REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,	3. DATES COVERED (From - To)
the time needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect	15-May-2001 to 15-May-2004
of the collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services,	5a. CONTRACT NUMBER
Direct Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA	5b. GRANT NUMBER
22202-4302. Respondents should be advised that a third party's name or personal information not be entered without their knowledge.	F49620-01-1-0367
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.	5c. PROGRAM ELEMENT NUMBER
1. REPORT DATE (DD-MM-YYYY)	6. AUTHOR(S)
2 - November 2004	Farag, Aly A. (Project Director)
2. REPORT TYPE	5d. PROJECT NUMBER
Final Performance Report	5e. TASK NUMBER
5f. WORK UNIT NUMBER	
3. DATES COVERED (From - To)	7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
15-May-2001 to 15-May-2004	Computer Vision & Image Processing Laboratory
8. PERFORMING ORGANIZATION REPORT NUMBER	Rm 412 Lutz Hall
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)	University of Louisville
DFAS-OM/FP	Louisville, KY 40292
P.O. Box 7020	10. SPONSOR/MONITOR'S ACRONYM(S)
Bellevue, NE 68005-1920	F25700 (code)
(800)330-8168	11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION / AVAILABILITY STATEMENT	Approve for Public Release: Distribution Unlimited
13. SUPPLEMENTARY NOTES	14. ABSTRACT
14. ABSTRACT	This project deals with multimodality image fusion for the purpose of constructing robust 3D model of a target area. During 2002, some classification
algorithms and basic data fusion techniques have been performed. Graduate student and a research scientist have been hired to assist in	
carrying out the research plan.	
15. SUBJECT TERMS	
16. SECURITY CLASSIFICATION OF:	17. LIMITATION OF ABSTRACT
18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
19b. TELEPHONE NUMBER (Include area code)	Aly A. Farag
Report	6
Abstract	
This Page	(502)852-7510
MULTIMODALITY IMAGE FUSION
FOR 3-D MODEL BUILDING WITH APPLICATIONS

Professor Aly A. Farag
CVIP Laboratory
University of Louisville, Louisville, KY 40292
E-mail: farag@cairo.louisville.edu
Phone: 502-852-7510; Fax: 502-852-1580

Overall Project Plan

In this investigation, we propose a methodology for 3-D model building by the fusion of multimodality data provided from space-borne and/or air-borne sensors. Figure 1 illustrates a conceptual framework for multisensory data fusion for 3-D model building. A 3-D model of a target area can be built using different data types, e.g., Landsat MSS data, AVIRIS hyperspectral data, range data, and/or elevation (DEM) data.

Data fusion and integration can be performed either at the data level or at the decision level. Multispectral and hyperspectral data sets can be classified locally (e.g., using the fuzzy c-mean classifier), then decision fusion are used to fuse the local decision classes, or data fusion techniques can be used to fuse the data sets into one data set for classification. Probabilistic and evidential methods for data fusion will be investigated in this study.

Topographic data, from range scanners (ALTM) and/or radar (DTED) can be integrated, after registration, with the classification results of the multispectral and hyperspectral data in order to produce the final 3-D model of the sensed target area.

Figure 1: Block diagram of the proposed classification and data fusion methodology.
Efforts Done During the Grant Period

The following research achievements summarize the efforts done during the grant period.

- **Efforts during 2001**
 - **Data collection**
 We created a data-fusion group on the SGI ONYX-II supercomputer at the CVIP Lab. That group has access to over 200GB of remote sensing data from various sources. We also installed a one-seat license of the ENVI software package to be used for data display and basic image processing tasks. Standard statistical and numerical analysis packages are readily available at the CVIP Lab and are being used in this project.

 - **Fuzzy classification for hyperspectral data**
 We are pursuing the development of the Fuzzy C-Means (M-FCM) algorithm that was introduced in 2000 [1]-[3]. Our goal is to make the M-FCM unsupervised in terms of the number of classes, and the parameters per class.

 - **Fusion of range and stereo data**
 Range data generated by a laser scanner at the CVIP Lab (Cyberware 3030RGB) are generated for various objects (including human faces). At the same time, calibrated sequence of 2D images is generated, for the same objects. Shape extraction methods (e.g., stereo and space carving [4]) are used to generate 3D objects, which will be calibrated/integrated using the laser scanned models. Purpose of this experiment is to generate some ground truth data to test the basic data fusion and integration models to be developed in this research.

