Homeland Security: Protecting Airliners from Terrorist Missiles

Updated October 22, 2004

Christopher Bolkcom and Andrew Feickert
Specialists in National Defense
Foreign Affairs, Defense, and Trade Division

Bartholomew Elias
Specialist in Aviation Safety, Security, and Technology
Resources, Science, and Industry Division

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20050214 036
Homeland Security: Protecting Airliners from Terrorist Missiles

Summary

Recent events have focused attention on the threat that terrorists with shoulder fired surface-to-air missiles (SAMs), referred to as Man-Portable Air Defense Systems (MANPADS), pose to commercial airliners. Most believe that no single solution exists to effectively mitigate this threat. Instead, a menu of options may be considered, including installing infrared (IR) countermeasures on aircraft; modifying flight operations and air traffic control procedures; improving airport and regional security; and strengthening missile non-proliferation efforts. Equipping aircraft with missile countermeasure systems can protect the aircraft even when operating in areas where ground-based security measures are unavailable or infeasible to implement. However, this option has a relatively high cost, between $1 million and $3 million per aircraft, and the time needed for implementation does not allow for immediate response to the existing terrorist threat. Procedural improvements such as specific flight crew training, altering air traffic procedures to minimize exposure to the threat, and improved security near airports may be less costly than countermeasures and could more immediately help deter domestic terrorist attacks. However, these techniques by themselves cannot completely mitigate the risk of domestic attacks and would not protect U.S. airliners flying to and from foreign airports.

Legislation introduced in the 108th Congress (H.R. 580, S. 311) calls for the installation of missile defense systems in all turbojet aircraft used in scheduled air carrier service. While this legislation is still under consideration, Homeland Security appropriations designated $60 million in FY2004 and $61 million in FY2005 to fund a program to develop and test prototype missile countermeasure systems for commercial aircraft based on existing military technology. It is anticipated that at the conclusion of this program, in January 2006, the Department of Homeland Security will be able to provide a detailed analysis of the suitability of such systems for use to protect commercial passenger aircraft.

This report will be updated as needed.
Contents

Introduction .. 1
Types of Shoulder-Fired SAMs ... 1
 Infrared (IR) ... 1
 Command Line-of-Sight ... 2
 Laser Beam Riders ... 3
Shoulder-Fired SAM Proliferation .. 3
Non-State Groups With Shoulder-Fired SAMs 4
Recent U.S. Military Encounters with Shoulder-Fired Missiles 6
Civilian Aviation Encounters with Shoulder-Fired Missiles 7
Options for Mitigating Missile Threats 11
 IR Countermeasures and Aircraft Improvements 11
 Improved Pilot Training and Air Traffic Procedures 15
 Improvements to Airport and Local Security 17
 Nonproliferation and Counterproliferation Efforts 18
 Shoulder-Fired Missile Design and Manufacture 20
Congressional Action on Shoulder-Fired Missiles 21
Administration Plans and Programs 22
Conclusion .. 24

List of Figures

Figure 1. C-141B Starlifter Ejecting Flares on Takeoff 12

List of Tables

Table 1. Non-State Groups with Shoulder-Fired SAMs: 1996-2001 5
Table 2. Suspected Shoulder-Fired Missile Attacks Against Large Civilian Turbojet Aircraft (1978-Present) 9
Homeland Security: Protecting Airliners from Terrorist Missiles

Introduction

Shoulder-fired surface-to-air missiles (SAMs), also known as MANPADS (man-portable air defense systems), developed in the late 1950s to provide military ground forces protection from enemy aircraft, are receiving a great deal of attention as potential terrorist weapons. These missiles, affordable and widely available through a variety of sources, have been used successfully over the past three decades both in military conflicts\(^1\) as well as by terrorist organizations. The missiles are about 5 to 6 feet in length, weigh about 35 to 40 pounds, and, depending on the model, can be purchased on the black market anywhere from a few hundred dollars for older models to upwards of almost a quarter million dollars for newer, more capable models. Seventeen countries, including the United States, produce man-portable air defense systems.\(^2\) Shoulder-fired SAMs generally have a target detection range of about 6 miles and an engagement range of about 4 miles so aircraft flying at 20,000 feet (3.8 miles) or higher are relatively safe.\(^3\) Most experts consider aircraft departures and landings as the times when it is most vulnerable to shoulder-fired SAM engagement. There are a number of different types of shoulder-fired SAMs, primarily classified by their seekers.\(^4\)

Types of Shoulder-Fired SAMs

Infrared (IR)

Infrared shoulder-fired missiles are designed to home in on a heat source on an aircraft, typically the engine exhaust plume, and detonate a warhead in or near the

\(^1\) Shoulder-fired SAMs have been used effectively in a variety of conflicts ranging from the Arab-Israeli Wars, Vietnam, the Iran-Iraq War, to the Falklands Conflict, as well as conflicts in Nicaragua, Yemen, Angola, and Uganda, the Chad-Libya Conflict, and the Balkans Conflict in the 1990s. Some analysts claim that Afghan mujahedin downed 269 Soviet aircraft using 340 shoulder-fired SAMs during the Soviet-Afghan War and that 12 of 29 Allied aircraft shot down during the 1991 Gulf War were downed by MANPADs.

\(^3\) Marvin B. Schaffer, “Concerns About Terrorists With Manportable SAMS,” *RAND Corporation Reports*, October 1993, p. 4.

\(^4\) Seeker is a synonymous term for the missile’s guidance system which acquires the target and guides the missile to its intended point of detonation.
heat source to disable the aircraft. These missiles use passive guidance, meaning that they do not emit signals to detect a heat source, which makes them difficult to detect by targeted aircraft employing countermeasure systems. The first missiles deployed in the 1960s were IR missiles. First generation shoulder-fired SAMs such as the U.S. Redeye, early versions of the Soviet SA-7, and the Chinese HN-5 are considered “tail chase weapons” as their seekers can only acquire and engage a high performance aircraft after it has passed the missile’s firing position. In this flight profile, the aircraft’s engines are fully exposed to the missile’s seeker and provide a sufficient thermal signature for engagement. First generation IR missiles are also highly susceptible to interfering thermal signatures from background sources, including the sun, which many experts feel makes them somewhat unreliable.

Second generation IR missiles such as early versions of the U.S. Stinger, the Soviet SA-14, and the Chinese FN-6 use improved coolants to cool the seeker head which enables the seeker to filter out most interfering background IR sources as well as permitting head-on and side engagement profiles. These missiles also employ technologies to counter decoy flares that might be deployed by targeted aircraft and also have backup target detection modes such as the ultra violet (UV) mode found on the Stinger missile.5

Third generation IR shoulder-fired SAMs such as the French Mistral, the Russian SA-18, and the U.S. Stinger B use single or multiple detectors to produce a quasi-image of the target and also have the ability to recognize and reject flares dispensed from aircraft - a common countermeasure used to decoy IR missiles.6 Fourth generation missiles such as the U.S. Stinger Block 2, and missiles believed to be under development in Russia, Japan, France, and Israel could incorporate focal plane array guidance systems and other advanced sensor systems which will permit engagement at greater ranges.7

Command Line-of-Sight

Command line-of-sight (CLOS) missiles do not home in on a particular aspect (heat source or radio or radar transmissions) of the targeted aircraft. Instead, the missile operator or gunner visually acquires the target using a magnified optical sight and then uses radio controls to “fly” the missile into the aircraft. One of the benefits of such a missile is that it is not as susceptible to standard aircraft mounted countermeasure systems which are designed primarily to defeat IR missiles. The major drawback of CLOS missiles is that they require highly trained and skilled operators. Numerous reports from the Soviet-Afghan War in the 1980s cite Afghan mujahedin as being disappointed with the British-supplied Blowpipe CLOS missile because it was too difficult to learn to use and highly inaccurate, particularly when

6 Ibid., p. 3.
employed against fast moving jet aircraft. Given these considerations, many experts believe that CLOS missiles are not as ideally suited for terrorist use as are IR missiles, which sometimes are referred to as “fire and forget” missiles.

