board =>
 - 2 slot=96-216 GFLOPS
 - 4 slot=112-616 GFLOPS
 - 8 slot=224-1232 GFLOPS

=> Future FPGA + PPC exploitation on 3U better than existing 6U

Similar Processing — smaller system

2-4x processing — same system dimensions

Assumptions

- FPGA= Equivalent 40-100 GFLOPS
- 500 MHz PPC=4 GFLOPS

2-10x processing — same system dimensions

Assumptions

- 500 MHz class PPC x 4
 - = 16 GFLOPS per slot =>
 - 6 slot=96 GFLOPS
 - 12 slot=192 GFLOPS
 - 20 slot=320 GFLOPS

Future PPC-only Solutions

- 4x 1.5 GHz class PPC = 48 GFLOPS per slot =>
 - 6 slot=288 GFLOPS
 - 12 slot=576 GFLOPS
 - 20 slot=960 GFLOPS

=> PPC exploitation of VITA 46

- 2x 1GHz class PPC per board or 2 FPGA per board =>
 - 2 slot=96-216 GFLOPS
 - 4 slot=112-616 GFLOPS
 - 8 slot=224-1232 GFLOPS

=> Future FPGA + PPC exploitation on 3U better than existing 6U

Similar Processing — smaller system

2-4x processing — same system dimensions

Assumptions

- FPGA= Equivalent 40-100 GFLOPS
- 500 MHz PPC=4 GFLOPS

2-10x processing — same system dimensions

Assumptions

- 500 MHz class PPC x 4
 - = 16 GFLOPS per slot =>
 - 6 slot=96 GFLOPS
 - 12 slot=192 GFLOPS
 - 20 slot=320 GFLOPS

Future PPC-only Solutions

- 4x 1.5 GHz class PPC = 48 GFLOPS per slot =>
 - 6 slot=288 GFLOPS
 - 12 slot=576 GFLOPS
 - 20 slot=960 GFLOPS

=> PPC exploitation of VITA 46
Slot limitations on space-constrained systems also lend to integration of the analog-to-digital conversion and general I/O with the processing. This is especially important for multi-channel systems.

Sensor I/O can be part of baseboard design, e.g. tuner/ADC or be a mezzanine card attached to processors.
SDR Example Mapped to Enclosure

- **Example ARC-210 Form**
 - Fitting 6 x 3U cPCI slots leaves total remaining space of:
 - Width 1” (20%)
 - Height 1.7” (>30%)
 - Length 6.3” (>35%)

- **MCP3 FCN + DRTi Analogue**
 - Dimensions to scale

- **RF**
 - 1 channel at 70 MSPS 14 bit input from 3GHz operating band
 - 1 channel at 70 MSPS 14 bit output to 3 GHz operating band +20dBm

- **Digital**
 - ~80-240 GFLOPs
 - 4 x 1 GHz PPCs
 - ~= 40 GFLOPs
 - 4 x Virtex II P40 FPGAS
 - ~= 40-200 GFLOP equivalent

© 2004 Mercury Computer Systems, Inc.
Small SAR

Image Formation

Radar Control

Guidance & Control

User Display

Power Supply

Digital Receiver

Quadrature Exciter

Weight < 10lb
Cost < $60k
Power Consumption < 150W
Beamformer/DF

- COMINT
- ESM
- ELINT

- If down-conversion added

User Display

Ethernet /VGA

Digital Tuner

REF GEN

System Host
- PowerPC 7447, 1 GHz
- 250 MB/s off-board via cPCI
- MCOE 6.2.x support
- WindRiver VxWorks + Tools

- FPGA Virtex II Pro
- 4x Direct high speed ‘digital IF’ interfaces
- PMC site for digital receiver or modem etc.
- FDK 2.0.x support
MCP3 FCN: Flexible 3U Signal Processing

- Combined PowerPC & FPGA
 - Flexibility of RISC processing code
 - Density and bandwidth handling strengths of FPGAs
- Deployable
 - Ruggedized & conduction-cooled
- Multiple I/Os direct to FPGA
 - 4x high-speed bus via J2
 - Dual-channel analogue input digital receiver PMC option
Analog I/O receiver

- 2x 80 MSPS 14 bit ADC
- Factory configurable
 - IF up to 100 MHz

PMC general features

- Direct interface to FPGA
- Stepped attenuators
- RF screening
- Clocks (int./ext.)
- Power managed
Processing Challenges in Shrinking HPEC Systems into Small Platforms

Stephen Pearce & Richard Jaenicke
Mercury Computer Systems, Inc.