- **Efforts during 2002**
 - **Updating the available programs and testing them with new data sets**
 We updated the programs that implemented by the lab staff worked in similar projects at the lab. These algorithms include the Bayes’ classifier, K-Nearest neighbors’ classifier, and Fuzzy logic classifier. The class conditional probability is implemented using parametric methods “e.g. Gaussian model” and parametric methods “e.g. Parzen window” for the Bayes’ classifier verification. These algorithms are tested using two Landsat data sets, the golden bay area of San Francisco and an agricultural area. The classification accuracy of these algorithms is roughly about 92% for the golden bay area and about 70% for the agricultural area. Detailed results can be found in [1].

 - **Statistical, fuzzy logic classifiers and data fusion algorithms**
 We implemented some stochastic (statistical) algorithms that depend on modeling the classification process as stochastic processes. These models are represented as Gibbs-Markov random fields the Iterative Conditional Modes (ICM) algorithm is used for their implementation. These methods enhance significantly the classification accuracy of the previously implemented algorithms. For the golden bay area, the accuracy reaches 97.5% where it reaches 90% for the agricultural area. Also, a fuzzy logic classifier is implemented, [5].
 A simple data fusion algorithm emerged from the well known Bayes’ rule is implemented, [5]. This algorithm is applied to fuse the output of two classifier outputs. The results show that the fusing algorithm enhances the results, but still more works is required in this direction.
Feature extraction

Some effort is done for feature extraction of Landsat data. These features depend mainly on first and second order histogram features. But still this effort is under developing and needs some enhancement to provide good characterizing and representative features.

Image registration and fusion

In addition to the tasks scheduled for the period of this report, there was a considerable effort done for image registration and fusion. A method for image registration using parallel genetic algorithms is proposed and implemented. Some experiments with Landsat data sets are done to test the effectiveness of the method. The results show that the method has the ability to register two data sets effectively and within considerable proceeding time, [6].

A general purpose platform for 3-D model registration and fusion is founded in the lab. The main component of this platform is 3-D laser scanner which is available in the lab. With this platform, 3-D models can be registered and fused. Up to now, the platform is tested using 3-D generated by Computer Vision algorithms, like stereo based and space carving methods, [7]. It is planned to use platform in registering and fusion of 3-D models extracted from spectral data sets.

Efforts during 2003

High Dimensional Density Estimation Algorithms

We designed and implemented a density estimation algorithm appropriate for higher dimensional data sets. This algorithm uses the Support Vector Machines (SVM) method for density estimation. The algorithm is applied for various data sets, either synthetic or real data, in various dimensions. The results showed that the algorithm is suitable and useful for density estimation in higher dimensions. The algorithm is used in Bayes setup for the estimation of class probabilities for the various classes in multispectral data sets. The proposed algorithm is compared with previously designed algorithms and the results showed the superiority of the proposed algorithms over other algorithms. Detailed results can be found in [8, 12].

Statistical Multi-Stages Classifier for Multispectral Data

We designed and implemented some stochastic algorithms that consist of two stages. The first stage uses the SVM to implement the class conditional probabilities in a Bayes classification setup. The second stage models the classification process as stochastic processes. These models are represented as Gibbs-Markov random fields and the Iterative Conditional Modes (ICM) algorithm is used for their implementation. The results show that the two stages setup enhances significantly the classification accuracy of the previously implemented algorithms. For the golden bay area, the accuracy reaches 98.5% where it reaches 90% for the agricultural area. Detailed results can be found in [9, 11].

Unsupervised Statistical Classification

It is not the usual case that there are some training samples that can be used to estimate the parameters of a classifier. So, we designed and implemented a classification algorithm that works in a complete unsupervised setup. The algorithm is unsupervised in terms of the number of classes defined in a data set. Also, the algorithm is unsupervised in the sense that it does not need training samples for each class.

The algorithm considers a data set as a mixture of densities and it uses the well-known EM algorithm with some modifications. The algorithm estimates the number of classes, the parameters of each class
density as long as the proportions of each class in the data set. We applied the algorithms for various data sets, either synthetic or real data. The results show that the algorithm performs well and comparable to supervised algorithms. Detailed results can be found in [10].

