Title and Subtitle:
Investigation of Structural and Electrical Defects in GaN/AiGaN Structures and Modfets

Performing Organization Name(s) and Address(es):
VIRGINIA COMMONWEALTH UNIVERSITY
327 WEST MAIN STREET
RICHMOND VA 23284-3031

Sponsoring/Monitoring Agency Name(s) and Address(es):
AFOSR/NE
4015 WILSON BLVD
SUITE 713
ARLINGTON VA 22203

Abstract:
In this project, main goal was to focus on MODFET structures to understand the sources of improvements and the sources of degradations. In order to reach one of the objectives, the CaN templates grown by MOCVD was followed by c-beam evaporation of Ti layer. By the means of in-situ nitridation in hydrogen and ammonia environment inside the MOCVD system, this Ti layer was converted into an effective nano-network of TiN with high density of voids and nano-porous CaN islands. Those nano-porous CaN templates were used as a template for nano-LEO epitaxy for CaN growth. It has recently been reported the growth of thick CaN and subsequent separation from sapphire substrate by a void-assisted separation (VAS) technique, which utilizes a thin TiN porous network at the beginning of hydride vapor phase epitaxy (HVPE) growth. They obtained a very low TD density of 5x10^6 cm^-2 for the 300-μm CaN layer on the TiN interlayer, as was reported by HVPE growth earlier in such CaN templates without a TiN network. It is, therefore, interesting to determine the role of a TiN network on dislocation reduction in thinner CaN films. In this paper, we report the growth and characterization of CaN grown on in situ TiN porous network by MOCVD with reduced dislocation density and therefore improved optical and crystalline properties.
Final Report prepared for Dr. Witt/AFOSR Award FA49620-01-1-0085 by
Hadis Morkoç

Investigation of Structural and Electrical Defects in
GaN/AlGaN Structures and MODFETs

Objectives:

MODFETs fabricated on GaN films show a number of deviations from the ideal structures. This work will focus on the most likely sources of improvements, and paths to understand the sources of degradation. The primary focus will be on MODFETs, but the results will be applicable to a broad range of nitride devices. Leakage associated with the gates of MODFETs is a primary limitation in device performance. Current leakage paths, and also persistent photoconductivity, drain current lag, and current collapse, are related to electrically active dislocations, surface interface states, and metal induced gap states (MIGS). We will improve device capabilities through several means: growth conditions (e.g. temperature, V/III ratio), growth method (e.g. nano-LEO, HVPE templates, etching and regrowth), and post-growth passivation.

Progress:

Defect reduction by titanium nitride nanonet

In this project, main goal was to focus on MODFET structures to understand the sources of improvements and the sources of degradations. In order to reach one of the objectives, the GaN templates grown by MOCVD was followed by e-beam evaporation of Ti layer. By the means of in-situ nitridation in hydrogen and ammonia environment inside the MOCVD system, this Ti layer was converted into an effective nano-network of TiN with high density of voids and nano-porous GaN islands. Those nano-porous GaN templates were used as a template for nano-LEO epitaxy for GaN growth.

It has recently been reported the growth of thick GaN and subsequent separation from sapphire substrate by a void-assisted separation (VAS) technique, which utilizes a thin TiN porous network at the beginning of hydride vapor phase epitaxy (HVPE) growth. They obtained a very low TD density of 5x10^6 cm^-2 for the 300-μm GaN layer on the TiN interlayer, as was reported by HVPE growth earlier in such GaN templates without a TiN network. It is, therefore, interesting to determine the role of a TiN network on dislocation reduction in thinner GaN films. In this paper, we report the growth and characterization of GaN grown on in situ TiN porous network by MOCVD with reduced dislocation density and therefore improved optical and crystalline properties.

For the TiN layer experiment, a 0.7 μm GaN grown on sapphire by MOCVD was used as templates. Ti films of 20 nm and 10 nm were e-beam evaporated on the GaN templates and then subjected to a thermal annealing process at 1000 °C for 60 minutes, for a fixed ratio of NH3 to H2 (1:3) gases inside the MOCVD chamber, GaN overgrowth was then made on these two templates at 1030 °C, with constant TMGa flow rate of 78 μmol/min and NH3 flow rate of 7.6 l/min. For comparison, a control
GaN layer was grown on the same GaN template using identical growth conditions but without the TiN network. The GaN sample with 20 nm TiN layer was characterized using cross-sectional and plan-view transmission electron microscopy (TEM), together with the control sample. Table I summarized the growth conditions and characterization results for all the samples.