Later versions of CLOS missiles, such as the British Javelin, use a solid state television camera in lieu of the optical tracker to make the gunner’s task easier, and the Javelin’s manufacturer, Thales Air Defence Ltd., claims that their missile is virtually impervious to countermeasures. Even more advanced CLOS versions, such as the British Starburst, uses a laser data link in lieu of earlier radio guidance links to fly the missile to the target.

Laser Beam Riders

Laser beam riding shoulder-fired SAMs use lasers to guide the missiles to the target. The missile literally flies along the laser beam and strikes the aircraft where the missile operator or gunner aims the laser. These beam riding missiles are resistant to current countermeasure systems on military and civil aircraft. Missiles such as Sweden’s RBS-70 and Britain’s Starstreak, can engage aircraft from all angles and only require the operator to continuously track the target using a joystick to keep the laser aim point on the target. Because there are no data links from the ground to the missile, the missile can not be effectively jammed after it is launched. Future beam riding SAMs may require the operator to designate the target only once and not manually keep a continuous laser aimpoint on the aircraft. Even though beam riders require relatively extensive training and skill to operate, many experts consider these missiles particularly menacing in the hands of terrorists due to the missiles’ resistance to most conventional countermeasures in use today.

Shoulder-Fired SAM Proliferation

Unclassified estimates of the worldwide shoulder-fired SAMs inventory are widely varied. Published estimates on the number of missiles presently being held in international military arsenals range from 350,000 to 500,000 but disparities among nations in accountability, inventory control, and reporting procedures could make these figures inaccurate. Tracking proliferation to non-state actors is considered even more difficult by many analysts. There are a variety of means that terrorist organizations use to obtain missiles, including theft, black market, international organized crime, arms dealers, and transfers from states willing to supply missiles to terrorists. Often times, the only verification that a non-state actor

10 “Mombasa Attack Highlights Increasing MANPADs Threat,” Jane’s Intelligence Review, February 2003, p. 28.
has a shoulder-fired SAM is when a launcher or fragments from an expended missile are recovered after an attack. As in the case of military arsenals, estimates of shoulder-fired SAMs in terrorist hands vary considerably. Estimates range from 5,000 to 150,000 of various missile types, but most experts agree that the vast majority of them are IR guided and are likely SA-7 derivatives, versions of which are reportedly possessed by at least 56 countries.

Some examples attest to the large numbers of these missiles in circulation. As of December 2002, coalition forces in Afghanistan had reportedly captured 5,592 shoulder-fired SAMs from the Taliban and Al Qaeda. Some of these included U.S. Stinger and British Blowpipe missiles believed to have been left over from the Afghan-Soviet War. Shoulder-fired missiles continue to be seized routinely during coalition raids, suggesting that Taliban and Al Qaeda forces operating in and around Afghanistan still have access to an undetermined number of these systems. In Iraq, recent press reports indicate that 4,000 to 5,000 shoulder-fired SAMs may be available to Iraqi insurgent forces. United States Central Command (USCENTCOM) officials were unable to provide an unclassified update on the number and types of shoulder-fired missiles captured, turned in, or found in Afghanistan and Iraq as of September 2004, although classified data of this nature is being tracked by USCENTCOM and the Department of Defense (DOD). Africa, the region where most terrorist attacks with these missiles have occurred, reportedly also has a large quantity of shoulder-fired SAMs left over from Cold War sponsorships and the numerous civil wars of that era.

Non-State Groups With Shoulder-Fired SAMs

Unclassified estimates suggest that between 25 and 30 non-state groups possess shoulder-fired SAMs. Table I depicts non-state groups believed to possess shoulder-fired SAMs through the 1996-2001 time period. Additional groups may have obtained missiles since 2001 but details at the unclassified level are not known. Actual or estimated quantities of these weapons attributed to non-state groups at the unclassified level are also unknown.

14 “Mombasa Attack Highlights Increasing MANPADs Threat,” p. 28.
15 Ho, p. 2.
18 CRS requested this data from the USCENTCOM Legislative Affairs Office on September 22, 2004. USCENTCOM was willing to share this classified data with appropriately-cleared CRS staff but the use of classified data in these reports is not permitted.
19 “Shoulder-Fired Missiles Not too Hard to Find.”
Table 1. Non-State Groups with Shoulder-Fired SAMs: 1996-2001

<table>
<thead>
<tr>
<th>Group</th>
<th>Location</th>
<th>Missile Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armed Islamic Group (GIA)</td>
<td>Algeria</td>
<td>Stinger (c)</td>
</tr>
<tr>
<td>Chechen rebels</td>
<td>Chechnya, Russia</td>
<td>SA-7 (c), Stinger (c), Blowpipe (r)</td>
</tr>
<tr>
<td>Democratic Republic of the Congo (DRC) rebel forces</td>
<td>Democratic Republic of the Congo</td>
<td>SA-16 (r)</td>
</tr>
<tr>
<td>Harkat ul-Ansar (HUA)</td>
<td>Kashmir</td>
<td>SA-7 (c)</td>
</tr>
<tr>
<td>Hizbullah</td>
<td>Lebanon</td>
<td>SA-7 (c), QW-1 (r), Stinger (r)</td>
</tr>
<tr>
<td>Hizbul Mujahedin (HM)</td>
<td>Kashmir</td>
<td>Stinger (r)</td>
</tr>
<tr>
<td>Hutu militiamen</td>
<td>Rwanda</td>
<td>Unspecified type (r)</td>
</tr>
<tr>
<td>Jamaat e Islami</td>
<td>Afghanistan</td>
<td>SA-7 (c), SA-14 (c)</td>
</tr>
<tr>
<td>Jumbish-i-Milli</td>
<td>Afghanistan</td>
<td>SA-7 (c)</td>
</tr>
<tr>
<td>Khmer Rouge</td>
<td>Thailand/Cambodia</td>
<td>Unspecified type (r)</td>
</tr>
<tr>
<td>Kosovo Liberation Army (KLA)</td>
<td>Kosovo</td>
<td>SA-7 (r)</td>
</tr>
<tr>
<td>Kurdistan Workers Party (PKK)</td>
<td>Turkey</td>
<td>SA-7 (c), Stinger (c)</td>
</tr>
<tr>
<td>Liberation Tigers of Tamil Eelam</td>
<td>Sri Lanka</td>
<td>SA-7 (r), SA-14 (r), Stinger (c), HN-5 (c)</td>
</tr>
<tr>
<td>Oromo Liberation Front (OLF)</td>
<td>Ethiopia</td>
<td>Unspecified type (r)</td>
</tr>
<tr>
<td>Palestinian Authority (PA)</td>
<td>Palestinian autonomous areas and Lebanon</td>
<td>SA-7 (r), Stinger (r)</td>
</tr>
<tr>
<td>Popular Front for the Liberation of Palestine-General Command (PFLP-GC)</td>
<td>Palestinian autonomous areas and Lebanon</td>
<td>Unspecified type (r)</td>
</tr>
<tr>
<td>Provisional Irish Republican Army (PIRA)</td>
<td>Northern Ireland</td>
<td>SA-7 (c)</td>
</tr>
<tr>
<td>Revolutionary Armed Forces of Colombia (FARC)</td>
<td>Colombia</td>
<td>SA-7 (r), SA-4 (r), SA-16 (r), Redeye (r), Stinger (r)</td>
</tr>
<tr>
<td>Rwanda Patriotic Front (RPF)</td>
<td>Rwanda</td>
<td>SA-7 (r), SA-16 (r)</td>
</tr>
<tr>
<td>Somali National Alliance (SNA)</td>
<td>Somalia</td>
<td>Unspecified types (r)</td>
</tr>
</tbody>
</table>