- Efforts during 2004

 - Mean Field Theory for Density Estimation using Support Vector Machines
 A learning algorithm is developed for learning of SVM as a density estimator. This algorithm depends on the Mean Field Theory which compresses the complicated statistical interactions of random variables into a simple distribution. The algorithm is used to enhance the performance of the SVM density estimation in both time and accuracy consideration. The results [13] on both synthetic and real multispectral data illustrate that the proposed algorithm is highly fast with respect to the traditional formulation of the SVM density estimator. Also, the results show an enhancement of the performance of the density estimation process. The real multispectral data classification is used in the performance evaluation as an application for density estimation.

 - A Unified Framework for MAP Estimation in Remote Sensing Image Segmentation
 This is an ongoing work which aims at setting a framework for applying the MAP segmentation principle on remote sensing data [14]. An algorithm is proposed for each part of the MAP principle as well as an iterative setup for the whole system. The Mean Field based SVM density estimation is used for the class conditional probabilities estimation and MRF is used for the modeling of the high level process of the MAP principle. A new algorithm which is simple and fast for the estimation of the MRF parameters is proposed. An iterative setup is used to maximize the MAP estimate so that more enhanced segmented image can be obtained.

Interactions

During the time period considered in this report, the following seminars and talks took place:

 By: Refaat M Mohamed, CVIP Lab, Wed. March 27-02.

II. “Multi-Spectral Data Classification: ‘Primary Results’,”
 By: Refaat M Mohamed, at the CVIP Lab., Wed April 3-02.

III. “Experiments in Multimodality Image Classification and Data Fusion,”
 By: Refaat M Mohamed, IF’02 Conference, Annapolis, MD, Monday Jul 8-02.

IV. “A General-Purpose Platform for 3-D Reconstruction from Sequence of Images,”
 By: Refaat M Mohamed, IF’02 Conference, Annapolis, MD, Monday Jul 8-02.

V. “Image Registration in Multispectral Data Sets,”
 By: Hani Mahdi, at CVIP Lab., Tuesday Jul 30-02.

VI. “Developments in Remote Sensing Data Classification and Fusion”
 By: Aly A Farag, at the AFOSR meeting, Washington DC, Monday Aug 12-02.

VII. “Recent Results in Bayesian Classification of Multispectral Data,”

VIII. "Application of Support Vector Machines in Density Estimation,"

IX. "Classification of Multispectral Data Using Support Vector Machines Approach for Density Estimation,"

X. "Unsupervised Density Estimation Using EM Algorithm,"

XI. "Application of Support Vector Machines in Density Estimation,"

XII. "Two Sequential Stages Classifier for Multispectral Data,"

XIII. "Mean Field Theory for Density Estimation using Support Vector Machines,"

References

5. Aly A. Farag, Refaat M. Mohamed and Hani Mahdi, "Experiments in Multimodality Image Classification and Data Fusion,“ Proceedings of the Fifth International Conference on Information Fusion, July 7-13-02, Annapolis, MD, pp. 299-308.

Appendix: Software

The following listings summarize some of the code used in the development of the research efforts discussed before. All the listings are coded in MATLAB 6 or higher.

- **KNN Classification**

```matlab
clear all
format long
load EvalData %Contains Test data "Z" and the corresponding desired "D"
ZTest=Normalize(ZTest); % choose side length
load TrainData %Contains ProtoTypes "Training Data" and ProtoDisercd "Training Data Desire"
Z=Normalize(Z);

for i=1:length(DTest)
    Distances=dist(ZTest(:,i),Z);
    [val indx]=min(Distances);
    for j=1:15
        [val indx]=min(Distances);
        m(j)=D(indx);
        Distances(indx)=max(Distances);
    end
    for k=0:8
        cand(k+1)=length(find(m==k));
    end
    [val indx]=max(cand);
    d(i)=indx-1;
end
OverallAccuracy=100*length(find((DTest-d)==0))/(length(DTest))
fprintf('Overall Accuracy = %f\n',length(find((DTest-d)==0))/(length(DTest)))

fprintf('Class1:True\nClass2:True\nClass3:True\nClass4:True\nClass5:True\nClass6:True\nClass7:True\nClass8:True\nAccuracy\n');
ConfKNN(1,:)=classmatrix(DTest,d,9,0);
ConfKNN(2,:)=classmatrix(DTest,d,9,1);
ConfKNN(3,:)=classmatrix(DTest,d,9,2);
ConfKNN(4,:)=classmatrix(DTest,d,9,3);
ConfKNN(5,:)=classmatrix(DTest,d,9,4);
ConfKNN(6,:)=classmatrix(DTest,d,9,5);
ConfKNN(7,:)=classmatrix(DTest,d,9,6);
ConfKNN(8,:)=classmatrix(DTest,d,9,7);
ConfKNN(9,:)=classmatrix(DTest,d,9,8);
```

