Ground Moving Target Tracking and Exploitation
Performance Measures

Jon Jones
Air Force Research Laboratory/IFEA
phone: 315-330-1665
e-mail: jon.jones@rl.af.mil

Jeff Brandstadt, Mark Kozak, Tim Hughes, and Mike Blount
Black River Systems
e-mail: brandsta@brsc.com
e-mail: {mpkozak, hughest, blount}@ifea.rl.mil

Abstract Ground Moving Target Indication provides a unique source of information for the exploitation of surface and low flying aircraft at long range, in all weather, providing situation awareness, targeting, and intelligence information. While airborne moving target indication and fire control radars have been around for a long period of time, it has been only the last decade when Ground Moving Target Indication (GMTI) data has been collected and used to prosecute mobile surface targets. This presentation addresses the use of GMTI data from providing intelligence information to the analysis and leads to the challenges associated with doing long-term track maintenance. The intelligence community has been expressing interest in GMTI data since 1999 when investments were made to develop the first exploitation capability that focused on products from Joint STARS GMTI data providing a web based capability to process and exploit Joint STARS data via a Network Centric Architecture. At the same time, DARPA and AFRL were pursuing the Long Term Track Maintenance challenge performing multi-platform command and control, horizontally fusing multiple sensors with weapons for a long-range precision fire control system. The focus of this presentation is to cover performance metrics. The metrics will be associated with operators-in-the-loop evaluations looking at intelligence and analysis for the find, fix, track, and assess portion of the weapon. The second set of metrics focus on long-term track maintenance evaluations. Track accuracy and persistence in time critical targeting, which address the track, target, and engage portion of the weapon chain. Programs to be discussed include the Moving Target Information Exploitation System (MTIX) program with respect to intelligence products, the Multi-Platform Tracking Exploitation (MPTE) and the Affordable Moving Surface Target Engagement (AMSTE) programs with respect to Long Term Track Maintenance and Precision Fire Control.
1. REPORT DATE
20 DEC 2004

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Ground Moving Target Tracking and Exploitation Performance Measures

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFEA

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also, ADM001741 Proceedings of the Twelfth Annual Adaptive Sensor Array Processing Workshop, 16-18 March 2004 (ASAP-12, Volume 1),. The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th></th>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
23

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)

Prepared by ANSI Std Z39-18
Ground Moving Target Tracking and Exploitation Performance Measures

17 March 2004

Jon Jones
Jon.Jones@rl.af.mil
Fusion Technology Branch
Air Force Research Laboratory
Phone: 315-330-2923
Outline

- Ground Moving Target Tracking
 - Performance Measures for Tracking Targets
 - Sources of Analysis
 - Multi-Platform Tracking Exploitation (MPTE)
 - Affordable Moving Surface Target Engagement (AMSTE)
 - Well Defined Metrics

- Ground Moving Target Exploitation
 - Exploitation MOPs/MOEs (use of the data and performance of the systems)
 - Moving Target Information Exploitation (MTIX) Features
 - OIF, Korea, DCGS
 - Metrics Maturing
Indicators of Association Complexity

1) Normalized Target Density – Number of detections competing for association.
 Dependencies
 Observation Error Volume
 - Dimensionality
 - Measurement Errors (σ)
 - Vehicle/Sensor/ROI Geometry
 - Sensor distance from ROI
 Number of Nearby Confusers
 - Density of Targets
 - False Alarm Rate
 - False/Branch Track Rate

 NTD quantifies the measurement error contribution to association error.

2) Gap Time – Time between a target’s detections. (Amount of time to extrapolate track and track error.)
 Dependencies
 Sensor
 - Revisit rate
 - Probability of Detection
 - Clutter cancellation technique (MDV)
 - Sensor availability
 Environment
 - Terrain blockage
 - Target speed relative to mainlobe clutter
 - False/branch track rate

 Gap Time quantifies the prediction error contribution to association error.