<table>
<thead>
<tr>
<th>Sample#</th>
<th>Control</th>
<th>T68</th>
<th>CVD43</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiN layer</td>
<td>--</td>
<td>20 nm</td>
<td>10 nm</td>
</tr>
<tr>
<td>GaN overgrowth thickness (μm)</td>
<td>5.2 μm</td>
<td>7.5 μm</td>
<td>7.5 μm</td>
</tr>
<tr>
<td>XRD (002) FWHM (arcmin.)</td>
<td>3.9</td>
<td>3.8</td>
<td>5.0</td>
</tr>
<tr>
<td>XRD (102) FWHM (arcmin.)</td>
<td>7.6</td>
<td>5.4</td>
<td>4.5</td>
</tr>
<tr>
<td>Time-resolved PL Data</td>
<td>(\tau_1=0.302\pm0.004) ns</td>
<td>(\tau_1=0.304\pm0.004) ns</td>
<td>(\tau_1=0.242\pm0.004) ns</td>
</tr>
<tr>
<td>(At room temperature)</td>
<td>(\tau_2=0.707\pm0.012) ns</td>
<td>(\tau_2=0.746\pm0.010) ns</td>
<td>(\tau_2=1.21\pm0.014) ns</td>
</tr>
<tr>
<td>(A_1/A_2=0.429)</td>
<td>(A_1/A_2=0.529)</td>
<td>(A_1/A_2=0.562)</td>
<td></td>
</tr>
</tbody>
</table>

Table I. List of GaN layers grown on 20 nm and 10 nm TiN porous networks, as well as the control GaN layer without TiN. The XRD data and time-resolved PL data are summarized here.

Both samples were characterized by scanning electron microscope (SEM), x-ray diffraction (XRD), and room temperature time-resolved photoluminescence (TRPL). SEM images show that the surface morphology of TiN covered template is strongly affected by annealing time, but to a lesser extent by different gas ratios and annealing temperatures. In the annealing process, microscopic windows were formed on the Ti layer due to desorption of the Ti layer at high temperatures, accompanied by nitridation of this discontinuous Ti layer into a TiN network. At the initial annealing stage, closed chains were formed on Ti film, with a feature size of ~2μm. A similar phenomenon was also reported. We suggest that these small windows (chains) first appeared at grain boundaries of underlying GaN template at the initial stage of nitridation. The less impervious nature of GaN at the grain boundaries and a possible catalytic effect of Ti on GaN decomposition lead us to this suggestion. As the in situ annealing process progresses, new windows begin to form at the grain boundaries and consequently both the density and size of those windows increase with time. Figure 1(a) shows the SEM surface morphology of TiN porous network formed on the 20 nm Ti layer. The cross-sectional TEM micrograph for the GaN with the 20 nm TiN porous network is shown in Fig. 1(b). It can be seen that the GaN growth on the TiN porous network initiated from the microscopic windows of the discontinuous TiN network acting as GaN islands. This is followed by the growth of GaN emanating from the islands by lateral and vertical expansion leading to coalescence. It can be discerned that thin and flat surface voids are formed above the discontinuous TiN layer, due to the lateral overgrowth of GaN and the possible “antisurfactant effect” of TiN. Threading dislocations significantly decease at or above the TiN/GaN interface. At least two mechanisms can be suggested for dislocation reduction related to GaN growth on TiN porous network. First, most of the threading dislocations in the GaN template are effectively blocked by the TiN layer. Second, some threading dislocations penetrate through the TiN windows to the upper layer but serendipitously
change their propagation direction and extend laterally instead. In the near-dislocation-free region above TiN, some c-plane stacking faults are formed due to gliding and dissociation of dislocations into partials. Burger's vector permitting, additional dislocation reduction could occur through recombination and annihilation. Therefore, the propagation of dislocations is effectively suppressed near the TiN/GaN interface. For comparison, the control GaN layer grown without the TiN interlayer is shown in Fig. 1(c), which shows no observable dislocation reduction above the initial GaN template.

Figure 1. (a) SEM of TiN porous network (20 nm Ti layer), formed by in-situ annealing in NH₃/H₂ (1:3). Cross sectional TEM showing the effect of TiN porous network (with 20 nm Ti layer) on GaN dislocation reduction (b), and (c) GaN layer control w/o TiN.