- **Parzen-Window based Classification**

```matlab
clear all
format long
Priors=[0.23773677392248 0.32810475823756 0.29603305260640 0.06732955729498 0.02801022373166
0.00227583067820 0.02167291061237 0.00497181471237 0.01386506074717];
load TrainData
D0Length=length(find(D==0)); % No Of Points in the space
D1Length=length(find(D==1));
D2Length=length(find(D==2));
D3Length=length(find(D==3));
D4Length=length(find(D==4));
D5Length=length(find(D==5));
```
D6Length=length(find(D==6));
D7Length=length(find(D==7));
D8Length=length(find(D==8));
ClassLengths=[D0Length D1Length D2Length D3Length D4Length D5Length D6Length D7Length D8Length];
Z=Normalize(Z);
load EvalData
ZTest=Normalize(ZTest); % choose side length
Radius = 0.1; % seems to match Gaussian Kernel results well
for i = 1:size(ZTest,2) % Test all the test data; remove this loop in the single point function
 Distances=dist(ZTest(:,i),Z);
 [Val Indxs]=find(Distances<Radius);
 Classes=D(Indxs);
 if (length(Classes)>0)
 D0=length(find(Classes==0)); % No Of Points in the Volume sphere
 D1=length(find(Classes==1));
 D2=length(find(Classes==2));
 D3=length(find(Classes==3));
 D4=length(find(Classes==4));
 D5=length(find(Classes==5));
 D6=length(find(Classes==6));
 D7=length(find(Classes==7));
 D8=length(find(Classes==8));
 Lengths=[D0 D1 D2 D3 D4 D5 D6 D7 D8];
 Prop=Lengths./ClassLengths;
 p = Prop/(sum(Prop)); % so you can see side-by-side with WorkSpace browser
 else
 p = zeros(9,1); % so you can see side-by-side with WorkSpace browser
 end
 Pwx=p.*Priors;
 [indx max]=find(Pwx==max(Pwx));
 if (length(indx)==1)
 d(i)=indx-1;
 else
 d(i)=10;
 end
end
fprintf('Overall Accuracy = %f',length(find((DTTest-d)==0))/(length(DTest)))

fprintf('Class1:Total\nClass2\nClass3\nClass4\nClass5\nClass6\nClass7\nClass8\nAccuracy\n');
ConfBayes456(1,:)=classmatrx(DTest,d,9,0);
ConfBayes456(2,:)=classmatrx(DTest,d,9,1);
ConfBayes456(3,:)=classmatrx(DTest,d,9,2);
ConfBayes456(4,:)=classmatrx(DTest,d,9,3);
ConfBayes456(5,:)=classmatrx(DTest,d,9,4);
ConfBayes456(6,:)=classmatrx(DTest,d,9,5);
ConfBayes456(7,:)=classmatrx(DTest,d,9,6);
ConfBayes456(8,:)=classmatrx(DTest,d,9,7);
ConfBayes456(9,:)=classmatrx(DTest,d,9,8);

- **Density Estimation Using SVM**

clear all
close all
format long
load data1D X n
X=X';
Sigma=0.9;
N=n;
[XSorted I]=sort(X);
Y=[];
Epsilon=[];
for i=1:N
 n=length(find(XSorted<=XSorted(i)));
 Y=[Y,n/n];
 Epsilon=[Epsilon;sqrt((1/N)*Y(i)*(1-Y(i)))];
end
Tolerance=1e-5;
n=size(XSorted,1);
for i=1:n
 for j=1:n
 h(i,j)=Kernel1(XSorted(i,:),XSorted(j,:),'density',Sigma);
 q(i,j)=Kernel1(XSorted(i,:),XSorted(j,:),'distribution',Sigma);
 end
end
H=2*h;H=H+1e-10*H;
f=zeros(1,n);
B=[Epsilon+Y];
%B=[Epsilon+Y,Epsilon-Y];
A=[q];
%A=[q;q];
Aeq=[ones(1,n)];
beq=1;
Lower=zeros(n,1);
Upper=inf*ones(n,1);
[Beta b]=quadprog(H,f,B,Aeq,beq,Lower,Upper);
SV=find((abs(Beta)>Tolerance));
nSV=length(SV)
%pause
%X1=[-2+XSorted(1):0.01:XSorted(length(XSorted))+2];
X1=[min(X)-3:0.1:max(X)+3]; \%For 1D Gaussian
A=sqrt(2*pi)*Sigma;
for i=1:size(X1,1)
 Tempy=0;
 Tempfx=0;
 for j=1:nSV
 Tempy=Tempy+Beta(SV(j))*inv(A)*Kernel1(X1(i,:),X(SV(j,:)),'distribution',Sigma);
 Tempfx=Tempfx+Beta(SV(j))*inv(A)*Kernel1(X1(i,:),X(SV(j,:)),'density',Sigma);
 end
 FX(i)=Tempy;
 fx(i,1)=Tempfx;
end
Ref=normpdf(X1);
h2=normcdf(X1);
fxModifies=abs(max(Ref)*fx/max(fx));
KBD01=sum(fxModifies.*log(fxModifies./Ref)) \%Kullback-Leibler distance
KBD10=sum(Ref.*log(Ref./fxModifies)) \%Kullback-Leibler distance
figure
plot(X1,Ref,k');
hold on
plot(X1,fxModifies,'k')
legend('True', 'Estimated'); axis([-4 4 0 0.44]); grid

- Stochastic Modeling and SVM for Multispectral Data Classification

% This module implements the Stochastic modeling approach for Multispectral data
% Classification. The inputs are:
% 1- Y : Data observations in the form of m*n where m is the observation dimension, n is the number of observations.
% 2- D : The ground truth data. (matrix if it is for the whole image).
% 3- Image0 : The initial guess to start relaxation by ICM.
% 4- Mu : The collected mean vectors (m*C), C is the # of classes.
% 5- Sigma : The collected mean vectors (m*(C^2)), C is the # of classes.
% The associated functions are: 1) Besage 2) Normal 3) Classmatrix 4) writePPM
clear all
close all
format long
%global Image0 Beta
load C:\Refaat\MultiSpectralData\Agricultural\AllObservations
load InitialSVMGuess

NoOfClasses=max(max(D));
L=169;
W=169;
imshow(D*50,[0 255]); Title('Reference');
figure
imshow(Image0*50,[0 255]); Title('Initial Guess');
[Indx1 Indx2]=find((Image0-D)==0);
length(Indx1)/(169*169)

InitialImage=Image0;

Image=zeros(L+1,W+1);
Image(1,2:(L+1))=Image0(:,1);
Image(L+2,2:(L+1))=Image0(:,1);
Image(2:(L+1),1)=Image0(;,W);
Image(2:(L+1),W+2)=Image0(:,1);
Image(2:(L+1),2:(W+1))=Image0;
Image0=Image;

NoOfIterations=5;
Beta=6;
for N=1:NoOfIterations
 for i=2:(L+1)
 for j=2:(W+1)
 for C=1:NoOfClasses
 p(C)=P(C,i-2)*W+(j-1))*Besage(i,j,C);
 end
 % C-Statement
 [Value Indx]=max(p);
 Image(i,j)=Indx;
 end
 % J-Statement
 end
 % I-Statement
 end
 end
end

figure
imshow(Image*50,[0 255]); Title(strcat('After ',num2str(N)));
[Indx1 Indx2]=find((Image(2:L+1,2:W+1)-D)==0);
length(Indx1)/(169*169)
N
% pause
end % K-Statement
BesageFinalImage=Image(2:(L+1),2:(W+1));
fprintf('%d	%d	%d	%d	%d	%d	%d	%d	%d
',classmatrx(BesageFinalImage,D,9,1);
classmatrx(BesageFinalImage,D,9,2);
classmatrx(BesageFinalImage,D,9,3);
classmatrx(BesageFinalImage,D,9,4);
classmatrx(BesageFinalImage,D,9,5);
classmatrx(BesageFinalImage,D,9,6);
classmatrx(BesageFinalImage,D,9,7);
classmatrx(BesageFinalImage,D,9,8);
classmatrx(BesageFinalImage,D,9,9);
ColorCode=[
 255 0 0 0 0 0 255 255 255 128
 128 255 0 0 255 255 0 0 255 128
 255 0 255 0 255 0 255 0 128 255
];
for i=0:(L-1)
 for j=1:W
 R((i*3+1),(i*3+3),j)=ColorCode(:,D(j,i+1)+1);
 end
end
writeppm(R,'Original1.ppm',L,W);