System of Systems designs must drive down Gap Time and Normalized Target Density
Intel and Analysis Metrics

Operator-In-The-Loop Experimentation

Sensor Configurations
- 21 Ball Low Earth Orbit Constellation
- 8 Ball Wolf Pack 8/1/1
- 10 Ball Mid Earth Orbit Constellation

Scenario Volume
- 160 Vehicle “Davison Challenge”
 2 Convoys plus background traffic
- 10,000 Vehicle RT-1
 25 Convoys plus background traffic
- 140 Vehicle Korea
 4 Convoys plus background traffic
- 15,000 Vehicle RT-2
 34 Convoys plus background traffic

Experience Operators
- MTIX
 Operator
 Auto Assisted Tracker
- JSWS
 Operator
 No Auto Tracking
- MATrEx
 Operator
 Auto Only Tracker

Metrics
- Link 16 Messages
- Recorded for Post Processing
- Border Crossings
- Convoy Following
- Volume of Coverage
- Tracklets

AFRL Developed Simulations, Models, and Metrics
Simulation Exercise

October 2003 Exercise
Location: NC3A The Hague, NE
Experience Army and AF Operators
Robust 2 Week Scenario
NC3A Dev. Hostile & Friendly Targets
AFRL Dev. Civilian Targets

TTPs and CONOPS
Operators Nominated Link 16
Use of J3.5 Message Set

DATA logged for post analysis:
All DIS entity states
- PDU timestamp vs. time received
- Compressed and stored as NRTTDF
- All NatoEx GMTI, FreeText, and RSRs
- All JTIDS J2.2 (Ownship) and J3.5 (Track) messages
Total GMTI reports – all sensors

Total 1.5+ million GMTI reports

Does not include MTI that did not associate with ground targets.

Based on truth id set by sensor simulations.

• Based on all sensor data combined
• Does not include false alarms or MTI on airborne targets
Total GMTI per sensor

- 871,039 (55%)
- 413,091 (26%)
- 2% (413,091)
- 3% (413,091)
- 4% (413,091)
- 6% (413,091)

MTI on ground targets only.
Does not include false alarms or MTI on airborne targets.
GMTI reports on red/hostile targets only
Targets Detected by GMTI Radar

Based on all sensors combined.
Ground targets only.
Some runs are divided into AM/PM segments.
Unique Tracks per System – Red/Hostile Targets Only

Tracks on Red Targets Only

Based on J3.5 on red targets only
Does not consider re-use of track ids per run/day
Track ID Lifetime – Hostile Targets

1.08 Minutes average across all J3.5 Tracks on red targets

Track Updates are Today Performed through Voice Updates
Operator/Track Metrics Summary

- Current Army and Air Force Operators are use to Joint STARS
 - There was an Operator Dependency on Joint STARS

- During the second week, operators tracked mostly friendly targets
 - Difficulty with Intel given to operators or IPB?

- Track ID lifetimes averaged slightly more than 1 minute
 - Not Unexpected, current CONOPS and tools do not allow for Continuous Updates

- The majority of track update messages came from MTIX (67%)
 - In one case 2000+ track messages were received for 4 tracks.

- The majority of targets tracked came from TMSS:
 - TMSS (28%), HORIZON (24%), and MTIX (17%)

- The majority of threat targets tracked came from TMSS:
 - TMSS (40%), MTIX (24%), and HORIZON (21%)
 - In one case 1 operator track switched between 19 red targets.
MPTE Experiment – Tracker Maturation

- Real-Time Fusion & Exploitation at Palmdale.
- Coordinated ISR collection.
- Dynamic re-tasking demonstrated.
- 3 Data collects over 3 days. 34 inst. targets.
- Ground-based emphasis for evaluation & analysis.

 GMTI collected on GROUND network

MPTE program serves as tracking benchmark in 2001.
Sample Data

Measurements very accurate with quick revisits. Bias correction attempted during experiment. More systematic approach during track evaluation phase.

Range measurement very accurate with larger cross-range error expected (smaller antenna). No bias apparent.
Single Target - Probability of Tracking

Single Target Prob. Of Tracking Without a Switch or a Drop.

Total Track Lifetime include track switching
Track Identity Lifetime excludes track switching

Results Show What is Now Called Tracklets

This is what is in the Track Data Base

3.6 Minute Average TIL

6.4 Minute Average TTL*

Pedigree Truth-to-Track

Detections in Track

Target Errors

TrackA

Truth1

TrackB

Truth2
Affordable Moving Surface Target Engagement (AMSTE)

Network Centric Architecture
The DFS accepts ISR radar data and operator commands, and controls the weapon aimpoint and both radar systems.
AMSTE Oct 03 Exercise

- October 7th and 9th
- 6 Convoys
 - 2-6 Vehicles each
- Events
 - Passing
 - Intersection
 - Move-Stop-Move
 - On-Off Road
 - Terrain Blockage
- Features
 - HRR
 - RCS
 - TEA

17 Scenarios included in about 7 hours of data collection each day

Each Confusion Event is Scored Based on Difficulty
07-October, 2003 Flight 506 Nomination Duration & Track Lifetime (Adj.)