20 This table is taken from p. 43 of "The Proliferation of MANPADS," Thomas B. Hunter, Jane’s, November 28, 2002.
<table>
<thead>
<tr>
<th>Group</th>
<th>Location</th>
<th>Missile Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al Qaeda/Taliban</td>
<td>Afghanistan</td>
<td>SA-series (c), Stinger (c), Blowpipe (c)</td>
</tr>
<tr>
<td>National Liberation Army (ELN)</td>
<td>Colombia</td>
<td>Stinger (r), Unspecified types (r)</td>
</tr>
<tr>
<td>National Liberation Army (UCK)</td>
<td>Macedonia</td>
<td>SA-18 (c)</td>
</tr>
<tr>
<td>National Union for the Total Independence of Angola (UNITA)</td>
<td>Angola</td>
<td>SA-7 (c), SA-14 (r), SA-16 (r), Stinger (c)</td>
</tr>
<tr>
<td>United State Wa Army</td>
<td>Myanmar</td>
<td>SA-7 (c), HN-5N (c)</td>
</tr>
<tr>
<td>United Somali Congress - Somali Salvation Alliance (USC-SSA)</td>
<td>Somalia</td>
<td>Unspecified types (r)</td>
</tr>
</tbody>
</table>

Note: (c) is possession confirmed through intelligence sources or actual events; (r) is reported but not confirmed.

Recent U.S. Military Encounters with Shoulder-Fired Missiles

Recent U.S. military encounters with shoulder-fired missiles in Iraq and Afghanistan can provide some useful operational insights which could be benefit government, industry, and civil aviation officials involved in the protection of civil aviation. In December 2003 an unidentified shoulder-fired SAM struck an engine of a U.S. Air Force C-17 Globemaster III cargo aircraft that had just departed Baghdad International Airport.\(^{21}\) The aircraft, which was outfitted with an antimissile protective safety, made an emergency landing at Baghdad International Airport.\(^{22}\) In January 2004, a C-5 Galaxy transport aircraft - also having an antimissile system - was hit by a shoulder-fired SAM and the aircraft was able to and successfully.\(^{23}\) One senior Air Force official reportedly stated that “for whatever reason, the [defensive] systems on the airplanes didn’t counter [the attacks]. We don’t have any indications that it was a system malfunction.”\(^{24}\) The official speculated that sensor placement, and aircraft altitude and maneuvering played a role in these systems not functioning as they were intended.\(^{25}\)

\(^{22}\) Ibid.

\(^{24}\) Ibid.

\(^{25}\) Ibid.
According to one report, from October 25, 2003 to January 2004, nine military helicopters were shot down or crashed landed in Iraq after having been hit by hostile ground fire, resulting in the deaths of 39 service members. An Army study, commissioned after these incidents, reportedly revealed a number of findings. The study team reportedly concluded that RPGs, and SA-7, SA-14, and SA-16 shoulder-fired SAMs were used in the attacks against the helicopters. Another study finding revealed that the Iraqis had studied the helicopter flight patterns and had developed effective techniques to engage the aircraft.

According to the Chief of the U.S. Transportation Command (USTRANSCOM), U.S. military cargo aircraft take ground fire in Afghanistan and Iraq from shoulder-fired SAMs, anti-aircraft artillery and small arms on almost a daily basis. USCENTCOM officials were unable to provide an unclassified update on shoulder-fired missiles attacks against U.S. military aircraft in Afghanistan and Iraq as of September 2004, although classified data of this nature is being tracked by USCENTCOM and DOD. Some analysts believe that the U.S. has significantly improved aircraft countermeasures and defenses and modified aircraft operating procedures, resulting in fewer successful attacks, but others suggest that attacks with shoulder-fired SAMs have become so commonplace that they no longer garner the attention that they once did.

Civilian Aviation Encounters with Shoulder-Fired Missiles

The most widely reported statistics on civilian aircraft experience with shoulder-fired missiles indicate that, over the past 26 years, 35 aircraft have come under attack from these weapons. Of those 35, 24 were shot down resulting in more than 500 deaths. While these statistics have been frequently cited, at least one report has

27 Rocket Propelled Grenades (RPGs) are shoulder-fired grenades that are primarily intended for use against ground targets. They are simple to use, fairly accurate, and are widely proliferated throughout the world.

29 Ibid.

31 CRS requested this data from the USCENTCOM Legislative Affairs Office on September 22, 2004. USCENTCOM was willing to share this classified data with appropriately-cleared CRS staff but the use of classified data in these reports is not permitted.

suggested that these figures may significantly overstate the actual numbers of civilian-use aircraft that have been attacked by shoulder-fired missiles. That report instead concluded that only about a dozen civil-registered airplanes have been shot down during this time period and further notes that some of these aircraft were operating as military transports when they were shot down. On the contrary, available statistics may underestimate the total number of civilian encounters with shoulder-fired missiles. It is possible that some aircraft shootings may have been attributed to other causes for various reasons and are not included in these statistics. Also, it is possible that some failed attempts to shoot down civilian airliners have either gone undetected or unreported.

For many incidents considered to be a shoulder-fired missile attack against a civilian aircraft, there is scant information to make a conclusive determination if that was, in fact, the case. In some instances, while it is widely recognized that the incident was a shooting, there is no conclusive determination regarding the weapon used. For example, in some instances of aircraft shootings there are discrepancies among accounts of the event, with some reporting that the aircraft was brought down by a shoulder-fired missile while others claim that anti-aircraft artillery was used. Also, in many instances there are questions as to whether the flight operation was strictly for a civilian use or may have been for military or dual use (civilian/military) purposes. Therefore, there is no universal agreement as to which incidents should be included in the tally of civilian aviation encounters with shoulder-fired missiles.