A precise assessment of the amount of dislocation reduction can be made by counting directly the dislocations in the plan-view TEM micrographs. In Fig. 2(a), the plan-view image of the GaN control layer grown without TiN (13 μm in thickness) shows a high density of edge dislocation arrays (~1.5 × 10⁸/cm²) as marked by “e” and a much lower density of isolated end-on screw dislocations (~1.3 × 10⁵/cm²) as marked by “s”. For the GaN grown with 20 nm TiN porous network (thickness of only 7.5 μm) shown in Fig. 2(b), the screw dislocation density is almost unchanged (~1.4 × 10⁷/cm²), but the edge dislocations (~0.9 × 10⁵/cm²) have decreased by at least an order of magnitude. These plan-view images suggest that the thin TiN porous network used is very effective in reducing edge dislocations. For screw dislocations, their numbers are already low (about 10% of the total dislocations) in MOCVD GaN, and the effect of TiN in reducing them is therefore less likely. High-resolution x-ray rocking curves (ω scan) show that the GaN samples grown on both 20 nm and 10 nm TiN porous networks have improved crystalline quality in terms of the full-width-at-half-maximum (FWHM) of the asymmetric (1012) diffraction peaks, as can be seen in Table I. Specifically, for the GaN samples with 20 nm and 10 nm TiN porous networks, FWHMs of (1012) peaks are 5.4 arcmin and 4.5 arcmin, respectively, as compared to 7.6 arcmin for the control sample. This is consistent with the TEM results in Fig. 2, which showed 10 × reduction in edge dislocations commonly associated with the asymmetric (1012) broadening which is sensitive to edge dislocations. The nearly unaffected symmetric (0002) FWHM is consistent with the TEM micrographs showing unchanged screw dislocation density. TRPL is a nondestructive and powerful technique commonly used to measure carrier lifetime, an important parameter related to material quality and device performance. Figure 2c shows the room temperature TRPL data for the GaN control sample (8 μm in thickness) with no TiN, and the GaN samples with 10 nm and 20 nm TiN porous
networks. The time-resolved signals were integrated over a 10 nm-wide spectral region around the peak PL energy (3.40 eV). The instrument-limited rise implies that the relaxation processes to cool the carriers from 3.81 eV excitation energy-defined states to the zero momentum excitonic band edge states are very fast. For both samples, the decaying part of the TRPL data is well described by a bi-exponential decay function: \(A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) \). Table I tabulates the decay constants (\(\tau_1 \) and \(\tau_2 \)) and the amplitude ratios (\(A_2/A_1 \)) obtained from the fits.

![Figure 2](image)

Figure 2. Plane-view TEM micrographs showing the edge and screw dislocations at the top of GaN surface, for (a) the control sample without TiN, and (b) the GaN with 20 nm TiN porous network, (c) time-resolved PL spectra showing bi-exponential decay of carrier lifetimes for GaN grown on TiN porous networks using 20 nm and 10 nm Ti layer, and without TiN (control).

The fast decay constant \(\tau_1 \) most probably represents the effective non-radiative recombination at room temperature. The slow decaying component \(\tau_2 \) is attributed to the radiative lifetime of the free exciton. Compared to the control sample, GaN sample with 10 nm TiN porous network shows almost a factor of 2 improvement in the carrier lifetime (\(\tau_2 \)). The decay times for the GaN sample with 20 nm TiN network is similar to that for the control sample. However, the relative magnitude of the slow decaying component to the fast decaying component (\(A_2/A_1 \)) for both of the samples with TiN networks are improved compared to the control sample. This indicates that the nonradiative recombination is reduced by the inclusion of the TiN porous network. The considerable increase in the carrier lifetime (\(\tau_2 \)) for the 10 nm TiN sample rather than the 20 nm sample is somewhat puzzling since the XRD data for both of these samples show similar characteristics. However, one should keep in mind that in addition to the threading dislocations, the carrier lifetime is also sensitive to other types of defects such as point defects, the effects of which are not manifested by XRD in these films with relatively broad X-ray diffraction peaks.

Dislocation reduction by selective etch

The selectively etching of the dislocation defects and deposition of an overlayer will decrease the threading dislocation density, if the defective regions no longer provide a nucleation surface and growth takes place laterally from the etch pits. The selective etching of the defective regions was carried out by ex-situ with KOH. Some part of the samples grown by MOCVD technique was treated with molten KOH at 210 °C, one for 2 seconds and one for 30 seconds. Then overgrowth of 2 µm of GaN on the KOH etched and non-etched control GaN template was done at 1020 °C. Finally, a Mg-doped layer 200 nm thick was grown to form a p-n junction. Electrical
measurement, current versus voltage (I-V), was also performed and this measurement showed similar leakage currents for all of the treatments. The effect on the etched surface is seen in Fig. 3. KOH etching for 2 sec etches small pits in the surface. KOH etching for 30 sec opens up the pits to larger hexagonal shapes.

Structural and optical characterization did not reveal any significant differences in the material properties. X-ray diffraction full width at half maximum (FWHM) was 4.7-4.8 arcmin for the (002) line, with negligible difference between the etched and regrown, and non-etched and regrown layers. The (102) line was 6.9, 7.5, and 6.8 arcmin for the non-etched sample, the sample etched for 2 sec, and the sample etched for 30 sec, respectively. Photoluminescence spectra showed very similar characteristics for all samples, with no distinguishing differences as can be seen in Figure 4. The FWHM of the exciton peaks at 15K ranged from 4.6 to 7 meV.