High Performance Embedded Computing (HPEC) Conference
September 28, 2004

The Ultimate Performance Machine
Platforms with SWAP Constraints - UAVs

<table>
<thead>
<tr>
<th>UAV</th>
<th>Global Hawk</th>
<th>Predator B</th>
<th>Heron A</th>
<th>Hunter</th>
<th>Eagle Eye</th>
<th>Fire Scout</th>
<th>Sentry</th>
<th>Dragon Warrior</th>
<th>Dragon Eye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (ft)</td>
<td>44.4</td>
<td>36</td>
<td>26</td>
<td>22</td>
<td>17</td>
<td>23</td>
<td>8.4</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Wingspan (ft)</td>
<td>116</td>
<td>66</td>
<td>54</td>
<td>29</td>
<td>17</td>
<td>20</td>
<td>12.8</td>
<td>9</td>
<td>3.8</td>
</tr>
<tr>
<td>Height (ft)</td>
<td>14</td>
<td>9.5</td>
<td>5.9</td>
<td>5.6</td>
<td>5.5</td>
<td>9.5</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Payload Weight (lbs)</td>
<td>1000</td>
<td>800</td>
<td>550</td>
<td>250</td>
<td>200</td>
<td>200</td>
<td>75</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>Max Altitude (ft)</td>
<td>65k</td>
<td>50k</td>
<td>25k</td>
<td>15k</td>
<td>20k</td>
<td>20k</td>
<td>15k</td>
<td>4k</td>
<td>1.2k</td>
</tr>
<tr>
<td>Sensors</td>
<td>EO/IR SAR ISAR SIGINT MTS</td>
<td>EO/IR</td>
<td>EO/IR</td>
<td>EO/IR</td>
</tr>
<tr>
<td>Endurance (hrs)</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Max Airspeed (kts)</td>
<td>320</td>
<td>220</td>
<td>120</td>
<td>100</td>
<td>220</td>
<td>120</td>
<td>100</td>
<td>70</td>
<td>35</td>
</tr>
</tbody>
</table>

- **UAVs height is very small; tends to lead to smaller system designs than 6U arrayed on base of fuselage/wings**
- **Payload weight is small, thus weight constrained solutions are demanded**
- **UAVs tend to fly fairly high. A consequence is that without life support environments (no man) at this altitude, conduction cooled becomes mandatory.**
- **All traditional HPEC applications are represented on all the platforms.**
Scaling the Processing

Current PPC-only Solutions (e.g. 6U VME chassis)

- 6 slot = 96 GFLOPS
- 12 slot = 192 GFLOPS
- 20 slot = 320 GFLOPS

Future PPC-only Solutions

- 2 slot = 96-216 GFLOPS
- 4 slot = 112-616 GFLOPS
- 8 slot = 224-1232 GFLOPS

Future Heterogeneous Solutions

- 4x 1.5 GHz class PPC = 48 GFLOPS per slot =>
 - 6 slot = 288 GFLOPS
 - 12 slot = 576 GFLOPS
 - 20 slot = 960 GFLOPS

- 4x 1 GHz class PPC per board or 2 FPGA per board =>
 - 6 slot = 192-1032 GFLOPS
 - 12 slot = 384-2232 GFLOPS
 - 20 slot = 640-3832 GFLOPS

- => FPGA + PPC exploitation on VME

Assumptions

- FPGA = Equivalent 40-100 GFLOPS
- 500 MHz PPC = 4 GFLOPS
- 500 MHz class PPC x 4 = 16 GFLOPS per slot =>
 - 6 slot = 96 GFLOPS
 - 12 slot = 192 GFLOPS
 - 20 slot = 320 GFLOPS

- 2x 1 GHz class PPC per board or 2 FPGA per board =>
 - 2 slot = 96-216 GFLOPS
 - 4 slot = 112-616 GFLOPS
 - 8 slot = 224-1232 GFLOPS

- => Future FPGA + PPC exploitation on 3U better than existing 6U

Assumptions

- FPGA = Equivalent 40-100 GFLOPS
- 500 MHz PPC = 4 GFLOPS
- 500 MHz class PPC x 4 = 16 GFLOPS per slot =>
 - 6 slot = 96 GFLOPS
 - 12 slot = 192 GFLOPS
 - 20 slot = 320 GFLOPS

- Similar Processing – smaller system

4x 1.5 GHz class PPC = 48 GFLOPS per slot =>
- 6 slot = 288 GFLOPS
- 12 slot = 576 GFLOPS
- 20 slot = 960 GFLOPS

- => PPC exploitation of VITA 46

2-10x processing – same system dimensions

Small