<table>
<thead>
<tr>
<th></th>
<th>Nomination Duration</th>
<th>Adjusted Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.6</td>
<td>21.2</td>
</tr>
<tr>
<td>2</td>
<td>29.8</td>
<td>25.2</td>
</tr>
<tr>
<td>3</td>
<td>22.7</td>
<td>13.6</td>
</tr>
<tr>
<td>4</td>
<td>46.6</td>
<td>26.9</td>
</tr>
<tr>
<td>5</td>
<td>28.3</td>
<td>21.6</td>
</tr>
<tr>
<td>6</td>
<td>29.6</td>
<td>7.9</td>
</tr>
<tr>
<td>7</td>
<td>4.0</td>
<td>2.5</td>
</tr>
<tr>
<td>8</td>
<td>11.8</td>
<td>10.9</td>
</tr>
<tr>
<td>9</td>
<td>25.3</td>
<td>19.0</td>
</tr>
<tr>
<td>10</td>
<td>18.2</td>
<td>8.4</td>
</tr>
<tr>
<td>11</td>
<td>34.7</td>
<td>31.5</td>
</tr>
<tr>
<td>12</td>
<td>27.4</td>
<td>20.2</td>
</tr>
<tr>
<td>13</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>14</td>
<td>19.6</td>
<td>17.2</td>
</tr>
<tr>
<td>15</td>
<td>32.7</td>
<td>28.2</td>
</tr>
<tr>
<td>16</td>
<td>33.3</td>
<td>24.3</td>
</tr>
<tr>
<td>17</td>
<td>30.5</td>
<td>29.1</td>
</tr>
<tr>
<td>18</td>
<td>21.9</td>
<td></td>
</tr>
</tbody>
</table>
Track Identity Lifetimes (TIL) - 506

(With and without manual intervention)

07-October, 2003 Flight 506

<table>
<thead>
<tr>
<th></th>
<th>TIL - No Man. (min)</th>
<th>TIL - w/ Man. (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.2</td>
<td>25.8</td>
</tr>
<tr>
<td>2</td>
<td>7.3</td>
<td>30.5</td>
</tr>
<tr>
<td>3</td>
<td>1.8</td>
<td>17.4</td>
</tr>
<tr>
<td>4</td>
<td>5.9</td>
<td>31.3</td>
</tr>
<tr>
<td>5</td>
<td>7.4</td>
<td>7.4</td>
</tr>
<tr>
<td>6</td>
<td>8.7</td>
<td>27.3</td>
</tr>
<tr>
<td>7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>8</td>
<td>1.3</td>
<td>12.8</td>
</tr>
<tr>
<td>9</td>
<td>6.4</td>
<td>24.9</td>
</tr>
<tr>
<td>10</td>
<td>6.7</td>
<td>18.7</td>
</tr>
<tr>
<td>11</td>
<td>14.8</td>
<td>33.4</td>
</tr>
<tr>
<td>12</td>
<td>7.2</td>
<td>20.5</td>
</tr>
<tr>
<td>13</td>
<td>3.1</td>
<td>6.1</td>
</tr>
<tr>
<td>14</td>
<td>2.9</td>
<td>19.2</td>
</tr>
<tr>
<td>15</td>
<td>7.8</td>
<td>31.5</td>
</tr>
<tr>
<td>16</td>
<td>4.3</td>
<td>31.1</td>
</tr>
<tr>
<td>17</td>
<td>10.4</td>
<td>33.5</td>
</tr>
<tr>
<td>18</td>
<td>16.5</td>
<td>28.3</td>
</tr>
</tbody>
</table>

Mean w/MIL 22.3

Mean w/o 7.2
Weapon Drop

- F16 ~ 5 miles range
- Live JDAM, GPS Guided
- EPLRS Weapon Data Link
- EPLRS Inter Platform Comm.
- GMTI Coord. Passed to Weapon In Flight from JSTARS

Multi-Platform Fusion of GMTI Achieves Accuracy
Summary

• GMTI Tactical Grade Tracking is “Hard”
 – Well Defines Measures of Performance
 – State of the Art is Improving
 – Requires Significant Resources

• State of the Art in Improving
 – MPTE achieved 3.6 minutes
 – AMSTE improved this to 7.2 Minutes

• Situation Awareness Metrics need Maturing
 – Operator in the Loop Measures Provide a Unique Result
 – Tracks are only performing “Book Keeping”
 – Detections Provide Some Unique “Pattern Analysis”