Figure 3. AFM images of the templates for regrowth of GaN by MOCVD. Etching for 2 seconds starts to open up pits. Longer KOH etching enlarges the pits and results in a layered structure.
Deep level transient spectroscopy (DLTS) was used to measure the defect concentration for each of the treatments, as well as the defect energies and capture cross sections. The DLTS setup is based on a SULA system, with added digitization of the transients for multi-exponential component fitting. Transients recorded at each temperature step were obtained by averaging ~2000 transients together, taking ~600 points at 0.1 msec sampling intervals. The filling pulse width was 10 msec. The temperature was varied in 4 K steps from 80 K to 700 K.

The rate window plot for the control sample, and the samples etched in KOH for 2 and 30 seconds in Figure 5(a) shows several traps. From this ratewindow plot, it appears that the 2 second etch in KOH was most effective at reducing the most prominent trap at 340 K. A comparison of the rate window plots for several scans from diodes processed identically revealed that the variation in the concentration of traps was nearly as large as those seen in Fig. 5(a). However, the trap concentration at 340 K was consistently lower for the material etched for 2 seconds compared to the control sample, or the sample etched for 30 seconds. Etching for 30 seconds produced some of the highest concentration traps at low temperature, below 200 K. None of the etching treatments eliminated any specific traps. The Arrhenius plot is given in Fig. 5(b), showing the energy for the electron and hole traps. Table I presents the characteristics of each trap. The hole trap at 75 meV has not been reported previously, nor has the observation of overlapping traps at 300-350 K with energies of 0.536 eV and 0.585 eV.

Figure 5. (a) DLTS ratewindow spectra for MOCVD grown GaN p-n junctions, comparing the non-etched regrown control sample, to GaN etched for 2 and 30 seconds in KOH prior to regrowth. The measurement conditions were: 3 V filling pulse, −1 V measurement bias, 10 msec filling pulse width. The ratewindow is 228/sec. (b) DLTS Arrhenius plot, traps at 0.24 eV and 0.585 eV are commonly seen in n-GaN grown by different methods. The hole trap at 75 meV, and the trap at 0.536 eV overlapping with the dominant trap at 0.585 eV have not been reported previously.
The capture kinetics were also studied as a means to discriminate between point defects and linear defects, such as dislocations. Capacitance transient amplitudes from dislocations have been shown to have a logarithmic dependence on filling pulse width. Increasing the filling pulse from 1 msec to 200 msec for the trap at 340 K resulted in a linear increase in amplitude when plotted versus the log of the filling pulse width, indicating that the trap is related to dislocations. The trap at 160 K showed a change in emission amplitude when varying the filling pulse width from 1 msec to 200 msec, but the response was complicated by the metastable nature of the trap, which is discussed next.

The concentration of traps measured at temperatures below room temperature depended on the conditions during cooling. The deep level spectra in Fig. 6 were collected under various conditions during cooling to 80 K, including 0 V, 150 mA (or micro A, 150 microamper in graph and caption) forward current, and -10 V. This shows that the configuration of defect structure depends on the presence of electrons, being electrically active when the traps are initially filled, similar to the study by Wu, et al. [5]. There is also an annealing effect as seen previously [6], shown by the fact that the spectra taken after cooling with -10 V applied is higher than the spectra taken with 0 V cooling. As a result of this observation, all of the spectra in Fig. 2 were recorded after heating to 700 K, and with 150 mA applied during cooling to the starting temperature of 80 K.

Further measurements of the DLTS spectra showed that the difference between concentration of traps was as great between diodes on the same piece, as the difference between different treatments. This has also been seen by others (Fang, WSU) for other MOCVD samples.

![Image](image.png)

Figure 6. The concentration of deep levels at 160 K depended on the conditions during cooling, indicating a metastable configuration. Also, there is an annealing effect, since the spectra taken at -10 V should be lower than the spectra taken at 0 V. The order in which the spectra were taken is 1) 0 V, 2) 150 µA, 3) -10 V.

MBE growth kinetics for lateral epitaxy

RGA, RHEED, and AFM methods have been used to determine the desorption and diffusion energies of various species involved in the growth with RF nitrogen or ammonia, and molecules of N-Ga. The energy was determined as a function of crystal direction by exposing the face using etching and re-growth.

Gallium (Ga) surface desorption behavior was investigated using reflection high-energy electron diffraction (RHEED) during the GaN growth by plasma assisted
molecular beam epitaxy (PAMBE). It was found that the desorption of Ga atoms from the (0001) GaN surfaces under different III-V ratio deviates from the zeroth-order kinetics in that the desorption rate is independent of the coverage of adsorbed atoms. Although within a small temperature range under the same III/V ratio, the zeroth-order kinetics can be applied to find out the desorption energy approximately. The desorption energies are determined to be 2.78 eV for Ga from Ga droplets, 1.89 eV for Ga under Ga-rich growth conditions and 0.82 eV ~ 1.24 eV for Ga under stoichiometric growth conditions by monitor the intensity change of RHEED specular beam during the growth. The observation of the GaN surface morphology varying under different III-V ratio on porous templates matches the result that the Ga desorption energy depends on the coverage, and III/V ratio dominates the growth mode.