for i=0:(L-1)
 for j=1:W
 R((i*3+1),(i*3+3),j)=ColorCode(:,BesageFinalImage(j,i+1)+1);
 end
end
writeppm(R,'FinalBesage1.ppm',L,W);

- SVM Density Estimation Using Mean Field Theory

clear all
close all
format long
%load data1D
load Mix2Data
n=size(X,2);
Eta=0.001;
% C=0.1; %for 1D Gaussian
C=2; %for 1D Mix
Epsilon=0.0001;
% X=X/3;
% SigmaKernel=0.45; %for 1D Gaussian
SigmaKernel=1.5; %for 1D mix
for i=1:n
 for j=1:n
 K(i,j)=Kernel(X(:,i),X(:,j),SigmaKernel,'distribution');
 % K(i,j)=Kernel(X(:,i),X(:,j),SigmaKernel);
 end
 Sigma(i)=K(i,i);
end
M=10;
Residual=0.05;
Tolerance=0.0005;
while (abs(Residual)>Tolerance)
 Wold=W;
 for i=1:M
 Y=(K*W); %To make y as a row
 Y=y./maxT;
 Yi=Y-Sigma.*W;
 % Yi=Y./maxT;
 %
 %
 expPos=0.5*exp(0.5*C.*(2*Yi+2*T+2*Epsilon+C*Sigma));
 erfPos=1-erf((Yi+T+Epsilon+C*Sigma)./(sqrt(2*Sigma)));
 expNeg=0.5*exp(0.5*C.*(2*Yi+2*T+2*Epsilon+C*Sigma));
 erfNeg=1-erf((-Yi+T+Epsilon+C*Sigma)./(sqrt(2*Sigma)));
 erfG=0.5*erf((Yi+T+2*Epsilon)./(sqrt(2*Sigma)))
 F=C*expPos.*erfPos*C*expNeg.*erfNeg;
 G=erfG+expPos+expNeg.*erfNeg;
 W=W+Eta*(F./G-W);
 end
 W=W+1./sqrt(numDW.*Yi+C.*C.*Sigma.*IG);
end
Y=(K*W); %To make y as a row
Y=y./maxT;
IG=0.5*erf((Yi+T+2*Epsilon)./(sqrt(2*Sigma)))-0.5*erf((Yi+T+2*Epsilon)./(sqrt(2*Sigma)));
numDW=W.*Yi+C.*C.*Sigma.*IG;
denDW=Yi+C.*Sigma.*IG;
DW=C*W.*W-numDW/denDW;
SIGMAi=-1./DW;
SIGMA=diag(SIGMAi);
denSigma=diag(inv(SIGMAi));
Sigma=abs((1./denSigma)-SIGMAi);
Residual=max(abs(W-Wold))/n
end
Y=(K*W); %To make y as a row

% X1=[min(X)-3:0.1:max(X)+3]; %For 1D Gaussian
X1=[min(X)-5:0.1:max(X)+5];
for i=1:length(X1)
 Tempfx=0;
 for j=1:n
 Tempfx=Tempfx+W(j)*Kernel(X1(i),X(j),SigmaKernel,'density');
 end
 fx(i)=Tempfx;
end
Ref(i)=0.4*Normal1D(-1.9,X1(i))+0.6*Normal1D(7.4,X1(i)); %for 1D mix
% Ref(i)=Normal1D(0,1,X1(i)); %for 1D Gaussian
end
KBD=sum((max(Ref).*fx)/max(fx).*log((max(Ref).*fx)/max(fx))./Ref)) %Kullback-Leibler distance
figure
 plot(X1,Ref,'k');
hold on
 plot(X1,max(Ref).*fx/max(fx),'k')
legend('True','Estimated')