Based on our review of available reports and databases on the subject, the statistic of 24 catastrophic losses out of 36 aircraft appears to be a reasonable estimate, but not a definitive count, of the total worldwide civil aviation shootings with shoulder-fired missiles or similar weapons. However, since most of these incidents took place in conflict zones, they are not typically considered to be politically motivated because the targeted aircraft may have been perceived as being used for military purposes. While most of these historical examples do not provide any particular insight into the political motivation behind shootings of civilian aircraft in the current context of the global war on terrorism, they do provide some indication of the possible outcomes of such an attack. Based on the commonly cited statistic of 24 aircraft destroyed out of 36 attacks over the past 26 years, the odds of surviving an attack are not particularly encouraging. Using these numbers, the odds of surviving an attack may be estimated to be only about 33%. However, it is important to note that these incidents include a wide variety of aircraft types including small piston-engine propeller airplanes, turboprop airplanes, helicopters, and business jets, as well as large jet airliners. Since the current legislative proposals and administration efforts to date have been aimed at addressing ways to protect large commercial jet airliners from shoulder-fired missiles, it is useful to examine past

32 (...continued)
AOCpositionManPADS07292004.pdf].
incidents involving these types of aircraft in order to gain further insight regarding the threat.

CRS reviewed various sources and found only six incidents where large turbojet airliners were reported to have been attacked by shoulder-fired missiles. These incidents are listed in Table 2.35 Whether all of these incidents were in fact attacks using shoulder-fired missiles is still a matter of considerable debate as conclusive evidence supporting such a finding is lacking for most of these incidents. Of these six encounters identified, there was a wide range of outcomes. Only two of the six shootings resulted in catastrophic losses of the airplanes — killing all on board. In three other incidents, the airplanes received significant damage — but no one was killed. Finally, in the widely reported November 2002 attempt to shoot down an Israeli charter jet in Mombasa, Kenya, the aircraft was fired upon by two missiles but was not hit.

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Aircraft</th>
<th>Operator</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Nov-1983</td>
<td>Angola</td>
<td>Boeing 737</td>
<td>Angolan Airlines (TAAG)</td>
<td>Catastrophic: 130 fatalities of 130 people on board</td>
</tr>
<tr>
<td>9-Feb-1984</td>
<td>Angola</td>
<td>Boeing 737</td>
<td>Angolan Airlines (TAAG)</td>
<td>Hull Loss: aircraft overran runway on landing after being struck by a missile at 8,000 ft during climb out. No fatalities with 130 on board.</td>
</tr>
<tr>
<td>21-Sep-1984</td>
<td>Afghanistan</td>
<td>DC-10</td>
<td>Ariana Afghan Airlines</td>
<td>Substantial Damage: Aircraft was damaged by the missile, including damage to two hydraulic systems, but landed without further damage. No fatalities.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Aircraft</th>
<th>Operator</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-Nov-2002</td>
<td>Kenya</td>
<td>Boeing 757</td>
<td>Arkia Israeli Airlines</td>
<td>Miss: Two SA-7’s were fired at the aircraft during climb out, but missed. No fatalities.</td>
</tr>
<tr>
<td>22-Nov-2004</td>
<td>Iraq</td>
<td>Airbus A300</td>
<td>DHL Cargo</td>
<td>Hull Loss: Aircraft wing struck by missile departing Baghdad. Aircraft suffered a complete loss of hydraulic power and departed the runway during an emergency landing.</td>
</tr>
</tbody>
</table>

In the first instance, the official findings by Angolan authorities attributed the November 8, 1983, crash of a TAAG Angolan Airlines Boeing 737 to a technical problem with the airplane, but UNITA rebels in the area claimed to have shot down the aircraft with a surface to air missile. All 130 people on board were killed, potentially making this the deadliest single incident involving a shoulder-fired missile attack against a civilian aircraft. However, investigation of the incident failed to produce any conclusive evidence of missile or gunfire damage on any of the aircraft wreckage.

In the February 9, 1984, attack of a TAAG Angolan Airlines Boeing 737, the airplane was struck at an altitude of 8,000 feet during climb out. The crew reportedly attempted an emergency landing at Huambo, Angola, but were unable to extend the flaps because of damage to the airplane’s hydraulic systems. Consequently, the crew was unable to slow the airplane sufficiently before landing and overran the runway by almost 600 feet. The airplane was totaled but no one was killed. Investigators found evidence leading them to suspect that a bomb detonation in the forward hold, rather than a missile, was responsible for the damage observed. However, press accounts reporting that the aircraft was struck by an SA-7 fired by UNITA guerrillas have led some to conclude that this incident was, in fact, a shoulder-fired missile attack.

In the September 21, 1984, incident, an Ariana Afghan Airlines DC-10 was struck causing damage to two of the airplane’s three hydraulic systems. While some sources defined this incident as a shoulder-fired missile attack, another account indicated that the DC-10 was hit by “explosive bullets.”

38 See Schaffer, Op cit.
The most recent catastrophic loss of a civilian aircraft from a suspected MANPADS attack was the October 10, 1998, downing of a Congo Airlines Boeing 727 near Kindu, Democratic Republic of Congo. The aircraft was reportedly shot down by a missile, possibly an SA-7, that struck one of the airplane’s engines. Tutsi rebels admitted to the shooting, claiming that they believed the airplane to be carrying military supplies. The final call from the Captain indicated that the aircraft had been hit by a missile and had an engine fire. It was reported that a missile struck the airplane’s rear engine. The ensuing crash killed all 41 persons on board.41

The most recent attempted shooting of a passenger jet was the November 28, 2002, incident involving an Israeli-registered Boeing 757 aircraft operated by Arkia Israeli Airlines. Two SA-7 missiles were fired at the airplane on departure from Mombasa, Kenya but missed. While the threat of shoulder-fired missiles has long been recognized by aviation security experts, this incident has focused the attention of many in Congress and the Bush Administration on this threat and options to mitigate it. Unlike the prior attacks on jet airliners that occurred in war torn areas, the Mombasa attack was clearly a politically motivated attack, believed to have been carried out by terrorists with links to Al Qaeda.42 That fact, coupled with already heightened concerns over aviation security in the aftermath of the September 11, 2001, terrorist attacks, has made the shoulder-fired missile threat a key issue for homeland security.

Amid this heightened concern over the threat of shoulder-fired missiles to commercial aircraft, a DHL cargo airplane was struck by a missile on November 22, 2004, while departing Baghdad International Airport in Iraq. The aircraft’s left wing was struck outboard from the engine. Damage from the missile severed the airplane’s hydraulic lines. However, the flight crew was able to return to the airport applying differential thrust on the two engines to maneuver and operating manual cranks to lower the landing gear. The aircraft, an Airbus A300-B4, departed the runway on landing causing additional damage, including extensive engine damage from ingesting sand and debris.43 While no one was killed or injured, the airplane was determined to be a total loss.

Options for Mitigating Missile Threats

Most observers believe that no single solution exists to effectively mitigate the SAM threat to airliners. Instead, a menu of options may be considered, including improvements or modifications to commercial aircraft, changes to pilot training and air traffic control procedures, and improvements to airport and local security.

IR Countermeasures and Aircraft Improvements

42 Sweetman, Op cit.

Military aircraft employ a variety of countermeasures to mitigate the threat posed by SAMs. With few exceptions, commercial airlines today do not employ these protective systems. Historical arguments against fielding countermeasures on airliners include their acquisition cost, cost and difficulty of integrating them into the aircraft, life cycle costs, environmental constraints on their use, and the fear that they may promote perceptions that flying is not safe. Estimates of the cost of acquiring and installing IR countermeasures on commercial aircraft range between $1 million and $3 million per aircraft. According to FAA forecasts, there will be about 5,575 passenger jet aircraft in service in 2004, including 3,455 large narrow body airplanes, 638 large wide bodies, and 1,482 regional jets. Additionally, there are expected to be 1,082 all-cargo jets deployed in air carrier operations in 2004. Estimates on equipping the air carrier jet fleet with IR countermeasures vary because of assumptions regarding the type of system, whether they would be installed directly into the aircraft or attached via a pod, and the overall number to be procured. Some IR countermeasures could increase the airline’s operating costs by increasing the aircraft’s weight and drag and thus the amount of fuel consumed. Another issue for installing IR countermeasures on passenger jets is the logistics of equipping the fleet and the potential indirect costs associated with taking airplanes out of service to accomplish these installations.