Molecular beam epitaxy (MBE) is a promising method for fabrication of GaN-based heterostructure devices where high purity and precise control of layer thickness are required, since it has precise control of the beam fluxes and growth conditions. Moreover, in situ characterization tools in MBE system allows access to parameters which shed light on the growth dynamics. So far, light-emitting diodes, laser diodes, UV photodetectors and heterojunction field effect transistors have been produced using GaN benefited from the capabilities of MBE. The comprehensive study of material and device properties have been carried out concerning surface structures, in particular for growth by plasma assisted molecular beam epitaxy (PAMBE). However, the intensive work on epitaxy of GaN for device applications still contrasts a relatively few studies on the physics of growth itself. Only recently, growth studies with MBE indicated that the growth mechanisms and the resulting surface structure of GaN thin films are crucially sensitive to the kinetics, i.e., Ga/N flux ratio and growth temperature. It is reported that the two-dimensional growth, which is desirable for device fabrication, is commonly attained under Ga-rich conditions or near Ga-rich conditions. This result suggests that the GaN growth front is stabilized by a metallic Ga adlayer.

Ga desorption processes have been carried out previously by mass spectrometry and RHEED techniques, however the results are not consistent. The wide range of activation energies reported for Ga desorption goes from 0.4 eV to 5.1 eV, while the typically reported value for GaN decomposition is near 3.6 eV. The Ga desorption energies in the absence of an active nitrogen flux were reported to be 2.05 eV, 3.7 eV, 3.1 eV and 2.2 eV from Al2O3 (0001), 6H-SiC (0001), GaAs, and GaN (0001) surfaces, respectively. The differences in the Ga desorption energies reported have been attributed to the Ga bond energy with different substrate atoms. Jones et al. reported that the Ga desorption energy from GaN (0001) surfaces in the presence of NH3 is 1.4 eV or 0.4 eV, depending of the substrate temperature, this suggest that the growth environment conditions modify the desorption energy. The effect on the desorption energy by the environmental conditions is confirmed by its dependence on the III/V ratio. Furthermore, even the growth conditions can affect the desorption energy. However to our knowledge there has been no systematic study of Ga desorption energy as a function of the Ga surface coverage. In this work we analyze the desorption energy as a function of the Ga coverage.

In this study, reflection high-energy electron diffraction (RHEED) was used during GaN growth in PAMBE to investigate the Ga desorption behavior under different growth conditions. The results reveal a dependence of desorption energy of Ga from GaN surface on the Ga adlayer coverage which is determined by the III/V
ratio. The desorption energy was determined to be 2.78 eV under very Ga rich growth conditions with the Ga adlayer coverage close to 100%. This value is close to the activation energy for the evaporation of Ga from metallic Ga (2.81 eV20). With decreasing III/V ratio, the desorption energy decreased to 0.82 eV with coverage being about 10%. The different growth modes brought about by different III/V ratios are also investigated and reported.

The experiments were carried out using a plasma-assisted MBE system equipped with two conventional Ga effusion cells for the metallic species and a radio frequency (RF) plasma source for the nitrogen. (0001) GaN templates grown by metalorganic chemical vapor deposition (MOCVD) on sapphire were used as substrate since they have reproducibly smooth surfaces with atomically flat terraces. The GaN epilayers were grown on these substrates in the temperature range of 648 °C to 773°C. The in situ RHEED operated at 13.9 keV, and was directed along the [11-20] azimuth of the GaN (0001) surface with a fixed filament current at 1.4 A resulting in a fixed emission current. The intensity of RHEED specular beam was monitored when the growth was stable. The desorption energy was determined from the relationship between the intensity and substrate temperature for a given III/V ratio. To study the growth modes under different conditions, AFM surface topology measurements were carried out which allowed the investigation of the surface morphology of GaN which is re-grown on porous GaN templates under different III-V ratios while the substrate temperatures was kept at 700°C.

During the GaN growth in MBE, a certain fraction of active nitrogen flux \(\Phi_N \) to gallium flux \(\Phi_{Ga} \) arriving at the surface needs to be maintained for growth. When Ga atoms impinge on the GaN template surface, they are either incorporated into GaN epilayer with active nitrogen or adsorbed on the surface to form a Ga adlayer. On the other hand, some Ga atoms may re-evaporate from the Ga adlayer. The desorption process becomes significant particularly when the substrate temperature is higher than 550 °C.17 The incorporation, adsorption and desorption processes reach a statistical equilibrium when GaN growth proceeds under steady condition, in which case the desorption rate can be expressed as27

\[
k = u_0 \exp(-E_{des}/k_B T)
\]

(1)

where \(u_0 \) is the attempt frequency. At a GaN growth temperature by MBE (which is in the range of 650 °C ~ 780°C), the Ga adatoms does not condense into a reconstruction, but rather represent a liquid like film.28 This disordered film causes an attenuation of the RHEED specular beam intensity.26 As a result, the dependence of the desorption rate represented by the RHEED intensity vs substrate temperature provides the opportunity to study the desorption kinetics of Ga in real time. We interpret the relationship between the intensity of RHEED and the desorption energy as an exponential, given by:

\[
I \sim \exp(-E_{des}/k_B T_s)
\]

(2)

The Ga atoms desorbs from the surface at a substrate temperature \(T_s \) with the desorption energy \(E_{des} \).