Figure 1. C-141B Starlifter Ejecting Flares on Takeoff

For decades, military aircraft have ejected inexpensive flares to foil IR-guided SAMs. When a white-hot flare passes through an IR-guided SAM’s field of view, its intense IR energy can confuse the missile and cause it to lose its lock on the targeted

44 It has been reported that the Israeli airline El Al has deployed or is in the process of equipping some or all of its 34 aircraft with missile countermeasure systems.

aerial. Although effective against older shoulder-fired SAMs, flares often cannot fool newer models, which use more sophisticated sensors. Also, most flares pose a fire hazard to combustibles on the ground, and may be too risky for urban areas. DOD has recently developed new flares and similar decoys that may be more effective against modern IR-guided missiles, and pose less of a fire hazard.

Military aircraft also use a variety of transmitters known as IR countermeasures or IRCMs to create fields of IR energy designed to confuse shoulder-fired SAMs. Unlike flares, IRCMs do not pose a fire hazard to combustibles on the ground. Like flares, however, they are only effective against older IR-guided missiles. Recent advances in lasers have led to the development and employment of directed IRCMs (DIRCMs), that focus their IR energy directly on the incoming SAM. DIRCMs are able to generate more jamming power than IRCMs, and may offer the most effective defense against modern shoulder-fired SAMs. DIRCM weight, size, cost, and reliability, however, may not yet make them attractive for commercial airlines.

Military aircraft use flares and IRCMs preemptively: in anticipation of a SAM launch, a pilot can eject numerous flares, or turn on the IRCM to foil a potential threat. However, environmental considerations may make the use of flares difficult for commercial airlines. DIRCM’s can’t be used preemptively. They must be aware that a missile has been launched, and use missile approach and warning systems (MAWS) for that function. Because IR-guided SAMs are difficult to detect, MAWS performance is a key factor in the overall effectiveness of the aircraft’s protection system. DIRCM reliability and maintainability has also frequently been cited as a key factor that will determine the cost effectiveness of these systems for commercial use. Some estimate that current DIRCM system reliability will have to improve by a factor of 10 before they will be cost effective in a commercial setting.

“Camouflaging” commercial aircraft, (i.e. reducing their optical and IR reflectivity and emissivity) would make it more difficult for terrorists to employ most shoulder-fired missiles. Suppressing or otherwise mitigating the engine’s hot exhaust may be the most effective way to “camouflage” commercial aircraft. DOD and industry studies indicate that the IR signature of large aircraft engines can be reduced by as much as 80% by shielding or ducting the engine exhaust, or mixing ambient air with hot jet exhaust. These measures may adversely affect engine performance or aerodynamic drag. Also, integrating these measures into existing aircraft may cause problems with aircraft weight and balance. Regardless, DOD has conducted numerous studies on IR-signature reduction, and the exploration of this body of work may merit investigation for commercial applications.

47 MAWS are also employed on aircraft that use flares and IRCMs.

48 Conversation between CRS and DHS representatives, February 6, 2004, DHS Headquarters, Washington, DC.

49 Fact Sheet on Large Aircraft IR Signature, Department of the Air Force, Office of the Secretary Legislative Liaison. (SAF/LLW) for CRS, November 17, 2003.

50 See, for example, Kellie Unsworth, “Next Generation IR Engine Suppression,” Aircraft (continued...
DOD is also developing paint that is designed to reduce an aircraft’s IR reflectivity and visual profile. IR camouflage paint would not reduce an engine’s heat signature, but it might make it more difficult for terrorists to visually see the aircraft, and thus could avert a SAM launch. The Navy is studying IR camouflage paint on the V-22 Osprey.51 The cost and maintainability of this paint is still being studied, but the paint might actually be lighter than conventional aircraft paint. Today, IR paint appears to offer few complications for airline application compared to other potential countermeasures.

Infrared signature reduction techniques appear worth examining. However, it should be recognized that these measures cannot make aircraft completely invisible in the IR spectrum. An airplane’s IR signature will always be much stronger than that of the surrounding sky. Thus, like many other options discussed in this report, IR signature reduction techniques may be able to reduce an aircraft’s vulnerability to IR-guided weapons and mitigate the IR missile threat to some degree, but they cannot completely eliminate the threat.

In addition to equipping airliners with missile countermeasures, strengthening the airframe to better withstand missile strikes has been suggested. To date, the FAA’s Commercial Aircraft Hardening Program has primarily focused on studying how hardened aircraft can better withstand internal bomb blasts.52 The survivability of passenger jets following missile strikes is largely unknown, although DOD’s Joint Live Fire program and the Air Force have initiated a multi-year effort to test the vulnerability of large turbofan engines, such as those that power commercial aircraft, to shoulder-fired missiles.53 It is expected that developing hardened aircraft structures will be a challenging problem given that IR guidance systems seek hot engine exhaust and will likely detonate at or near an aircraft engine.

Since most jet airliners have wing-mounted engines, hardening of surrounding aircraft structure will likely be infeasible, particularly with regard to modifying existing aircraft. However, some aircraft survivability experts believe that isolating critical systems, like redundant hydraulic lines and flight control linkages, and improving fire suppression and containment capabilities could prevent catastrophic failures cascading from the initial missile strike.54 While such options can be integrated into new aircraft type designs, they are unlikely to have any near term impact on reducing the threat since retrofitting existing air carrier jets with damage

50 (...continued)

54 Bill Sweetman, Op cit.
tolerant structures and systems is likely to either be technically infeasible or not economically practical. Moreover, aircraft hardening options will likely require extensive research and testing before their feasibility and effectiveness can be adequately assessed. Initial indications suggest that aircraft hardening and structural redesign, if feasible, will likely be very costly and could take many years to implement.

Improved Pilot Training and Air Traffic Procedures

Airline pilots already receive substantial simulator training on handling loss of power to one engine during critical phases of flight such as takeoffs and landings. This training should already prepare flight crews to handle a loss of engine power resulting from a missile strike. Therefore, additional training for handling missile attacks may be of limited benefit. On the other hand, specific simulator exercises using missile attack scenarios may be beneficial by preparing pilots to fly and land a damaged aircraft. Modern airliners are built with redundancy in avionics and flight control systems, and consequently, a missile strike that does not cause a catastrophic structural failure would likely be survivable if the flight crew is properly trained to handle such a scenario.

Another potential mitigation technique is training flight crews in evasive maneuvers if fired upon by a shoulder-fired SAM. However, this approach would not likely be effective and presents significant risks. Without a missile detection and warning system, it is unlikely that a flight crew would have any indication of a missile launch. Also, large transport category airplanes are generally not maneuverable enough to evade a shoulder-fired SAM. There is also concern that defensive maneuvering of large transport category airplanes could result in a loss of control or structural failure.\(^{55}\) Consequently, most observers concur that evasive maneuvering is not a viable option for mitigating the risk of missile attacks. However, properly trained crews may be able to use other special procedures to evade missile attacks. Examples of procedures that may be considered to reduce the airplane's heat signature and vulnerability to missile strikes include minimizing the use of auxiliary power units and other heat sources when operationally feasible; minimizing engine power settings; and, if a missile launch is detected, reducing engine power settings to minimum levels required to sustain flight at a safe altitude. The effectiveness and safety risks associated with techniques such as these will need to be carefully assessed before procedural measures are implemented.

Another mitigation technique may be to alter air traffic procedures to minimize the amount of time airliners are vulnerable to missile launches and make flight patterns less predictable. Current arrival procedures rely on gradual descents along well-defined and publicly known approach courses that place airplanes within range

of shoulder-fired SAMs as far away as 50 miles from the airport. Similarly, departing aircraft with heavy fuel loads operating at high engine power, often along predefined departure routes, may be particularly vulnerable and can be targeted up to 30 miles away from the airport before they climb above the effective range of shoulder-fired SAMs.

Military aircraft often use spiral descents from altitude above the airfield when operating in hostile areas. Using spiral descents may be an option for mitigating the threat of terrorist SAM attacks to airliners approaching domestic airports. Doing so can limit approach and descent patterns to a smaller perimeter around the airfield where security patrols can more effectively deter terrorist attacks. While spiral approaches may be implemented on a limited basis, wide scale use of spiral patterns would likely require extensive restructuring of airspace and air traffic procedures. This technique may present safety concerns by greatly increasing air traffic controller workload and requiring pilots to make potentially difficult turning maneuvers at low altitude. The use of spiral patterns could also reduce passenger comfort and confidence in flight safety. Also, this technique would not mitigate the risk to departing aircraft, which are generally considered to be the most vulnerable to missile attacks.

Another technique used by military aircraft, particularly fighter jets, to reduce vulnerability on departure is to make steep, rapid climbs above the effective range of surface to air missiles over a short distance. Like spiral descents, such a technique has limited application for civilian jet airliners. A typical climb gradient for these aircraft is between 400 and 500 feet per mile, which means that they remain in range of shoulder-fired missiles for about 40 to 50 miles after departure. Even if the airplane were to double its climb rate, which would probably be close to the maximum practically achievable climb rate for most jet airliners, the distance traveled before safely climbing above the range of shoulder-fired missiles would still be 20 miles or more. Climbing out at such a steep rate would also pose a risk to the aircraft since it may not provide an adequate margin of safety if an engine were to fail during climb out. Also, steep climb angles are likely to be perceived as objectionable by passengers.

Another option that may be considered is to vary approach and departure patterns. Regularly varying approach and departure patterns, in non-predicable ways, may make it more difficult for terrorists to set up a shoulder-fired SAM under a known flight corridor; and, may increase the probability that they will be detected, while trying to locate a usable launch site, by ground surveillance, local law enforcement, or civilians reporting suspicious activities. One challenge to implementing this technique is that aviation radio frequencies are not protected, and terrorists might gather intelligence regarding changing flight patterns. Also, flight tracking data are available in near real time from Internet sources and may be exploited by terrorists to gain information about aircraft position. Nonetheless, this approach could be a deterrent by making overflights of particular locations less predictable. Limitations to this approach include disruption of normal air traffic flow.

56 Marvin B. Shaffer, Op cit.
which may result in delays, increased air traffic controller workload, and possible interference with noise mitigation procedures. Varying air traffic patterns may be a viable mitigation technique, particularly at airports with low to moderate traffic and for approach and departure patterns that overfly sparsely populated areas. Also, maximizing the use of over water approach and departure procedures, when available, coupled with measures to limit or restrict access to and increase patrols of waters under these flight paths has also been suggested as a mitigation alternative.\(^{58}\)

Other suggested changes to air traffic procedures include the increased use of nighttime flights and minimal use of aircraft lighting. However, this approach is likely to be opposed by the airlines and passengers since there is little demand for night flights in many domestic markets. Furthermore, minimizing the use of aircraft lighting raises safety concerns for aircraft collision avoidance. While the airspace system includes good radar coverage in the vicinity of airports and airliners are required to have collision avoidance systems, the last line of protection against midair collisions is the flight crew’s ability to see and avoid other aircraft. Therefore, increased use of night flights and minimizing aircraft lighting is not thought to be a particularly viable mitigation option.

Improvements to Airport and Local Security

One of the most expedient measures that can be taken to mitigate the risk from shoulder-fired SAMs to airliners is to heighten security, surveillance, and patrols in the vicinity of airports served by air carriers. The difficulty with implementing these security measures is that the approach and departure corridors where aircraft operate within range of shoulder-fired SAMS extend for several miles beyond airport perimeters. Therefore, while heightening security in the immediate vicinity of an airport may reduce the threat from shoulder-fired SAMs, these measures cannot effectively mitigate the threat during the entire portion of flight while airliners are vulnerable to attack. Nonetheless, using threat and vulnerability assessments, airport and airspace managers can work with security forces to determine those locations beyond the airport perimeter that have high threat potential and where aircraft are most vulnerable to attack. Using this information, security can concentrate patrols and surveillance in these high risk areas. Airport security managers will likely need to work closely with local law enforcement to coordinate efforts for patrolling these high risk areas. Public education and neighborhood watch programs in high risk areas may also be effective means to mitigate the threat. Aerial patrols using sensor technology, such as Forward Looking Infrared (FLIR), may also be an effective tool for detecting terrorists lurking underneath flight paths. However, use of aerial patrols may significantly impact normal flight schedules and operations, particularly at the nation’s larger airports.

In addition to increased security, some have suggested using ground based countermeasures in high risk locations. Randomly dispensing flares in the vicinity of airports has been suggested, noting that the Israeli airline El Al occasionally used this technique during periods of heightened tension in the 1980s. However, ground-based flares pose a risk of fires on the ground and therefore would not be suitable at

\(^{58}\) Marvin B. Schaffer, Op cit.
many airports in the United States, particularly those surrounded by populated or wooded areas. Furthermore, dispensing flares may be annoying to some and may also diminish public confidence in the safety and security of air travel. Ground based interceptors are another option that has been suggested. These interceptors could be vehicle-mounted SAMs like the Marine Corps "HUMRAAM" system, or directed energy weapons like the Army's tactical high-energy laser (THEL). The THEL has successfully intercepted rockets and artillery shells in tests. Cost, reliability, probability of intercept, and potential side-effects and unintended consequences would have to be weighed when considering these options. Older "lamp-based" IR countermeasures might also offer some missile jamming capability, by generating wide, if relatively weak, fields of IR energy near airports. Again, potential side-effects and unintended consequences would have to be assessed.

Another way to mitigate the threat of shoulder-fired SAMs is through intelligence and law enforcement efforts to prevent terrorists from acquiring these weapons, particularly terrorists operating inside the United States. Congress may consider ways to improve current missile non-proliferation efforts, and may also wish to debate ways to better share intelligence information with airport security managers so that appropriate security measures can be implemented to respond to specific threat information.