Figure 7 shows the typical trend of the variation of RHEED specular beam intensity during GaN growth at different substrate temperatures under the stoichiometric conditions. In this case, the Ga flux is slightly higher than that for nitrogen. The Ga cell temperature was kept constant at 1140 °C, and the pressure was 8x10-6 Torr. The substrate temperature was varied from 648 °C to 680 °C. Since this temperature range is small, it can be assumed that the coverage change of the Ga adlayer on GaN surface caused by increasing substrate temperature is negligible.
Therefore, the desorption energy can be treated as a constant and calculated by the zero-th-order desorption kinetics. The exponential relationship in Figure 7 supports this assumption, and the desorption energy $E_{\text{des}} = 0.82$ eV is determined by using equation (2).

![Graph showing intensity of RHEED specular beam vs. $1000/T_s$ (K$^{-1}$) with $E_{\text{des}} = 0.82$ eV]

Fig. 7. The variation of the RHEED specular beam intensity during the GaN growth for substrate temperatures from 648 °C to 680 °C under stoichiometric growth condition. The Ga cell temperature is kept constant at 1140 °C, and the pressure is 8×10^5 Torr.

It is also found that the desorption energy changes under different growth conditions. Higher Ga desorption energies from GaN surface resulted for higher III/V ratios. Under stoichiometric conditions, the desorption energies are in the range of 0.82 to 1.24 eV, slightly increasing with the number of Ga atoms on the surface. Under Ga-rich conditions, the desorption energy is determined to be 1.89 eV for substrate temperatures in the range of 692 °C to 749 °C. On the other hand, the desorption energy is 2.78 eV in the absence of any active nitrogen flux. In this case, Ga atoms accumulate on the GaN surface without forming a GaN epilayer, and the coverage of Ga adlayer is approximately 100%.

Table 2 lists the results of Ga desorption energies for different III/V ratios on the GaN surface at different substrate temperatures. It is clear that the growth environment affects on the Ga desorption energy. This phenomenon can be explained by the dependence of desorption energy on the bond strength which is determined by the separation between atoms. A simple approach based on the Madelung Model allows a first degree understanding of the relationship between the cohesive energy and the separation between atoms:

$$U(r_o) = \frac{-Naq^2}{r_o} \left(1 - \frac{r}{r_o}\right)$$

(3)
Equation (3) shows the total energy of the crystal of 2N ions at their equilibrium separation r_0, while α is Madelung constant and the parameter ρ is of the order of 0.1r_0. Using this approach, it is clear that the bond energy has a reciprocal relationship to the separation, r_0. Under the steady state condition of GaN growth, the equilibrium separation r_0 between Ga-Ga atoms depends on the growth conditions, and the average in-plane separation r between Ga-Ga atoms can be related to the Ga coverage C as follow:

$$C(r) \propto 1/r^2$$ (4)

Ultimately, the relationship between the Ga desorption energies and surface coverage can be deduced.

Table 2. Summary Ga desorption energy for different Ga coverage on the GaN surface at different substrate temperatures indicated in the “T_s range” row.

<table>
<thead>
<tr>
<th>Ga density in Ga monolayers</th>
<th>Growth condition</th>
<th>Stoichiometric regime</th>
<th>Ga-rich regime</th>
<th>Ga-droplet regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{des} (eV)</td>
<td>0.82</td>
<td>0.94</td>
<td>1.24</td>
<td>1.59</td>
</tr>
</tbody>
</table>

In our study, the Ga desorption energy was determined to be 2.78 eV under Ga very rich condition with a coverage about 100%. This result is very close to the cohesive energy of Ga (2.81eV25), defined as that energy required to remove a Ga atom from a Ga reservoir. Since this condition corresponds to a Ga-Ga separation of 2.7 Å30,31, the coverage of Ga under different growth conditions can be calculated based on these values. The results of such an exercise are listed in Table 3. The coverage is determined to be 45% under Ga-rich conditions when the desorption energy is 1.89 eV. Under the stoichiometric conditions most Ga atoms tend to form GaN epilayer, and only a few Ga atoms stick on the surface and the Ga monolayers coverage is low. The desorption energy is about 0.82 eV when the coverage decrease to about 10%.

Table 3. The desorption energies with different Ga-Ga separation and Ga coverage.

<table>
<thead>
<tr>
<th>E_{des} (eV)</th>
<th>0.82</th>
<th>0.94</th>
<th>1.24</th>
<th>1.59</th>
<th>1.89</th>
<th>2.78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga-Ga Separation (Å)</td>
<td>9.2</td>
<td>8</td>
<td>6.1</td>
<td>4.8</td>
<td>4</td>
<td>2.7</td>
</tr>
<tr>
<td>Coverage (%)</td>
<td>8.6</td>
<td>11.4</td>
<td>19.6</td>
<td>31.6</td>
<td>45.6</td>
<td>100</td>
</tr>
</tbody>
</table>

Varying GaN surface morphology under different III-V ratio on porous templates at a temperature 700°C is consistent with the Ga desorption energy being dependent on the coverage. Figure 8 shows a typical AFM image of GaN epilayers etched in molten KOH for 1 min, which are later used as templates for further growth. The pores on the template have a hexagonal shape of about 200nm in width and 50nm in depth. After a 2-hour re-growth of GaN by MBE on these templates, the surface
morphologies vary under different growth condition. Typical AFM images of GaN re-grown under stoichiometric conditions and Ga-rich condition are shown in Figure 8 (2) and (3), respectively. Under stoichiometric conditions, hexagonal pits still appear on the surface with a depth of 50nm which is similar to that of the substrate. However, under Ga-rich condition, the surface of GaN is atomically smooth without pits.

This phenomenon indicates that the III/V ratio dominates the surface oriented processes which strongly affect the surface morphology. The desorption energy falls in the range of 0.82 - 2.78 eV with III/V ratio increasing, which compares with the reported Ga diffusion energy, of about 1.45 eV. Under stoichiometric conditions, the diffusion energy is larger than the desorption energy. Therefore, a Ga atom prefers to incorporate into the GaN film with N at the arrival site or desorbs from the surface, instead of diffusing to a new site, and the growth has an isotropic nature. In contrast the diffusion energy is smaller than the desorption energy under Ga-rich conditions. Ga atoms are very mobile in this case and they prefer to move about on the surface to find new site with lower potential energy, such as the edge of a step or the bottom of a pit. As a result, the GaN growth mechanism follows the layer-by-layer growth mode with the pores being filled and the surface turning smooth as growth proceeds.

In summary we investigated the Ga desorption kinetics on GaN (0001) surfaces using reflection high energy electron diffraction during GaN growth. We found that the desorption energy of Ga depends on the Ga coverage which is determined by the III/V ratio. For a very high III/V ratio, the desorption energy is 2.78 eV with the coverage being about 100%, while the desorption energy is about 0.82 eV under the stoichiometric growth condition with the coverage being about 10%. The variation in the desorption energy with the III/V ratio may be attributed to the difference in the Ga-Ga separation in Ga adlayer. By controlling the III/V ratio, different growth modes of GaN in MBE growth can be obtained as a result of competition between the desorption and diffusion processes.
Metal/semiconductor interface and surface states

The effects of chemical passivation and etching on M/S interface and surface states were investigated. This study would allow devices with better performance characteristics such as lower surface leakage paths and metal-semiconductor interface states. For this purpose, three MOCVD grown GaN layers were chosen, one is for control, one for RIE and another for RIE followed by KOH. Figure 9 shows the AFM images of these samples. As can be seen, the RMS value for the RIE etched sample is increased almost three times compared the control sample. After RIE followed by KOH, the RMS value decreased to the lowest value compare to control sample. This is an indication that the RIE damage is removed as well the natural smoothening afforded by the relatively larger etching rates for prismatic planes. Figure 10 shows the I-V curves for different devices for each sample. The improvements have been observed by I-V and DLTS measurement, but ideality factor did not show much contact improvement. There is considerable activity in the GaN field indicating that perhaps that there is highly doped region on the surface of GaN which causes contribution from tunneling or thermionic field emission current both of which would have greater than unity ideality factor. The current study indicates that had this been due to some increased donor concentration near the surface emanating from the growth, that region would have been removed in the etch and that improved ideality factors would have resulted. What remains, of course, is the possibility of damage during fabrication which may cause the increase doping near the surface.

Figure 9. The AFM images of the MOCVD grown GaN for two different treated condition together with control sample.
Figure 10. I-V curves for the samples in Fig. 6. From left to right are the sample control, etched by RIE for 0.3 micron, and etched for 30 seconds in KOH followed by RIE, respectively.

Table 4 shows the data collected from the MOCVD grown samples which have been investigated under different RIE etching conditions. The as-grown sample has the 0.27 nm roughness value.