Nonproliferation and Counterproliferation Efforts

Legal transfer of shoulder-fired SAMs is not governed by an international treaty. The Wassenaar Arrangement is the only international agreement that addresses shoulder-fired missiles sales and provisions governing these sales were not adopted by its 33 members until December 2000. In December 2003, the Wassenaar Arrangement adopted strengthened guidelines over control of shoulder-fired SAM transfers. Recent actions by the Administration may, however, renew emphasis on nonproliferation. According to press reports and a White House Fact Sheet President Bush obtained commitments from 21 Asian and Pacific Rim members of the Asia Pacific Economic Group (APEC) to "adopt strict domestic export controls on MANPADs; secure stockpiles; regulate MANPADs production, transfer, and brokering; ban transfers to non-state end users; and exchange information in support of these efforts." APEC leaders meeting in Bangkok also agreed to strengthen their

60 The Wassenaar Arrangement on Export Controls for Conventional Arms and Dual-Use Technologies was established in 1995 to promote greater transparency and responsibility with regard to transfers of armaments and sensitive dual-use goods and technologies. For detailed information see [http://www.wassenaar.org].

national controls on MANPADs and review progress at next year’s APEC meeting in Chile.\footnote{63}

Since September 11, 2001, the G-8 countries\footnote{64} have given increased emphasis to multilateral efforts to reduce the proliferation of and risk from MANPADS in terrorist hands. At the 2003 G-8 summit, member countries agreed to promote adoption of Wassenaar’s strengthened MANPADS export guidelines by non-Wassenaar countries. The G-8 also implement the following steps to prevent terrorist acquisition of MANPADS:

- “To provide assistance and technical expertise for the collection, secure stockpile management and destruction of Manpads surplus to national security requirements;
- To adopt strict national export controls on Manpads and their essential components;
- To ensure strong national regulation of production, transfer and brokering;
- To ban transfers of Manpads to non-state end-users; Manpads should only be exported to foreign governments or to agents authorised by a government;
- To exchange information on unco-operative countries and entities;
- To examine the feasibility of development for new Manpads of specific technical performance or launch control features that preclude their unauthorised use;
- To encourage action in the International Civil Aviation Organization (ICAO) Aviation Security (AVSEC) Working Group on Manpads.”\footnote{65}

At their 2004 Summit, G-8 countries agreed upon an action plan to implement and expand the scope of the 2003 recommendations.\footnote{66}

The International Civil Aviation Organization (ICAO), a United Nations Specialized Agency, has also increased efforts to limit the proliferation of MANPADS. ICAO has proposed that all 188 member countries adopt the Wassenaar

\footnote{63}{"New APEC Initiatives on Counterterrorism."}

\footnote{64}{The G-8 is composed of the major industrial democracies that meet annually to address the major economic and political issues facing their domestic societies and the international community. The six countries at the first summit in 1975 were Britain, France, Germany, Italy, Japan and the United States. Canada joined in 1976 and the European Union joined in 1977. Membership in the G7 was fixed and the USSR and then Russia participated in a post-summit dialogue with the G7 since 1991. Russia fully participated in the 1998 Summit, giving birth to the G8.[http://www.g7.utoronto.ca/what_is_g8.html].}

\footnote{65}{[http://www.g8.fr/evian/english/navigation/2003_g8_summit/summit_documents/enhance_transport_security_and_control_of_man-portable_air_defence_systems__manpads___a_g8_action_plan.html].}

\footnote{66}{[http://www.g8usa.gov/d_060904f.htm].}
Arrangement MANPADS export guidelines, and develop a “universal regime of control for MANPADS.”

The U.S. State Department has undertaken a number of bilateral and multilateral efforts to reduce the number of shoulder-fired SAMs that could conceivably fall into the hands of terrorists. Information in this paragraph is from a U.S. State Department information paper titled “Department of State’s MANPADS Threat Reduction Efforts,” dated September 30, 2004, for program details. The State Department, operating through the Small Arms and Light Weapons Destruction Program is working with countries or regions where there is a combination of excess shoulder-fired SAMs, poor control, and a risk of proliferation to terrorist groups or other undesirable groups to destroy excess stocks and develop security and accountability measures. While many countries wish to remain confidential, the State Department has overseen the destruction or has received pledges to destroy shoulder-fired SAMs from the following countries: Serbia, Bosnia-Herzegovina, Cambodia, Nicaragua, and Liberia. As of September 30, 2004, the State Department reported 7,922 shoulder-fired SAMs destroyed in nine countries in Africa and Eastern Europe and commitments from other countries to destroy another 2,500 missiles.

There are a number of both formal and informal counterproliferation actions that could be undertaken. Informally, U.S. and coalition forces routinely seize and destroy caches of shoulder-fired SAMs during combat operations in Afghanistan and Iraq, thereby reducing the number of these systems available for terrorist use. Formally, the U.S. is offering $500 for each shoulder-fired SAM turned over to authorities in both Iraq and Afghanistan. According to one press report, 317 shoulder-fired missiles had been turned over to U.S. military authorities in Iraq since May 1 2004, with the U.S. paying out over $100,000 in rewards for the missiles. Other formal options could include infiltrating black market, organized crime or terrorist groups, and seizing or destroying these missiles or setting up “sting” operations to arrest arms brokers and seize their missiles.

Shoulder-Fired Missile Design and Manufacture

It may be possible to incorporate specific characteristics in the design and manufacture of new shoulder-fired missiles that would make it more difficult for terrorists to use them. While these measures would have no effect on the shoulder-fired missiles that have already been manufactured and proliferated, they could be part of a long-term strategy for reducing the threat to commercial aviation.

68 Information in this paragraph is from a U.S. State Department information paper titled “Department of State’s MANPADS Threat Reduction Efforts,” dated September 30, 2004, [http://www.state.gov/t/np/acw/c12759.htm].
69 See [http://www.state.gov/t/np/wra/] for program details.
70 “Rewards Offered for Missile Launcher,” USA Today, August 1, 2003, p. 6.
Permissive Action Links (PALs) is one example of a technology that could be incorporated in future shoulder-fired missiles to “tamper-proof” them. PALs are essentially microchip-based cryptographical “trigger locks” that ensure that only authorized personnel can use a given weapon system. Congress has shown interest in exploring PALs for Stinger missiles (H.R. 3576, p.219), but a lack of implementation suggests resistance on the part of the Army. It may be that Army representatives fear that PALs could complicate legitimate use of a shoulder-fired missile. Incorporating PALs could potentially raise the cost of a weapon system. Thus, incorporating them on a multi-lateral basis may be required so U.S. manufactures are not put at an export disadvantage vis-a-vis foreign manufacturers.

Congressional Action on Shoulder-Fired Missiles

Many in Congress have expressed concern about the threat MANPADS could pose to civil aircraft. Specific concerns include protecting civilians and mitigating the potential financial burden for an already besieged airline industry. Legislation has been proposed, and congressional committees have received classified briefings on the subject in closed door hearings. On February 5, 2003, Representative Steve Israel and Senator Barbara Boxer introduced legislation (H.R. 580, S. 311) directing the Secretary of Transportation to issue regulations requiring airliners to be equipped with missile defense systems.

While these proposals are still under consideration by their respective committees, language in the conference report accompanying the Emergency Wartime Supplemental Appropriations Act of 2003 (P.L. 108-11; H.Rept. 108-76) directed the Department of Homeland Security (DHS) Under Secretary for Science and Technology to prepare a program plan for developing such missile protection systems for commercial aircraft. This program was subsequently funded in appropriations legislation and is progressing. The program is described in detail below in the section of this report addressing Administrative Plans and Programs.

At least three bills introduced during the FY2005 budget cycle addressed methods for mitigating the threat of shoulder-fired missiles to commercial aviation. H.R. 4056, H.R. 5121 Section 23, and H.R. 10 Section 4103 all call for the pursuit of further diplomatic and cooperative efforts (including bilateral and multilateral treaties) to limit availability, transfer, and proliferation of MANPADS. Additionally, they call for a continuation of current efforts to assure the destruction of excess, obsolete, and illicit stocks of MANPADS worldwide.

These bills also call for the establishment of agreements with foreign countries requiring MANPADS export licenses and prohibiting re-export or retransfer of MANPADS and associated components to a third party, organization, or foreign government without written consent of the government that approved the original transfer. These provisions require DHS to establish a process for conducting airworthiness and safety certification of missile defense systems used on commercial

aircraft no later than the completion of Phase II of DHS’s Counter-MANPADS Development and Demonstration Program. They also require the Federal Aviation Administration (FAA) annually to report to specified congressional committees on each airworthiness certification issued by DHS. These bills require DHS to report to specified congressional committees on DHS plans to secure airports and arriving and departing aircraft from MANPADS attacks.

Section 2241 of the State Department Authorization Bill (S. 2144) mirrored the provisions of the three bills described above. Section 2125 of the bill provided $10 million in the “Nonproliferation, Antiterrorism, Demining, and Related Programs” account for multilateral and bilateral efforts to reduce the threat of MANPADS.

Administration Plans and Programs

In response to P.L. 108-11/H.Rept. 108-76, DHS submitted a plan to Congress on May 22, 2003. The plan specifies a two year time frame for development, design, testing, and evaluation of an anti-missile device on a single aircraft type. The plan anticipates that a parallel FAA certification effort will coincide with this system development and demonstration leading to an FAA-certified system that can be operationally deployed on commercial aircraft at the end of the two year project or soon thereafter.

The program plan submitted by DHS estimated that the costs to carry out this project would consist of $2 million in FY2003 for administrative costs, $60 million in FY2004 for system development and initial testing, and an unspecified amount, not to exceed $60 million, in FY2005 to complete development and demonstration of the system and obtain FAA certification. The Department of Homeland Security Appropriations Act for 2004 (P.L. 108-90/H.Rept. 108-280) fully funded the requested $60 million in FY2004 for this effort and an additional $61 million has been appropriated to continue the program in FY2005 (H.R. 4567/ H.Rept. 108-774).

The DHS established the system development program in a manner that would apply existing technologies from the military environment to the commercial airline environment rather than developing new technologies. In this manner, the DHS hopes to leverage military investment in counter-MANPADS technology in order to identify a technical solution that can be deployed in the civil aviation environment in a much faster time frame assuming that such a system can be tailored to meet the operational needs and requirements of civilian flight operations.

The DHS established a Counter-MANPADs Special Program Office (SPO) to manage the program which the DHS envisions will consist of two phases. Phase I, which was completed in July 2004, consisted of an intensive six-month effort to

74 H.R. 4567 was signed by the President on October 18, 2004.
assess proposed solutions based on threat mitigation capabilities, system costs, airframe and avionics integration, and FAA certification issues. Three contractor teams led by Northrup-Grumman, BAE Systems, and United Airlines were awarded $2 million each to develop detailed systems descriptions and analysis of economic, manufacturing, maintenance, systems safety, and operational effectiveness issues for applying their systems in the commercial aircraft environment.

Following a DHS-led review of each contractor team's Phase I work and their proposals for Phase II, on August 25, 2004, DHS awarded $45 million to BAE Systems and Northrop Grumman to move into Phase II of development.75 Phase II will consist of an 18-month prototype development based on existing technology that will be demonstrated and evaluated. Both contractors will receive awards of about $45 million each for this effort which is expected to culminate in January 2006 with the delivery of two complete countermeasure units per contractor for demonstrating system performance. Both contractors are proposing systems to will use laser-based directed infrared countermeasures (i.e., DIRCM) to protect commercial aircraft from infrared-guided MANPADS attacks. The United Airlines-led team which was not selected for Phase II, had instead proposed a system that would have used expendable flare decoys to divert incoming missiles.76 According to DHS officials, two primary reasons why the United team was not selected was that there were safety issues on the flight line for the expendable pyrotechnic decoys and that there were issues with the system concerning false alarms.77

The BAE team, which also includes American Airlines and Honeywell, and the Northrop Grumman team, which includes Federal Express and Northwest Airlines, will develop prototypes over an 18 month period which will be tested on commercial aircraft.78 Both firms, BAE and Northrop Grumman, have developed directed energy infrared countermeasures systems for the U.S. military.79 Northrop Grumman is currently delivering its Large Aircraft IRCM system for installation on U.S. Air Force C-17 and C-130 transports while BAE is developing and delivering an IRCM system for U.S. Army aircraft.80 Testing of prototypes for civilian aircraft is expected to occur in the summer of 2005 and Phase II is presently scheduled to conclude in January 2006.81 By the end of Phase II, DHS expects to have enough information to allow decision makers to decide on the next program phase, which could lead to a decision to produce a system for commercial aircraft.82

76 Ibid.
77 Ibid.
78 Ibid.
80 Ibid.
81 Ibid.
82 Ibid.
Conclusion

No single solution can immediately and completely mitigate the shoulder-fired SAM threat. As Congress considers possible legislative and oversight approaches, it is likely that it may consider implementing various combinations of available mitigation alternatives in whole or in part. In addition, Congress may consider phasing in mitigation options to best respond to available threat assessments or other criteria. For example, if threat assessments indicate that large widebody airplanes are most at risk, Congress may consider whether initially equipping these airplanes would more effectively deter the threat of missile attacks. Congress may also consider whether it would be more effective to initially equip aircraft used on overseas flights, particularly those operating in countries or regions where the risk of missile attacks is greatest. Congress may also debate whether equipping only a portion of the air carrier fleet would be a sufficient deterrent, whether all-cargo jets should be equipped, whether passenger carrying regional jets should be equipped, or whether equipping the entire air carrier fleet is needed to adequately mitigate the threat.

Equipping aircraft with missile countermeasure systems has advantages. Countermeasures are fixed to the aircraft, require little or no flight crew intervention, and can protect the aircraft even when operating in areas where ground-based security measures are unavailable or infeasible to implement. Down sides include a high cost, and potentially undermining passenger confidence in the safety and security of air travel. Also, because implementation will take time, countermeasures cannot immediately mitigate today’s terrorist threat. Procedural improvements such as flight crew training, changes to air traffic management, and improved security near airports may be less costly than countermeasures and could more immediately help deter domestic terrorist attacks. However, these techniques by themselves cannot completely mitigate the risk of domestic attacks and would not protect U.S. airliners flying to and from foreign airports.

Congress and the Administration have initiated preliminary actions intended to provide a degree of protection to commercial airliners. Legislation introduced in the 108th Congress (H.R. 580/S. 311) calls for the installation of missile defense systems in all turbojet aircraft used in scheduled air carrier service. The Department of Homeland Security (DHS) appropriations for 2004 (P.L. 108-90) designated $60 million for development and testing of a prototype missile countermeasure system for commercial aircraft. DHS anticipates a two year program totaling about $100 million to develop, test, and certify a suitable system. These actions may constitute a starting point for the consideration of additional protective measures designed to address all aspects of the shoulder-fired SAM threat.