<table>
<thead>
<tr>
<th>Pressure (mTorr)</th>
<th>Power (W)</th>
<th>Etch Rate (nm/Min)</th>
<th>Roughness RMS(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>100</td>
<td>2.1</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>6.7</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>38.5</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>67</td>
<td>5.82</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
<td>2.4</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>6.0</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>27</td>
<td>5.53</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>59.8</td>
<td>1.86</td>
</tr>
</tbody>
</table>

Table 4. Etch rate with increasing pressure and power.

These results indicate that the etch rate increases with increasing RF power and the etch rate decrease slightly with increase of the reactor pressure. Increase pressure leads to reduce relatively high ionic content in the plasma which causes a reduction in the etch rate. However, there is no clear relationship between power and pressure, and roughness. What is clear is that the surface is rougher after etching. The etch rate for different pressures and PL spectra of GaN samples are shown in Figure 9 after RIE etching for different plasma power levels along with the control sample. We can see that the PL intensity decreased after etching, specifically with increasing power. Decrease in the luminescence efficiency could be understood considering the following reaction paths for removal of GaN from the surface.

\[2GaN \rightarrow N_2 + 2Ga \]

or \[GaN + N \rightarrow N_2 + Ga \]

It can be seen that the deficiency of N element (N vacancies) causes point defect on the surface. In short, the PL measurement indicates a decrease in the crystal quality which is consistent with the literature.
Figure 11. The etch rate at different pressures (left) and PL spectra of GaN samples (right) after RIE etching under different plasma power levels together with the control sample.

The RIE etching experiment, starting with higher power ending with lower power, has also been carried out in order to determine whether the damages caused by RIE could be removed from the surface and investigate the effects of etching on metal-semiconductor interfaces and surface states. For this purpose, a control sample (CVD 287), and five different etching conditions have been investigated as tabulated in Table 5.

<table>
<thead>
<tr>
<th>Name</th>
<th>Etch Condition</th>
<th>Roughness (nm)</th>
<th>Band Bending (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etch20</td>
<td>300W/200W, 3min+3min</td>
<td>2.589</td>
<td>1.69</td>
</tr>
<tr>
<td>Etch21</td>
<td>300W/150W, 3min+3min</td>
<td>2.513</td>
<td>1.74</td>
</tr>
<tr>
<td>Etch22</td>
<td>300W/100W, 3min+3min</td>
<td>0.629</td>
<td>1.61</td>
</tr>
<tr>
<td>Etch23</td>
<td>300W/50W, 3min+3min</td>
<td>1.692</td>
<td>1.75</td>
</tr>
<tr>
<td>Etch24</td>
<td>300W/300, 3min+3min</td>
<td>6.475</td>
<td>1.92</td>
</tr>
</tbody>
</table>

Table 5. The plasma power and etching time versus roughness and band bending for different etching conditions.

As expected the 300 W, 3min+3min etch resulted in the largest roughness value and the roughness decreased with decreasing power to some extent and increased again after etching under 300W/100W etching conditions, shown in Figure 10. This shows that the best condition appears to be 300W/100W. This is a direct indication that the RIE damage caused at high power levels can be at least partially removed followed by subsequent lower power RIE etch. When the power level was decreased further, the low power could not remove the damage caused by high power RIE.
Figure 12. The variation of the roughness with total RIE plasma power.
Publications:

24. C.Liu, Ali Teke Ümit Özgür, and H. Morkoç “RF sputtering deposition of high quality ZnO thin films” Wide bandgap nitride workshop, September 29- October 2, 2003, Richmond, VA

27. L. He, M. A. Reschikov, X. Gu, F. Yun, A. A. Baski, and H. Morkoç, “GaN layers re-grown on etched GaN templates by plasma assisted molecular beam epitaxy”, 8th Wide bandgap nitride workshop, September 29- October 2, 2003, Richmond, VA

30. C.-G. Stefanita, F. Yun, H. Morkoç and S. Bandypadhyay, “Self assembled quantum structures using porous alumina on Si substrates”, in Recent Research Developments in Physics, 2004

58. C. Liu, F. Yun, Pierre Ruterana, Sang-Jun Cho, B. Xiao, H. Morkoc, “Structural analysis of Mn-doped ZnO thin films deposited by RF magnetron sputtering” Fall MRS 04

60. M. A. Reschikov and H. Morkoc, “Unusual properties of the red and green luminescence bands in Ga-rich GaN”, Fall MRS 04

63. Arup Neogi, Jianyou Li, Harshmeet Liddar, Padmreka Vemuri, Brian P. Gorman Terry Golding, Purnima B. Neogi, Abhijit Sarkar, and Hadis Morkoc, “Self-assembled oligonucleotide semiconductor conjugated to GaN nanostructures for biophotonic applications”, Fall MRS 04

74. Arup Neogi, Hadis Morkoc, Tadashi Kawazoe, Motoichi Ohtsu, and Atsushi Tackeuchi, "Exciton dynamics in laterally coupled GaN/AlN quantum dots", PRL pending.
References: