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AFIT/DS/ENY/05-04

Abstract

Autonomous wide area search, classification and attack using Unmanned Combat

Air Vehicles (UCAVs) is considered. The wide area search and attack scenario is mod-

elled, capturing the important problem parameters of target density in the battle space, the

density of false targets, the seeker and Autonomous Target Recognition (ATR) modules’

performance parameters, as well as munition parameters such as search rate, time, and

warhead lethality. The analysis in this research is an important stepping stone towards es-

tablishing benefits of cooperative search and engagement in a multi-vehicle scenario. This

research uses probabilistic analysis to formulate and analytically solve for the probability

of success in search and engagement as well as probabilities of other events of interest. Two

methods are used to compute these probabilities. The first method utilizes a detailed ex-

amination of the sub-events required for the event of interest to occur. The second method

utilizes a Markov chain approach. In each method, general expressions are first obtained

that are applicable to any assumed a priori distributions of targets and false targets. These

expressions are subsequently applied to a multiple warhead munition/UCAV operating in a

single target/multiple false target scenario and then several multiple target/multiple false

target scenarios. This research shows how the analytically derived results can be applied

to all facets of the balanced system design and operation of Wide Area Search Munitions

(WASM) including the evaluation of cooperation schemes and rules of engagement. This

dissertation also formulates the problem as a control problem and examines the possibil-

ity of utilizing this formulation in the real-time estimation of the target and false target

distribution parameters.
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Decision Factors for Cooperative Multiple Warhead UAV Target Classification and

Attack with Control Applications

I. Introduction and Literature Search

1.1 Overview

Air-to-ground warfare has seen an evolution from unguided gravity bombs to mod-

ern day “smart” bombs guided by lasers and/or Inertial Navigation Systems (INS) aided

by the satellite based Global Positioning System (GPS). Imaging terminal seekers, orig-

inally lock-on before launch, are now capable of autonomous target acquisition and can

now be combined with way-point INS/GPS mid-course guidance to provide autonomous

wide area search air vehicles or munitions. Possible future concepts include cooperative

Wide Area Search Munitions (WASM’s) acting in hunter-killer packs to find dispersed tar-

gets and converge on identified targets to deliver sufficient lethality to accomplish mission

objectives. While the potential utility of these concepts is often acknowledged, there is

insufficient analysis to support an exhaustive evaluation of the effectiveness of these con-

cepts. Specifically, decision factors such as probability of success (kill), expected number

of kills and expected number of false target attacks are needed for evaluation of alternative

concepts and, eventually, operation resource allocation. Much of the work done so far has

concentrated on simulation studies that quantify results for specific scenarios, but often

do not provide the broader underpinning for a thorough understanding of the design and

operational employment aspects of the problem. More analytic work is needed to define

the fundamental nature of the wide area search munition problem, to include identifica-

tion of the critical munition and target environment parameters that must be adequately

modelled for a valid simulation.

Along with the concept of autonomous decision making is the ability to have the

UAVs work together cooperatively. Cooperation among multiple UAVs could result in a

more comprehensive and thorough search, more accurate classification, and more effective

attack of targets. If done in an autonomous fashion (the vehicles conduct those tasks
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without human intervention) we would have, in effect, a fire and forget capacity for a

fleet of UAVs which could search an area and destroy any targets found (or go after a

prioritized list of targets). In fact, “advanced autonomous fault-tolerant guidance and

control algorithms for multiple UAVs in conjunction with effective decentralized multi-

agent coordination strategies are of great interest to DoD [Department of Defense]” [41].

1.2 Previous Work

Much work has been done in the areas of search, classification, and attack of a

target using cooperative control. For our purposes, we will classify the work done to

date according to several categories. The first category which naturally comes to mind is

work done in search theory. In fact, this is the field most closely related to this author’s

work. It is also the field where much analytical work has been done. However, there are

still some holes when we look at the problem from an attack perspective. Specifically,

the works in search theory, including classic works by Koopman [36], Stone [55], and

Washburn [62], do not specifically address scenarios with multiple targets/false targets

and a multi-warhead vehicle. Richardson [48], Stone [54], Benkoski [8], and Stone and

Washburn [58] wrote surveys covering the search literature. Problems discussed included

stationary target problems, moving target problems (to include evading targets as well as

non-evading targets), optimal search density problems, and optimal searcher paths.

Richardson [48] classified the work done in search theory up to that point according

to assumptions made in measures of effectiveness (probability of detection, expected time

to detection, probability of correctly estimating target location), target motion (stationary,

Markovian, diffusion), and characterization of search effort (continuous or discrete). While

this summary concentrated on detection of a target, these classifications work for attack

as well. In addition, when discussing the attack of target(s), we can introduce further

classifications based on assumptions made in the number of searchers (in our case, UCAVs),

whether each UCAV carries a single warhead or multiple warheads, and the number and

distributions of targets and false targets present.

It should be noted that much of the work done to date has concentrated on optimizing

some search criterion. Typically this involves varying the “search effort” (the independent
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variable, typically constrained to be no more than some quantity) to maximize some cri-

terion which usually depends on a detection probability which is a function of the search

effort. A common criterion might be the probability of detection itself. Typically, the

detection probability is such that an object will not be detected with zero search effort

and is certain to be detected with infinite search effort.

1.2.1 Discrete Search, Single Searcher. Typically, a discrete search is such that

the stationary target(s) are each located in one box/cell out of n boxes/cells. Several au-

thors concentrated on searching for a single stationary target. Tognettie [60] concentrated

on knowing the “whereabouts” of his target, but was not concerned with physically locat-

ing the target. That is, the objective is to maximize the probability of correctly stating in

which area the target is located. One can either find the target or, after an unsuccessful

search, correctly guess in which area the target is located. He found that when limited

to n searches, the optimal strategy was to partition the searches such that one area is

missed. His work incorporated multiple “looks” at each area (a look is a single search in

an area with a conditional probability of detection that is constant for that area). Arkin

[3] allowed for simultaneous looks at multiple areas, but the more areas that are searched

simultaneously, the less the probability of detection.

Kadane [30] extended Tognettie’s work by incorporating a cost for search. He ex-

amined searches where, if no target is found during the search, then box (area) i will be

declared to contain the target. He determined that for that type of search, the optimal

search will not include box i. In addition, he developed an algorithm for finding an optimal

whereabouts-search strategy. Trummel and Weisinger [61] incorporated an a priori prob-

ability distribution for the target location. They showed that finding an optimal searcher

path that maximizes probability of detecting the target by the end of a fixed time is NP-

complete, while minimizing the mean time to detection is NP-hard. Hall [21], [22] also

incorporated an a priori target location distribution and introduced the concept of using

a random variable for the probability that a particular search of a particular area will miss

a target that is really there.
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Similar work has been done for multiple targets by Smith and Kimeldorf [52], Kimel-

dorf and Smith [35], Assaf and Zamir [4], and Kelly [34].

1.2.2 Continuous Search, Single Searcher. Most of the more modern work has

concentrated on the continuous search problem. Currently, emphasis is being placed on

continuous search of a moving target.

Most of the work addressing search for stationary targets date back several decades.

Supposedly the stationary target problem has “reached a mature state” [58] with little

expectation of significant extensions. However, we contend that this is not the case once

we incorporate a limited number (greater than 1) of warheads on a UCAV seeking a target

or targets. Most, if not all, of the work done in search theory in effect assumes either

a single warhead (search is complete upon finding the target) or a limitless supply of

warheads (search continues until all targets found and distinguished from any false targets

encountered).

To try and make sense of the literature in this area, and to point out the area of our

contribution, we have delineated this category even more by the number of targets (single

or multiple) and the number of false targets (none or multiple). We can then look at other

categories, such as optimization, cooperation and some control type categories.

1.2.2.1 Single Target, No False Targets. Hoai and Leondes [23] sought

to maximize the detection probability of the target using a single-try (non-redundant)

search which is a function of the search effort and the location of the target. Their search

effort is a function only of the location of the searcher and so uses Dobbie’s [14] extension

of Koopman’s exponential detection law. The main point of their work was to try and

eliminate the need for knowing the target’s a priori probability density function (pdf).

They concluded that the “minimax solution guarantees a positive detection probability at

the expense of degradation in performance”. Performance here is defined as the probability

of detection.

Iida et al. [25] noted that studies on the optimal distribution of search effort had

consistently made an assumption of “local effectiveness of searching effort”. In this as-
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sumption, the searching effort at a point is assumed to only be able to detect an object

at that point and not an object which is in the neighborhood of the point being searched.

Their work eliminates that assumption. They also used an exponential detection function

similar to Koopman’s random search formula and assumed that the search effort was only

dependent on location and not time. In other words, once the searcher looks at an area,

the decision is instantly made on whether an object was detected or not.

Many years earlier, Richardson and Belkin [49] looked at the sensor’s effectiveness

as well, but their work concentrated on the effect of an uncertain, fixed sweep width.

De Guenin [12] provided a method of solving the problem of allocating a given amount of

search-effort to maximize the probability of discovering the object without any assumption

on the form of the detection probability function. This function is the probability of

detecting the target at x given the target is at x using some search effort at x (φ(x)). This

detection probability is then p[φ(x)]. The object’s location is a random variable, X, with

p.d.f. g(x):

g(x)dx = P {x ≤ X ≤ x + dx}

The objective is to find φ(x) which maximizes the probability of detecting the target

P =

∫ ∞

−∞
g(x)p[φ(x)]dx

with the total search effort, φ(x) > 0, constrained to some amount

∫ ∞

−∞
φ(x) = Φ .

De Guenin’s method for finding φ(x) does not depend on a particular form for p[φ(x)],

uses successive approximations, and gives a unique φ(x). The search is not necessarily

exhaustive, however, but concentrates on most likely locations of the target.

1.2.2.2 Single Target, False Targets. Once we allow for false targets, a

detection function is not enough; we must also be able to classify the object that has
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been detected as either a target or false target. A modelling decision must be made. Do

we assume all objects will be detected (eliminating the detection function - leaving only

the classification function) or do we keep both the detection function and classification

function?

Stone and Stanshine [57], [56] were among the first to look at this issue. They chose

to model the process of finding a target using a detection process (scan the area with the

sole intent of detecting an object with no distinction between the intended target or a

false target) and then a classification process which determined if the contact was a false

target or the intended target. In their model, the classification was certain but only after

a finite, although random, amount of time. In their earlier work, [57], this process could

not be interrupted once begun. Later, [56], they relaxed that requirement. The detection

process, however, was not certain. The probability of detection of an object was, in fact, a

function of the search effort applied (they call it the “broad search density function”) and

is what we are calling in this work the detection probability function (they called it the

“local effectiveness function”). The search effort was a function of time and location of

the target. They then examine the problem of minimizing the mean time to find (contact

and classify) the target. Note that the probability of classifying a false target as a target

is zero. They note the similarities in their concept of broad search detection process to De

Guenin [12] and their concept of their search effort function to Arkin [2].

In their follow-on paper [56], Stone and Stanshine lift the restriction that an inves-

tigation cannot be stopped once initiated. In fact, they allow for a designated maximum

amount of effort applied to the investigation process. Either the object is correctly identi-

fied after that amount of effort or the searcher moves on. Again, no misclassification of a

false target is allowed. They also apply Richardson’s problem of an uncertain sweep width

to their problem.

Dobie [15] noted that Stone and Stanshire’s work assumed that their search plan

did not depend on the number of false targets found. His work looked at allowing search

plans which do depend on the number of false targets found. However, he limits his study

to problems where the number of false targets are bounded and was able to obtain the

solution only for a particular case. In their search plan, the same spot can be searched
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more than once (duplicative search). The Stone papers could also be interpreted this way;

however, using the interpretation that it is a duplicative search, they do not make use of

the number of false targets found in their search plan. They merely mark the FT so it

will not be investigated again. Dobbie’s plan also marks the FT to ensure no duplicative

investigation, but he also utilizes any information concerning the number of false targets

found to that point. “The optimal plan in our class of search plans depends on the number

of found false targets” (Dobbie, pg 913). In fact, each time they detect a false target they

create a new search density (the search effort applied to each spatial increment in the entire

area). Again, as with Stone, they assume that given an infinite amount of search effort,

they will find the target.

Klabaugh [31] looks at scenarios similar to Stone and Dobbie, but models the clas-

sification as an instantaneous process which is reliable only with a given probability. His

search plan could not be modified when false targets are located and correctly classified.

Iida [24] looks at a two-stage search (broad and investigating). His false contacts are

only caused by system noise - meaning the investigating search gives no further information.

This means the investigating search must be abandoned at some point. He then tries to

find the optimum time for the investigating search of the contact. He assumes the signal is

such that it can be determined if it is from a true contact or noise, but only with a given

probability. He also restricts his total search time to some number.

1.2.2.3 Multiple Targets, No False Targets. Cozzolino [11] looked at con-

tinuous search with multiple targets of differing sizes and no false targets. He also looked

at the problem from a probability of detection and classification (with regards to size) as

a function of search effort. He in effect assumes a limitless supply of warheads since he

assumes a Poisson distribution of targets and he has the capacity to find any number of

them. His results include the probability distribution of the number and sizes of discov-

ered objects, and the prior and posterior distributions of the number of objects remaining

undiscovered. The states of his system are the number of objects in an area and their sizes.

It could be noted here that although he gives equations for the probability of contacting

a target by a given time, that this cannot be directly related to probability of attacking
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a target by a given time. Since they are only examining the search for targets, they have

no limitations on the number of false targets misclassified. It simply gets marked as a

target (incorrectly) and they continue on. However, the probability of attacking a target

is dependent on the number of misclassifications of false targets (all the warheads could

be used before getting to the real target).

1.2.2.4 Multiple Targets, False Targets. Jacques and Pachter [26], [29], [27]

have derived an analytic solution for search and attack probabilities when multiple targets

and false targets (all stationary) are present. Their work concentrated on a single munition

searching a region As of area As. In their work [29], analytic solutions for six scenarios of

interest were derived. The scenarios are described as follows (in all scenarios the targets

and false targets are stationary):

Scenario 1: A single target uniformly distributed throughout As and a Poisson field

of false targets.

Scenario 2: Poisson field of targets and a Poisson field of false targets.

Scenario 3: N targets uniformly distributed, and a Poisson field of false targets.

Scenario 4: N uniformly distributed targets, and M uniformly distributed false tar-

gets.

Scenario 5: The battle space consists of a circular disc of radius r centered at the ori-

gin. There are N targets, distributed according to a circular normal distribution centered

at the origin and a Poisson field of false targets.

Scenario 6: Same battle space as Scenario 5, with N targets distributed according

to a circular normal distribution and M false targets distributed according to a circular

normal distribution.

This research extends the work of [29] by incorporating multiple warheads on a single

UCAV searching a field of multiple targets and/or false targets. Using a classification

system similar to Richardson’s [48], this dissertation examines the probability of attack

and probability of kill during a continuous search for stationary targets among multiple

false targets using a single multi-warhead UCAV.
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1.2.3 Cooperation.

1.2.3.1 Cooperative Search. Much work has already been done dealing with

cooperative search. Polycarpou et al. [47:Ch 13] focus on cooperative search in which they

seek to follow a trajectory that would result in maximum gain in information about the

environment (but it could easily be extended to cooperative engagement and classification,

etc). The only cooperation between agents is the sending of the information they have. No

agent tells another what to do nor are there any negotiations between agents. Each seeks

to enhance a global goal (not only its own goal). They call it passive cooperation. It has

the advantage that it is robust to loss of any particular vehicle. Simulation seemed to be

the evaluation tool of choice.

Yang et al. [64], examined cooperative search using an opportunistic cooperative

learning method. This method is used to update a Target Probability Map (TPM) using

sensor readings taken in each cell during the search. A Bayesian update rule was developed

to determine the posteriori probabilities. The TPM is initialized with a priori knowledge

about possible target locations and is updated as the UAVs take their sensor readings. All

UAVs have access to the TPM. The goal of the cooperation is to reduce the uncertainty of

the target locations as rapidly as possible. Their reward scheme has the tradeoff between

trying to explore the environment (in which they try to cover the whole environment as

rapidly as possible) and covering target rich areas they believe have the highest probability

of finding targets. Simulation was used for evaluation.

Flint et al. [18] formulated the problem in terms of multiple UAV’s that must generate

their own paths to maximize the number of targets which are positively identified. They

formulated a discrete time stochastic decision model which they then implemented using

a dynamic programming algorithm.

Bethel and Paras [9] have looked at a “front-end” detector configuration in which

an area is scanned. Targets in that area are said to be in one of M bins which make up

that area. The idea is that of a radar in which bearings to the target(s) are recorded.

The bins are defined by the bearing boundaries. They determine posteriori probabilities

that potential target l (l = 1, 2, . . . , L, the max targets the systems can track) is present
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in the scan (regardless of bin location) and the posteriori probability that that target is

in a certain bin given that the target is present in the scan. They can then multiply

the probabilities and compute the probability that target l is in bin ml. However, these

probabilities cannot be computed directly and must be approximated using a a multi-target

tracking system with individual detector loops and individual tracker loops which uses a

discrete pdf linear Kalman-Bucy filter. Theoretically, the desired probabilities could be

determined from more basic a priori probabilities, but the required computations grow

exponentially with the number of targets they wish to track. For that reason, they chose

the approximation method mentioned previously. They later extend their work to multiple

sensors, but approximation is still required. Our work does not assume a given a priori

distribution of targets or false targets.

Genetic algorithms have been used to develop decision rules for UAVs to “maximize

the information gained by the UAV during its period of operation” [42]. These rules are de-

veloped by running many simulations and modifying the rules based on those simulations;

however, all these searches are based on posteriori probabilities of targets given the obser-

vations they have encountered and depend heavily on simulation to analyze their method.

A proper analytical probabilistic framework could, among other things, help verify these

simulations.

1.2.3.2 Cooperative Classification And Cooperative Attack. Pachter and

Hebert [45] tackled the cooperative classification issue by assuming a rectangular target

with a known and measurable ratio of side lengths. With a given rectangle, their work

shows optimal look angles for classification. In addition, for two UAVs cooperating, it

shows the optimal angular separation for the second look. They then find the minimum

time trajectory to achieve the optimal look angle, given a specific starting point. They do

this for the UAV and for the case where the UAV has a sensor with a circular footprint of

radius r whose center is d units in front of the UAV. In the latter case, the end point is the

target location and the objective is to get the target within r + d units of the UAV with

the UAV looking right at the target. This work would be useful once a UAV has asked

for confirmation from another UAV. The UAVs could collectively determine which one is
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closest and which one is least likely to find another target and do tradeoff calculations to

determine which UAV will conduct the second look (or attack).

Chandler and Pachter [10] looked at cooperative classification and cooperative attack.

Multiple views were combined statistically until sufficient confidence was reached. Nearby

vehicles calculated trajectories and costs to all the objects and were assigned optimally.

When two or more vehicles are utilized to search and attack, a decision must be made

as to whether we continue the search or go attack previously found targets. This leads us

to examine work done in an area called optimal stopping.

1.2.3.3 Cooperative Search, Classification, and Attack. Nygard, et al. [44]

have proposed a method for dealing with a “swarm of air vehicles whose mission is to

search for, classify, attack, and perform battle damage assessment”. In their scenario, each

UAV has a single warhead and can communicate and receive target field information to

and from all the elements of the swarm as it becomes available. The result is an integer

programming problem formulation that results in solutions that are globally optimal and

can be computed locally and independently. To do this, though, one must accurately

specify cost functions.

While some work has been done on aspects of cooperation (particularly in [28]), more

needs to be done. Jacques [28] initially limited his analysis to Scenario 1 (single target

uniformly distributed, Poisson field of false targets) with multiple UAVs. He considered

two different path formulations. One where two UAVs follow the same path, and the

other where two UAVs followed opposing paths. He stated that a general formula for the

probability of mission success (killing the target) for N munitions (i.e. UAVs) has yet to

be defined. In each case, simplifying assumptions were made that the UAVs were identical

and that their behavior when searching over the same path was uncorrelated. Some of

his students then continued his work. In particular, Park [46], Dunkel [16], and Gozaydin

[20] examined Scenario 2. In addition, Jacques [28] made some forays into the cooperative

classification and attack arenas, but again, concentrating on Scenario 1. Pachter [45] also

looked at the classification problem. His work was described in the previous section.
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1.2.4 Optimal Stopping. When dealing with the topic of search, the inevitable

question is when to stop that search. In the literature this has become known as Optimal

Stopping. We will not deal with this topic in this work. Some works related to optimal

stopping are due to Willman [63], Starr [53], Bather [7], and Glazebrook [19]. Keeney [33]

wrote an informative article dealing with the subject of trade-offs in general.

1.2.5 Control Formulation. Finally we will look at areas related to putting this

topic into a control formulation. We have a system in which the states of the system could

be defined as the number of target attacks and the number of false target attacks. The

UCAV’s could be the system’s sensors and actuators. The objective could be to reach a

certain state or maximize the number of target attacks or kills.

1.2.5.1 Markov Model. Work has been done exploiting the Markovian

nature of scenarios similar to the ones we will propose; however, the analysis has tended

to concentrate on duels in which there is either a pursuer/evader relationship or a battle

between Red and Blue forces.

Kress [38] claims to the be the first to have derived state probabilities for the many-

on-one duel. His work treated the time to kill as the random variable. He looked at a

negative exponential distribution on the many side and a gamma-distribution on the one

side. His model had N Red units on a single Blue unit B in which the N Red units fire

continuously and independently of each other.

Feigin, et al. [17] proposed a continuous time homogeneous Markov model (transition

probabilities do not change over time) for analyzing M on N air combat. Their states

consisted of the number of free blue and free red planes and the number of pursuing

blue and pursuing red planes (4 states). They base their Markov model on the following

parameters: detection/advantage acquiring parameter, the average rate at which a pursuer

reaches firing position and fires, the kill probability of a single weapon release, and average

evader’s disengagement rate. They used this model to evaluate acquisition type decisions

and determination of optimal force size for multiple engagements.
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Koopman [37] looked at the problem mainly from a cost (logistical) perspective.

However, he did examine Markovian systems involving duels (opposing forces detecting

and attacking each other). His work provides a good description of how to determine

transition rates.

Barfoot, [6] looked at Markov duels in which the outcomes of shots by each weapon

form a Markov process. Their work concentrates on the outcome of the final end game

(the firing of rounds). They fire volleys in rounds (each fires a volley, then a given time

later they fire again). The interval between firings is constant. Here he extended work

by Ancker and Williams [1] who assumed the outcome of a shot was either ‘killed’ or ‘not

killed’. In Barfoot’s work, the outcome of the round consists of a combination of events,

whether the round hit, whether it killed, and whether the shooter senses the round missed

(and where the missed round went).

Work was done in a non-duel sense by Sung and Sohn [59] who examined a system

of multiple stand-by Remotely Piloted Vehicles (RPVs) and a single battery against a

single passive enemy target. It was the first to consider such a combined system which

works against a target kill. (The other works prior to this paper looked at direct duels.)

They determined several combat measures of effectiveness to include time-varying mean

and variance of number of RPVs being alive and of surviving enemy target attack, mission

success, mission failure, mean and variance of combat duration time. It used the RPVs

serially. They were in stand-by until the single RPV tracking the target was killed. Then a

single RPV went out of standby to replace the destroyed RPV. The states are denoted by

number of remaining RPVs, target alive or dead, RPV has sent target location to battery

or not.

1.2.5.2 Posteriori Observations. Mahler and Prasanth [41] are proposing

an ambitious research program which will 1) develop a mathematical programming frame-

work for hybrid systems analysis and synthesis, 2) develop a computational hybrid control

paradigm, 3) develop transition-aware anytime algorithms for time-bounded synthesis,

4) develop suitable modelling and cooperative control of UAV swarms for a SEAD-type

mission, 5) develop new theoretical approaches for integrating multiplatform, multisen-
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sor, multitarget sensor management into hybrid systems theory, 6) investigate real-time

nonlinear filtering for detecting and tracking low-observable targets, 7) develop new ap-

proaches to distributed, robust data fusion. They split their work into two categories;

Multi-Agent Collection and Mutli-Agent Coordination. In Coordination, they claim ex-

isting approaches can be divided into three categories: the leader following, behavioral,

and virtual structure approaches. They will look at ways to control a UAV formation

with a novel integration of all three approaches. In Collection, they claim that until

recently there has been no systematic, rigorous, and yet practical engineering statistics

upon which to base multisensor, multi-object tracking. As a result, they believe progress

has been hampered in “multisensor-multitarget data fusion, detection, tracking, and tar-

get identification. This lack has also probably hampered the development of systematic,

control-theoretic approaches to sensor management, distributed sensor management, and

multiplatform coordination” [41]. They propose using Finite-set statistics (FISST) to be

that basis. They expect their research will address many, if not all, of those gaps.

Mahler’s Multi-Agent Sensor Management seems to be the most closely related to the

control formulation aspect of our research. They define sensor management as the process

of “redirecting the right data-collection source at the right place or platform to the right

target at the right time.” They also say sensor management is inherently a stochastic multi-

object problem (groups of targets, groups of sensors, groups of platforms, whose states and

numbers can and do vary randomly in space and time). Their approach is to treat the

Multi-Agent Collection and coordination process as “what it actually is ... a problem in

nonlinear adaptive control theory in which both the data sources being controlled and the

targets being tracked by the control process are, mathematically speaking, multi-object

systems” [41]. FISST is an intriguing concept which could be an alternative to the control

formulation we will propose.

A subset of the FISST concept is the Joint Multitarget Probability (JMP). Kastella

presents “an approach to detection, tracking, classification and sensor management based

on recursive evaluation of a joint multitarget probability” [32]. This probability is the con-

ditional probability that there are exactly n targets of class c, located in cells x, based on

a set of observations Z. His work looks at a one dimensional field using one sensor which
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can either detect a target or classify a target (but not both at the same time). The sensors

update the a priori distribution (uniform distribution). For his model problem, he had

two target classes with an unknown number of targets. The targets move independently

with Markov transitions to nearest-neighbor cells. The JMP tends to be calculation in-

tensive. Musick presents “a possible approach to the implementation of Joint Multitarget

Probability based on a product approximation for the JMP equations” [43].

1.2.5.3 Parameter Uncertainty. In each of the six scenarios defined in

Section 1.2.2.4, the distributions are characterized by a few parameters. These parameters

are assumed to be known but, in fact, are not. Krokhmal et al. [39] addressed uncertainty

in various parameters by using a Conditional Value at Risk (CVaR) methodology. They

looked at a Weapon-Target Assignment (WTA) problem and used CVaR to minimize

a loss function while ensuring a specified minimum probability of kill. Their uncertain

parameters were the probability of kill for given weapons, and the number of targets in

the battle space. Their control was the number of weapons each vehicle used to attack a

target.

1.3 Research Statement

Previous work has concentrated on simulations with some work towards analytic ex-

pressions for some key probabilities. However, these studies have been limited either by

the number of targets, false targets, and/or warheads. This research will focus on develop-

ing the analytic equations for various probabilities and expected values for UCAV’s with

multiple (finite) warheads for six scenarios. We limit our search to a continuous, exhaus-

tive, and non-duplicative search for multiple stationary targets amongst a field of multiple

stationary false targets. Targets and false targets have distinct a priori distributions. In

terms of previous work in the area, we assume constant search effort throughout the area

with the probability of detection of the targets (and false targets) equal to one and a given

probability of correct classification. We assume a single type of target. The probabilities

and expected values for which we will provide analytical expressions follow:

• Probability of an exact number of target attacks and false target attacks
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• Probability of a specified number of target attacks (and false target attacks) and

their expected values

• Probability of certain number of warheads remaining after a region is searched

• Probability of additional target attacks given a certain number of warheads remaining

after a region is searched

• Probability of mission success and expected time of mission success

• Probability of mission failure

• Expected vehicle longevity

We will compute these probabilities for the following scenarios:

• Scenario 1: A single target uniformly distributed throughout As and a Poisson field

of false targets.

• Scenario 2: Poisson field of targets and a Poisson field of false targets.

• Scenario 3: N targets uniformly distributed, and a Poisson field of false targets.

• Scenario 4: N uniformly distributed targets, and M uniformly distributed false tar-

gets.

• Scenario 5: N targets distributed according to a circular normal distribution centered

at the origin amongst a Poisson field of false targets.

• Scenario 6: N targets distributed according to a circular normal distribution amongst

M false targets also distributed according to a circular normal distribution.

With these analytical expressions, we can then show various applications to include

a method to evaluate cooperation schemes and rules of engagement. We also will put

the problem of search, classification and attack of targets which are distributed amongst

multiple false targets into a control formulation. With this formulation we can examine a

possible method to conduct real time estimation of the parameters defining the distribution,

specifically for Scenario 2.

1-16



1.4 Applicability

Results of the type discussed in the previous sections may be used to validate simu-

lation models and to guide the development of tactical algorithms for cooperative search

and engagement. In addition, the analytic framework may be utilized to make acquisition,

design, operational, and tactical decisions. Acquisition decisions may come in the form of

determining cost effectiveness and trade studies such as deciding whether to spend money

improving sensors, warheads, or acquiring more UCAVs. Design decisions include the es-

tablishment of an operating point to balance probability of detection with a desire to keep

false target attacks to an acceptably low level. Operational decisions may include deciding

the number of UCAVs (or the number of warheads on a single UCAV) to send to a battle

space given a probable number and/or location of targets or false targets. Tactical deci-

sions could conceivably take place within the UCAVs themselves. For example, given the

elapsed time of the mission, the UCAV could determine the benefit of continuing the search

(i.e. determining the likelihood of finding another target in the time remaining) versus the

benefit of assisting in classifying and/or attacking a previously discovered target (perhaps

from another UCAV). It would then decide which alternative is more profitable and take

the appropriate action.

1.5 Outline of Document

Chapter II describes the two types of battle spaces that are considered; rectangular

and circular. It then defines the six scenarios considered in the probabilistic analysis.

Chapter III describes, in generic terms, the first of two methods used to develop

the probabilities. This first method finds the probability of the “last attack of interest”

occurring at x. The last attack of interest is the last attack which could define the event in

question. We then integrate that probability over the battle space to find the probability

of that particular event. This method is called the sequential event method. This generic

description of the probabilities apply no matter the distributions assumed for the targets

and false targets. We will find that most of the probabilities in which we are interested

can be easily calculated using the probability of exactly t target attacks and f false target

attacks by x.
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In Chapter IV, we use those generic descriptions of the probabilities and apply them

to the six scenarios. We calculate seven probabilities (or expected values) for Scenarios 1

and 2 and then concentrate on the critical probability, Pt,f (x) for the other scenarios.

Chapter V describes the second method (using Markov chains) to find these same

probabilities and then calculates them.

Once we have the probabilities, we show some examples of applications for them.

Chapter VI looks at the uses for some of the probabilities as they apply to making de-

sign level, operational level and tactical level decisions for a single multi-warhead UCAV.

Chapter VII is an initial examination of putting the problem in a control type formulation

in which we would try to estimate in real time the actual distribution parameters of the

environment we are searching and change a control accordingly. Chapter VIII then ex-

amines some uses of these probabilities as they apply to a couple of cooperation schemes

for search and classification involving two UCAVs. In particular, we evaluate two rules of

engagement for each of the cooperative schemes.

We then conclude our work and give some recommendations for future research in

Chapter IX.
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II. Model Description

Throughout this research, one of three distributions are assumed for the location of targets

(T’s) and/or false targets (FT’s). The most common distribution for the six scenarios is

the Poisson distribution.

A random variable whose sample space S = {0, 1, 2, ...} has probability mass function

p(·) with parameter λ > 0 given by

p(f) = e−λ λf

f !
, f = 0, 1, 2, ... (2.1)

is said to obey the Poisson probability law with parameter λ.

The Poisson field of FT’s is characterized by their expected density distribution

α [ 1
km2 ] so that when a region of area A is searched, the Poisson probability law parameter

is λ = αA.

Equation (2.1) gives the probability of encountering exactly f FT’s while searching a

Poisson field of FT’s. The parameter λ is the expected number of FT encounters occurring

over a specific area.

The Poisson field of targets is characterized by their expected density distribution

β [ 1
km2 ] so that when the region A with area A is searched, the Poisson probability law

parameter is λ̃ = βA. So then the probability of t T’s in A is then

p(t) = e−λ̃ λ̃t

t!
, t = 0, 1, 2, ... . (2.2)

If the battle space to be searched is region As with area As and contains N targets,

uniformly distributed, then the probability of a target being in A is

P {One Target in A} = N
A

As
. (2.3)

A similar equation is used when dealing with M false targets.

If the location of a target is distributed according to circular normal distribution

centered about the origin with a variance σ2
T , then the probability density for a target at
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point (x, y) is

f(x, y) =
1

2πσ2
T

e
−x2+y2

2σ2
T (2.4)

To find the probability of the target being within a radius r with r2 = x2 + y2, we

convert to polar coordinates and compute as follows:

P {object in r} =

∫ r

0

∫ 2π

0

1

2πσ2
T

e
− ρ2

2σ2
T ρdθdρ (2.5)

=

∫ r

0

1

σ2
T

e
− ρ2

2σ2
T ρdρ (2.6)

= 1 − e
− r2

2σ2
T (2.7)

The probability of one target out of N targets being in an annulus with inner radius of ρ

and width dρ is

N
ρ

σ2
T

e
− ρ2

2σ2
T PTR (2.8)

To find the probability of the target being within a radius r of the origin, we simply

integrate the annulus probability from 0 to r.

P (ρ) =

∫ r

0

1

σ2
T

e
− ρ2

2σ2
T ρdρ (2.9)

= 1 − e
− r2

2σ2
T . (2.10)

From this we can see that the probability of the target being outside a circle of radius r is

P {object outside of r} = e
− r2

2σ2
T (2.11)

Similar equations are developed for M false targets with a variance of σ2
FT .

Irrespective of the assumed distributions, each target or false target can be classified

correctly or incorrectly. The confusion matrix specifies the probabilities of both correct
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and incorrect target and false target reports. The basic confusion matrix is shown in Table

2.1, where PTR is the probability of target report and PFTR is the probability of false

target report. Specifically, PTR is the probability that a target is reported as such, given

that a target is indeed encountered, whereas 1 − PTR is the probability that the target is

not recognized as a target. Similarly, PFTR is the probability that a false target is correctly

classified while 1 − PFTR is the probability that the false target is mistaken for a target.

Table 2.1 Simple Confusion Matrix
H

H
H

H
HH

Object Encountered

Object
H

H
H

H
HH

T FT

Reported T PTR 1 − PFTR

as FT 1 − PTR PFTR

Obviously, the sum of the entries in each column is 1. Ideally, one would like

PTR = PFTR = 1 ,

i.e., one would like the confusion matrix to be the identity matrix. Unfortunately, Au-

tonomous Target Recognition (ATR) is far from achieving this goal and the parameters

0 < PTR < 1 and 0 < PFTR < 1 of the confusion matrix play a crucial role in determining

the autonomous weapon system’s effectiveness. Further, increasing PTR and increasing

PFTR are competing objectives in the design of an autonomous target recognition sys-

tem. The relationship between PTR and the complement of PFTR is directly analogous to

the probability of detection and the probability of false alarm as depicted in the classical

receiver operating characteristic (ROC) curve from the radar and communication fields.

Thus, if one manages to make the PTR parameter to increase, PTR → 1, at the same time

the PFTR parameter will decrease resulting in more false positives. This, coupled with a

high density of FT’s, can be catastrophic. If multiple types of targets are involved, the

confusion matrix is of a higher dimension [27]. In this research we confine our attention to

a 2 × 2 confusion matrices, as illustrated in Table 2.1.

For the remainder of this research, we define the following events:
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1. T : The event of a target attack (TA)

2. Tt,(·): The event of t TA’s in the space represented by (·) (usually the normalized

time, x)

3. F : The event of a false target attack (FTA)

4. Ff,(·): The event of f FTA’s in the space represented by (·) (again, usually the

normalized time, x)

A FT may potentially fool the ATR algorithm into believing it is a true target. For a

single-shot (perishable) munition, the probability of engaging the target in the incremental

area ∆A is conditioned on not having engaged a FT prior to arriving at ∆A. Hence, for

the single target scenario, the incremental probability of encountering the target in ∆A is

∆PE = P (F0,A)
∆A

As
, (2.12)

where ∆A
As

is the probability that the target is in ∆A and P (F0,A) is the probability of no

false target attacks (FTA) while searching the region A leading up to ∆A. Previous work

[29] has shown that

P (F0,A) = e(1−PFTR)αA . (2.13)

We confine our development to four scenarios consisting of a rectangular battle space region

As of area As (see Figure 2.1), and two scenarios using a circular battle space region Ar of

area Ar (see Figure 2.2).

We consider the following six scenarios.

• Scenario 1: A single target (T) is uniformly distributed amongst a Poisson field of

false targets (FT).

• Scenario 2: A Poisson field of targets is distributed amongst a Poisson field of false

targets.

• Scenario 3: N targets uniformly distributed, and a Poisson field of false targets.
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Figure 2.1 Rectangular Battle Space Area Definitions

• Scenario 4: N uniformly distributed targets, and M uniformly distributed false tar-

gets.

• Scenario 5: The battle space consists of a circular disc of radius r centered at the

origin. There are N targets, distributed according to a circular normal distribution

centered at the origin and a Poisson field of false targets.

• Scenario 6: Same battle space as Scenario 5, with N targets distributed according to

a circular normal distribution and M false targets distributed according to a circular

normal distribution.

For Scenarios 1 thru 4 we assume one Unmanned Combat Aerial Vehicle (UCAV),

equipped with w warheads (w ≥ 1) and flying at a constant speed, V , with a sensor

swath width W . Let Υ be the total (deterministic) time required to search region As, then

As = WV Υ. Let τ be the time in which the UCAV has searched region A. The area

searched, A, is then computed from A = WV τ . Similarly, ∆A = WV ∆τ .

For Scenarios 5 and 6 we assume essentially the same thing. Instead of instantly

covering a rectangular swath ∆A, we assume we can instantly cover a circular annulus

with inner radius ρ and width ∆ρ.

It is convenient to use a normalized time x, 0 ≤ x ≤ 1 such that

x =
τ

Υ
(2.14)
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Figure 2.2 Circular Battle Space Area Definitions

and

A = Asx . (2.15)

Obviously, x can also represent a normalized area.

In addition, we define

λFT = αAs . (2.16)

The Poisson parameter for false target encounters is given by

λ = λFT x. (2.17)

Similarly, if β is the expected density of targets then

λT = βAs , (2.18)
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and

λ̃ = λT x (2.19)

is the Poisson parameter for target encounters in the area covered by x.

One objective of this research is to obtain an expression for the probability of oc-

currence of several important events which can all be defined as various combinations of

target attacks (TAs) and/or false target attacks (FTAs). Target attacks have a Poisson

parameter λAT
x and false target attacks have Poisson parameter λAFT

x.

Define

λAFT
≡ αAAs , (2.20)

where αA = α(1 − PFTR) and represents the density of FTA situations that would occur

in As. In view of (2.15) and (2.20), the expected number of FTA’s in A is

αAA = λAFT
x . (2.21)

This is the Poisson parameter for FTA’s. We show in Appendix B, that developing the

equations either way (via FT’s or FTA’s) is equivalent and to transfer from one method to

the other just requires a substitution of variables. That is, we can convert a Poisson field

of FT (or T) to a Poisson field of FTA (or TA) as follows:

λAFT
= (1 − PFTR)λFT , (2.22)

λAT
= PTRλT . (2.23)

The probabilities of the occurrence of the events of interest can be determined via

several methods. In one method, we compute these probabilities by determining the prob-

ability that the last attack of interest occurs at a certain time, τ , or in light of equation

(2.14), at a certain value of x which represents the percentage of As which has been covered

when the attack occurs (x ∈ [0, 1]). Let p(x)dx be defined as the probability of the last
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attack of interest occurring during the interval [x, x+dx]. Calculating the probability that

an event occurs in As is just a matter of integrating

P (As) =

∫ 1

0
p(x)dx . (2.24)

The events of interest can be considered as a series of sub-events. These sub-events occur

in As, A, or As− A (or x = 1, x, or 1− x, respectively) . In this method, the probabilities

of these sub-events (the ‘elemental’ probabilities) must be determined to compute the

probability of the event of interest. This sequential events method will be covered in

Chapter III. Then the probabilities will be calculated using a Markov chain approach.

This will be discussed in Chapter V.
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III. Sequential Events Method

We now discuss the definition of events and the sub-events of which they are comprised.

This formulation is general and does not depend on a particular distribution of targets or

false targets. Once the events are defined, we can then compute their probabilities based

on the assumed distributions in each scenario. The probabilities of the occurrence of these

events are determined in subsequent sections.

3.1 Target Attack

If our UCAV has a single warhead, then for the UCAV to attack a target in ∆A, the

UCAV could not have attacked a T or FT in A. The probability of the target attack (TA)

occurring in ∆A (i.e. in [x, x + ∆x]) is then

P {TA in ∆A} = P (T0,A ∩ F0,A ∩ T1,∆A) , (3.1)

where Tt,X is the event ‘t TA’s in X’. Ff,X is defined as ‘f FTA’s in X’.

Recall that the area A and the time x have a one-to-one relationship. The use of A

in (3.1) is for notational purposes. In all of our calculations of probabilities for the various

scenarios, we will develop the equations in terms of the normalized time instead of the

area covered. In addition, we shall see that for each of our scenarios, any probability of

an attack occurring in ∆A will be some term multiplied by ∆x. Therefore, we can express

(3.1) in one of two equivalent ways

p
(1)
1 (x)∆x = P {T0,A ∩ F0,A ∩ T1,∆A} , (3.2)

or

p
(1)
1 (x)∆x = P {T0,x ∩ F0,x ∩ T1,∆x} , (3.3)

Regardless of which notation we use, the actual parameter that will be used in the

computations will be x. Note we have also introduced the notation p
(w)
t,f (x) which is the
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probability of exactly t TA’s and f FTA’s in A (i.e. in the interval [0, x]) assuming w

warheads, with t + f ≤ w. This probability with the second index missing (i.e. p
(w)
t (x))

represents the probability of exactly t TA’s in A regardless of the number of FTA’s in A.

The probability of a TA occurring at two different times (x1, x2) is then

P {TA occurs at x1 or x2} = P
{

{T0,x1 ∩ F0,x1 ∩ T1,∆x1} ∪

{T0,x2 ∩ F0,x2 ∩ T1,∆x2}
}

. (3.4)

The unioned events are mutually exclusive, therefore we can sum their probabilities. This

mutual exclusivity holds true for any set of distinct x’s. We can therefore determine the

probability of a TA in any range of x’s. Determining the probability of a TA in As requires

summing (3.2) over all possible A’s in As (or equivalently, all x : 0 ≤ x ≤ 1). To do this, we

will follow the development of the definite integral in Schaum’s outline for calculus [5]. We

divide the interval [0:1] into n subintervals h1, h2, . . . , hn by the insertion of n − 1 points

ξ1, ξ2, . . . , ξn−1 where 0 < ξ1 < ξ2 < . . . < ξn−1 < 1. We denote the length of subinterval

hi by ∆ix = ξi − ξi−1. On each subinterval, we select a point xi on the subinterval hi.

Then we have

p
(1)
1 (xi)∆ix = P {T0,xi

∩ F0,xi
∩ T1,∆ix} . (3.5)

We then let n approach infinity and sum over all the xi’s in the range in which we are

interested.

P
(1)
1 (As) = lim

n→+∞

n
∑

i=1

P {T0,xi
∩ F0,xi

∩ T1,∆ix} (3.6)

= lim
n→+∞

n
∑

i=1

p
(1)
1 (xi)∆ix (3.7)
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Then using the definition of the definite integral, we have

∫ 1

0
p
(1)
1 (x)dx = lim

n→+∞

n
∑

i=1

p
(1)
1 (xi)∆ix (3.8)

P
(1)
1 (As) =

∫ 1

0
p
(1)
1 (x)dx . (3.9)

For brevity sake, we will use notation similar to the following notation for future

probability derivations;

p
(1)
1 (x)dx = P {T0,x ∩ F0,x ∩ T1,∆x} , (3.10)

recognizing that several steps are involved as indicated by (3.5) thru (3.8) and that the

equality is really only applicable in terms of integration on the left side and infinite series

on the right as depicted in (3.8).

With a multiple warhead UCAV, we must ensure we have at least one warhead left

after A to attack the T in ∆A, so that

p
(w)
1 (x)dx = P (T0,A ∩ Ff≤w−1,A ∩ T1,∆A) , (3.11)

where Ff≤w−1,A is the event ‘no more than w − 1 FTA’s in A’.

Equation (3.11) is the probability that our last attack of interest (the TA) occurs at

the end of A. Or stated equivalently, it is the probability that the first TA occurs at x.

Integrating, we obtain the probability of at least one TA assuming w warheads.

P
(w)
t≥1(As) =

∫ 1

0
p
(w)
1 (x)dx . (3.12)

3.2 Probability of an Exact Number of Target and False Target Attacks

For reasons which will become evident, we need to determine P
(w)
t,f (As). Of crucial

importance to this discussion is the subtle distinction between encountering a FTA situa-

tion and an actual FTA. The same distinction exists between a TA situation and an actual
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TA. Since both of our scenarios consist of a Poisson distribution of false targets, we will

concentrate on the former.

A FTA situation is one in which a FTA would have occurred if we had a limitless

supply of warheads. A FTA situation becomes a FTA if we have a warhead available when

we come across that FTA situation. For this probability, we will separate events into two

cases. In Case 1, all the warheads are used. In Case 2, not all the warheads are used.

In Case 2, since we have warheads left over, to have exactly f FTA’s means we have

only come across f FTA situations (or else we would have used more warheads). In Case

1, however, all the warheads have been used and we can come across considerably more

FTA situations once we have expended our warheads on the initial f FTA’s and t TA’s,

assuming t + f = w. The practical significance of this distinction is that we will have to

integrate for Case 1, whereas in Case 2 we will not have to integrate but can determine

the probabilities directly for the area in question.

In either case, we must examine two mutually exclusive events. The first event is

that in which a TA is the last attack, the second event is that in which a FTA is the last

attack:

Case 1 (t + f = w): In this case, once the final warhead is released, we do not care

if we come across a FTA or TA situation. The probability of occurrence of t TA’s and f

FTA’s is then

p
(t+f=w)
t,f (x)dx = P





{Tt−1,A ∩ Ff,A ∩ T1,∆A}∪

{Tt,A ∩ Ff−1,A ∩ F1,∆A}



 . (3.13)

Since a TA and a FTA are independent of each other and since the unioned events are

disjoint, we can break down this equation further;

p
(t+f=w)
t,f (x)dx = P (Tt−1,A ∩ T1,∆A)P (Ff,A) + P (Tt,A) P (Ff−1,A ∩ F1,∆A) .(3.14)

When we integrate (3.14) we then obtain the probability of exactly t TA and f FTA in x,

P
(t+f=w)
t,f (x) =

∫ x

0
p
(t+f=w)
t,f (x)dx . (3.15)
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Note: If we have a situation where f = 0 or t = 0, we use only the first or last term

(respectively) in (3.14).

Case 2 (t + f < w): In this case, there can be no attacks after ∆A.

p
(t+f<w)
t,f (x)dx = P





{Tt−1,A ∩ Ff,A ∩ T1,∆A ∩ T0,As−A ∩ F0,As−A}∪

{Tt,A ∩ Ff−1,A ∩ F1,∆A ∩ T0,As−A ∩ F0,As−A}



 , (3.16)

P
(t+f<w)
t,f (As) =

∫ 1

0
p
(t+f<w)
t,f (x)dx . (3.17)

We note that in all six scenarios, the event ‘coming across a TA situation’ is independent

of the event ‘coming across a FTA situation’. Also note that the two unioned events in

(3.16) are mutually exclusive. Therefore, we can rewrite (3.16) as

p
(t+f<w)
t,f (x)dx = P {Tt−1,A ∩ T1,∆A ∩ T0,As−A}P {Ff,A ∩ F0,As−A} +

P {Tt,A ∩ T0,As−A}P {Ff−1,A ∩ F1,∆A ∩ F0,As−A} . (3.18)

Again, if f = 0 or t = 0, then we only use the first or last term, respectively, in (3.18).

Since there are warheads left after A, then we could not have come across a TA situ-

ation, otherwise we would expend another warhead and have an additional TA. Therefore,

finding the probability of exactly t TA and f FTA in any given area can be answered

directly (without having to integrate). That is, if we can calculate P {Tt,A} directly, then

we can calculate P {Tt,As} directly as well. We can determine the probability of some exact

number of TA’s in As. We see that

P
(w)
t (As) = P





w−t
⋃

f=0

{Tt,As ∩ Ff,As}



 (3.19)

=

w−t−1
∑

f=0

P
(t+f<w)
t,f (As) + P

(t+f=w)
t,f (As) , (3.20)

where the two terms in (3.20) are defined in (3.17) and (3.15). Also note that in (3.20)

and throughout the rest of the research, we adopt the convention that whenever the upper
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limit on the summation is less than the lower limit, the sum is zero. So then, when t = w

we only calculate the last term in (3.20), that is P
(t+f=w)
w,0 (As).

We then compute the expected number of TA’s as

E[t] =
w
∑

t=0

tP
(w)
t (As) . (3.21)

Similarly for FTA’s we have

P
(w)
(·),f (As) = P

(

w−f
⋃

t=0

{Tt,As ∩ Ff,As}

)

(3.22)

=

w−f−1
∑

t=0

P
(t+f<w)
t,f (As) + P

(t+f=w)
t,f (As) . (3.23)

We then compute the expected number of FTA’s as

E[f ] =

w
∑

f=0

fP
(w)
(·),f (As) . (3.24)

3.3 Probability of a Certain Number of Warheads Remaining After the Region A Has

Been Searched

We consider the probability of having wA warheads remaining after sweeping through

a portion of the target area, i.e., we had w − wA warheads spent in A. The probability of

this event is denoted by PwA(x). We need to consider two cases.

Case 1 (wA = 0): This corresponds to the case in which all warheads are spent in

A, i.e., we could have more than w TA and/or FTA situations in A. This is in essence the

same as Case 1 in Section 3.2 (t + f = w). But instead of integrating from x = 0 to x = 1,

we integrate from 0 to x. We will use the notation Az to represent the region which grows
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in size from 0 to A, its area is A.

Az = V Wτz , (3.25)

z =
τz

Υ
. (3.26)

With these definitions, it is seen that

αAz = αAsz = λFT z (3.27)

A − Az = Asx − Asz = As(x − z) (3.28)

giving

pwA=0(z)dz = P





















































{

T0,Az ∩ F(w−1),Az

}

∪
{

T1,Az ∩ F(w−2),Az

}

∪ · · ·

∪
{

Tt,Az ∩ F(w−1−t),Az

}

∪ · · ·

∪
{

T(w−1),Az
∩ F0,Az

}































∩

{T1,∆Az ∪ F1,∆Az}























(3.29)

PwA=0(x) =

∫ x

0
pwA=0(z)dz . (3.30)

Case 2 (1 ≤ wA ≤ w): This corresponds to the case in which fewer than w warheads are

used in A (as in Case 2 in Section 3.2 (t+f < w)). Here we also note that to have warheads

left over after A means not all the warheads were used by A Therefore, we must not have

come across any other attack situations (target or false target) in A, so we are then just

looking at the probability of coming across t TA situations and f FTA situations such that

t + f < w.

P 1≤wA≤w(x) = P

(

w−wA
⋃

t=0

{Tt,A ∩ Fw−wA−t,A}

)

,

P 1≤wA≤w(x) = P

















{

T0,A ∩ F(w−wA−0),A

}

∪
{

T1,A ∩ F(w−wA−1),A

}

∪ · · ·

∪
{

Tt,A ∩ F(w−wA−t),A

}

∪ · · ·

∪
{

T(w−wA),A ∩ F0,A

}

















. (3.31)
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3.4 Probability of Additional TA’s Given a Certain Number of Warheads Remaining After

the Region A

It is desirable to know the probability of a TA in the rest of the mission given we have

wA warheads remaining. We consider the region Ay whose area is Ay = V Wτy and define

y =
τy

Υ , which goes from 0 to Am = As−A. Table 3.1 summarizes the various parameters.

Table 3.1 Summary of Spaces and Variables of Integration
Space Intermediate Variable of Lower Upper

Space Integration Limit Limit

As A x 0 1

A Az z 0 x

Am = As − A Ay y 0 1 − x

We again examine the probability for two cases. When the number of attacks in

Am are equal to the warheads left (wA), we have a Case 1 situation. When the number

of attacks in Am are less than wA, we have a Case 2 situation. In both cases we are

dealing with a conditional probability and will make use of the fact that for the conditional

probability of ‘A’ given ‘B’, we have

P {A|B} =
P {A ∩ B}

P {B}
.

Case 1 (ty + fy = wA): Define WA to be the event ‘wA warheads left after A’. We

will also define ty and fy to be the number of TA’s and FTA’s, respectively, in Am while t

and f are still the number of TA’s and FTA’s in A. Then

P
(ty+fy=wA)
ty

(y) =
P
{

Tty ,Am ∩ Ffy=wA−ty ,Am ∩WA

}

P {WA}
. (3.32)

Recognizing we can have a TA or FTA in ∆Ay, and also recognizing that

WA =

w−wA
⋃

t=0

{Tt,A ∩ Fw−wA−t,A} , (3.33)
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we have

p
(ty+fy=wA)
ty

(y)dy =

P













{

Tty−1,Ay ∩ FwA−ty ,Ay ∩ T1,∆Ay

}

∪
{

Tty ,Ay ∩ FwA−ty−1,Ay ∩ F1,∆Ay

}







∩ {WA}







P {WA}
. (3.34)

Note that in all six of our scenarios, the TA’s and FTA’s are independent of each

other, and note that the events separated by the union operator in (3.33) are disjoint.

Therefore,

p
(ty+fy=wA)
ty

(y)dy =
∑w−wA

t=0 P
{

Tty−1,Ay ∩ T1,∆Ay ∩ Tt,A

}

P
{

FwA−ty ,Ay ∩ Fw−wA−t,A

}

∑w−wA
t=0 P {Tt,A}P {Fw−wA−t,A}

+

∑w−wA
t=0 P

{

Tty ,Ay ∩ Tt,A

}

P
{

FwA−ty−1,Ay ∩ F1,∆Ay ∩ Fw−wA−t,A

}

∑w−wA
t=0 P {Tt,A}P {Fw−wA−t,A}

, (3.35)

P
(ty+fy=wA)
ty

(x) =

∫ 1−x

0
p
(ty+fy=wA)
ty

(y)dy (3.36)

Case 2 (ty + fy < wA): We can only have ty + fy attack situations in Am , i.e. no TA or

FTA in Am − Ay. Recall that for < w attacks, we can calculate the probabilities directly.

i.e.

P
(ty+fy<wA)
ty ,fy

(y) =
P
{{

Tty ,Ay ∩ Ffy ,Ay

}

∩
{
⋃w−wA

t=0 {Tt,A ∩ Fw−wA−t,A}
}}

P
{
⋃w−wA

t=0 {Tt,A ∩ Fw−wA−t,A}
} . (3.37)

Because the TA’s and FTA’s are independent and the events separated by the union

operator are disjoint, we have

P
(ty+fy<wA)
ty ,fy

(y) =

∑w−wA
t=0 P

{

Tty ,Ay ∩ Tt,A

}

P
{

Ffy ,Ay ∩ Fw−wA−t,A

}

∑w−wA
t=0 P {Tt,A}P {Fw−wA−t,A}

. (3.38)
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Therefore,

P
(ty+fy<wA)
ty

(y) =

wA−ty−1
∑

fy=0

∑w−wA
t=0 P

{

Tty ,Ay ∩ Tt,A

}

P
{

Ffy ,Ay ∩ Fw−wA−t,A

}

∑w−wA
t=0 P {Tt,A}P {Fw−wA−t,A} .

(3.39)

Then we sum the 2 Cases to calculate the probability of t TA in Am given wA warheads

remain after A.

pwA
ty

(y) = p
(ty+fy=wA)
ty

(y) + p
(ty+fy<wA)
ty

(y) (3.40)

P
(wA)
ty

(x) = P
(ty+fy=wA)
ty

(x) + P
(ty+fy<wA)
ty

(x) (3.41)

Note: whenever we have a negative subscript (such as we would have in Tty−1,Ay when

ty = 0) we ignore that event (or we say the probability of that event is 0).

3.5 Mission Success and Expected Time of Mission Success

When dealing with multiple targets, we can allow the commander to define mission

success by the number of targets he/she wishes to be attacked. We designate this number

as m. We can easily utilize a similar definition of mission success which looks at the number

of targets killed instead of the number of targets attacked by multiplying the probabilities

in this section by the probability of a target kill given a target attack, Pk.

The probability of mission success is the probability of at least m TA’s.

p
(w)
t≥m(A)∆A = P

{

Tm−1,A ∩ Ff≤(w−m),A ∩ T1,∆A

}

(3.42)

= P







w−m
⋃

f=0

Tm−1,A ∩ Ff,A ∩ T1,∆A







(3.43)

p
(w)
t≥m(x)∆x = P







w−m
⋃

f=0

Tm−1,x ∩ Ff,x ∩ T1,∆x







(3.44)

∫ x

0
p
(w)
t≥m(z)dz = lim

n→∞

n
∑

i=1

p
(w)
t≥m(zi)∆iz (3.45)

P
(w)
t≥m(As) =

∫ 1

0
p
(w)
t≥m(x)dx (3.46)
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We can determine the expected time of mission success (given a mission success). Given

(2.14) we see that calculating the expected time of mission success is equivalent to cal-

culating the expected x of mission success. Let xs denote the normalized time/space of

mission success. Its expected value is E[xs]. To determine this expected value, we normal-

ize the integrand of (3.46) to convert it to a probability density function (pdf), designated

as f
(w)
t≥m(x), and compute the expected value in the usual way.

f
(w)
t≥m(x) =

p
(w)
t≥m(x)

P
(w)
t≥m(As)

(3.47)

E[xs] =

∫ 1

0
xf

(w)
t≥m(x)dx =

∫ 1

0
x

p
(w)
t≥m(x)

P
(w)
t≥m(As)

dx (3.48)

3.6 Mission Failure

We will declare an event ‘Mission Failure’ if one of two sub-events occur. Either:

1. All warheads have been expended before attacking the mth target or;

2. The UCAV has searched battle space As without attacking the mth target with

warheads remaining.

Using our notation

P{mission failure} = P
(w)
t<m(As) , (3.49)

= 1 − P
(w)
t≥m(As) , (3.50)

= P





{Tt<m,As ∩ Fw−t,As}∪

{Tt<m,As ∩ Ff<w−t,As}



 . (3.51)

Utilizing the mutually exclusive nature of the events separated by the union operator, we

calculate (3.51) as

P
(w)
t<m(As) =

m−1
∑

t=0

P
(t+f=w)
t,w−t (As) +

m−1
∑

t=0

w−1−t
∑

f=0

P
(t+f<w)
t,f (As) (3.52)
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where the last two terms are given in (3.15) and (3.17). In addition to determining the

probability for mission success and failure, we can also examine the expected useful life of

the UCAV.

3.7 Expected Vehicle Longevity

We define vehicle longevity to be the useful life of the UCAV. This usefulness lasts

only as long as there is fuel left in the UCAV (or area to be searched) and warheads left

to attack targets. More formally, we define expected vehicle longevity as follows:

Vehicle Longevity The time at which the last warhead is expended OR the time at

which the UCAV runs out of fuel (or has reached the end of the search area) without

expending the last (wth) warhead.

This definition does not depend on attacking a specific number of targets or false targets.

It merely depends on the total number of attacks.

The probability of all warheads being used is found in (3.29) and the probability

of reaching the end of As without expending the wth warhead is found in (3.31). To

summarize here, we define Wu to be the random variable representing the number of

warheads used. Its realization is wu, and we note

wu = w − wA . (3.53)

The event ‘vehicle longevity’ will be denoted as VL. The probability of this event is

P {VL} = P

{

w
⋃

wu=0

Wu = wu

}

. (3.54)

Each of the unioned events are mutually exclusive therefore we sum their probabilities. In

addition, recall the event VL is composed of two parts. Either all the warheads are used

(Wu = w) or not (Wu = wu : wu < w), therefore,

P {VL} = P {Wu = w} + P

{

w−1
⋃

wu=0

Wu = wu

}

. (3.55)
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The unioned events in (3.55) are mutually exclusive, and we can obtain the events descrip-

tions from (3.29) and (3.31), so we can write (3.55) (in terms of Az and ∆Az) as

P {VLAz} = P

{

w−1
⋃

t=0

{Tt,Az ∩ Fw−1−t,Az} ∩ {T1,∆Az ∩ F1,∆Az}

}

+

w−1
∑

wu=0

P

{

wu
⋃

t=0

{Tt,Az ∩ Fwu−t,Az}

}

. (3.56)

It is readily seen that all the unioned events in (3.56) are mutually exclusive. In

addition, we recognize that we can evaluate (3.56) for any value of Az (i.e. Azi
) and

therefore any value of zi : 0 ≤ zi ≤ 1. Recall that expected vehicle longevity is essentially

composed of two mutually exclusive and exhaustive events. Either the vehicle has expended

all its warheads or it has run out of fuel (or reached the end of the battle space).

If the UCAV has lost its usefulness because all warheads were expended (the first

term in (3.56)), then the expected vehicle longevity would be the time of the wth attack.

However, if the UCAV lost its usefulness because it ran out of fuel (or ran out of assigned

search space), then we would not declare the end of its usefulness until the end of As (i.e.

when z = 1). Let xvl denote the vehicle longevity (as a normalized time). Its expected

value is E[xf ], and its equation is

E[xvl] = lim
n→+∞

n
∑

i=1

zi

w−1
∑

t=0

[

P {Tt,zi
∩ Fw−1−t,zi

∩ T1,∆iz} +

P {Tt,zi
∩ Fw−1−t,zi

∩ F1,∆iz}
]

+

(1)
w−1
∑

wu=0

wu
∑

t=0

P {Tt,As ∩ Fwu−t,As} . (3.57)

In the next chapter we show how to use these probabilities to compute the various

probabilities for the scenarios. We will do this exhaustively for Scenarios 1 and 2 and then

just concentrate on the very important P
(w)
t,f (x) probability for Scenarios 4 thru 6.
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IV. Calculations Using Events Model

4.1 Scenario 1

The first scenario consists of a single target (T) uniformly distributed amongst a

Poisson field of false targets (FT’s) in a battle space As with area As (see Figure 2.1).

The event ‘FTA’ includes coming across a FT and mistaking it for a T. We simplify our

discussion for now by wrapping those events up in the Poisson FTA parameter λAFT
,

which represents the mean number of FTA situations that would occur in As .

Since we only have one T in Scenario 1, (3.2) can be rewritten as

p
(1)
1 (x)dx = P {(T1,∆A) ∩ (F0,A)} (4.1)

= P {T1,∆A}P {F0,A} (4.2)

since the two events are mutually independent. Examining each probability,

P (T1,∆A) = P {(T1,∆A) ∩ (RT1)} (4.3)

where T1,∆A is the event ‘one T in ∆A’ and ‘RT1’ is the event ‘one target recognized for

what it is’. The event ‘RT1’ is conditioned on there being a T in the area of interest. These

events are also independent, so we can express P (T1,∆A) as the probability of a target in

the area element ∆A viz., WV dt
As

= dx, times the probability PTR of a target report. i.e.

P (T1,∆A) = PTRdx . (4.4)

When the UCAV has w (w ≥ 2) warheads,

p
(w)
1 (x)dx = P {(T1,∆A) ∩ (Ff≤w−1,A)} (4.5)

=
w−1
∑

j=0

e−λAFT
x (λAFT

x)j

j!
PTRdx (4.6)
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The probability of the target being attacked during the UCAV’s battle space sweep is then

P
(w)
1 (As) = PTR

w−1
∑

j=0

(λAFT
)j

(j)!

∫ 1

0
e−λAFT

xxjdx . (4.7)

Equations (4.8) thru (4.16) are the elemental probabilities for Scenario 1:

P (F1,∆A) = αA∆A = αAV Wdτ = αA
As

Υ
dτ = λAFT

dx (4.8)

P {T0,A} = P {T0,A ∪ (T1,A ∩ NRT1)} (4.9)

P{T1,A} = x (4.10)

P {T0,A ∩ T1,∆A ∩ T0,As−A} = PTRdx (4.11)

P {T1,A ∩ T0,As−A} = PTRx (4.12)

P {Ff,A ∩ F0,As−A} = e−λAFT
(λAFT

x)f

f !
(4.13)

P {Ff−1,A ∩ F1,∆A ∩ F0,As−A} = e−λAFT
(λAFT

x)f−1

(f − 1)!
λAFT

dx (4.14)

P{T0,Az} = 1 − PTRz (4.15)

P{T0,Am} = 1 − (1 − x)PTR (4.16)

where NRT1 represents the event ‘target not recognized for what it is’.

4.1.1 Probability of an Exact Number of Target and False Target Attacks. The

probability of P
(w)
t,f (As) is determined from (3.15) and (3.17 and each case has 2 subcases

(t = 0, t = 1).

Case 1: t + f = w

Subcase 1: t = 0 ⇒ f = w. In this case, we only want f − 1 FTA’s and no TA’s

prior to the final warhead;

P
(w)
0,f=w(As) =

λw
AFT

(w − 1)!

(∫ 1

0
e−λAFT

xxw−1dx − PTR

∫ 1

0
e−λAFT

xxwdx

)

. (4.17)
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We can also put this in terms of the incomplete gamma function. It is defined as

γ(α, z) =

∫ z

0
e−ζζα−1dζ . (4.18)

This means

∫ x

0
eλξξα−1dξ =

γ(α, λx)

λα
. (4.19)

We note the gamma function itself is

Γ(n + 1) = n! . (4.20)

When we divide γ(α, z) by Γ(α), we have what some have called the regularized incomplete

gamma function.

When using the incomplete gamma function, (4.17) becomes

P
(t+f=w)
0,f=w (As) =

γ(w, λAFT
)

Γ(w)
−

PTRw

λAFT

γ(w + 1, λAFT
)

Γ(w + 1)
. (4.21)

We note here that instead of integrating from 0 to 1, we can integrate from 0 to x,

making this probability a function of x.

P
(t+f=w)
0,f=w (x) =

γ(w, λAFT
x)

Γ(w)
−

PTRw

λAFT

γ(w + 1, λAFT
x)

Γ(w + 1)
. (4.22)

At times, this form is more useful. We can easily determine the probability over the whole

battle space, using this form, by setting x = 1.

Subcase 2: t = 1 ⇒ f = w − 1 Now we use both terms of (3.14).

P
(w)
1,f (As) = PTRλw−1

AFT

w

(w − 1)!

∫ 1

0

(

e−λAFT
xxw−1

)

dx , (4.23)

=
wPTR

λAFT

γ(w, λAFT
)

Γ(w)
(4.24)

Case 2: t + f < w When t = 1 integrating (3.18) gives

4-3



P
(t+f<w)
1,f (As) =

∫ 1

0

(

PTRdxe−λAFT
(λAFT

x)f

f !
+

PTRxe−λAFT
(λAFT

x)f−1

(f − 1)!
λAFT

)

dx (4.25)

= PTRe−λAFT λf
AFT

(

f + 1

f !

)∫ 1

0
xfdx (4.26)

= PTRe−λAFT λf
AFT

(

f + 1

f !

)

1

f + 1
(4.27)

= PTRe−λAFT
(λAFT

)f

f !
, (4.28)

which is equivalent to computing P{T1,As∩Ff,As} directly. In other words, when t+f < w,

we are seeking the case of t TA situations and f FTA situations. When t = 0, we have

P
(t+f<w)
0,f (As) = (1 − PTR)e−λAFT

∫ 1

0

(λAFT
x)f−1

(f − 1)!
λAFT

dx (4.29)

= (1 − PTR)e−λAFT λf
AFT

1

(f − 1)!

∫ 1

0
xf−1dx (4.30)

= (1 − PTR)e−λAFT
(λAFT

)f

f !
. (4.31)

Moreover, we can see this is also the case for a Poisson distribution of TA and Poisson

distribution of FTA, as will be discussed in Section 4.2.

4.1.2 Probability of Specified Number of Target Attacks. It is easy to see that

(3.20) becomes one of two equations; either

P
(w)
0 (As) =

γ(w, λAFT
)

Γ(w)
−

PTRw

λAFT

γ(w + 1, λAFT
)

Γ(w + 1)
+

w−1
∑

f=0

(1 − PTR)e−λAFT
(λAFT

)f

f !

(4.32)

or

P
(w)
1 (As) =

wPTR

λAFT

γ(w, λAFT
)

Γ(w)
+

w−2
∑

f=0

(PTR)e−λAFT
(λAFT

)f

f !
. (4.33)
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Equations (4.32) and (4.33) should sum to unity (the events they represent are exhaustive).

It is easy to show via integration by parts that the sum corresponds to the probability of

at most w FTA’s in As, and this probability is one.

4.1.3 Probability of Specified Number of False Target Attacks. We can also find

the probability of a specified number of false target attacks using (3.23). Since the number

of targets is less than the number of warheads, we must look at several situations to

evaluate (3.23).

Situation 1, f ≤ w− 2: In this situation we will never need P
(t+f=w)
t,f (As). Therefore

P
(w)
(·),f≤w−2(As) = P

(t+f<w)
0,f (As) + P

(t+f<w)
1,f (As) , (4.34)

= (1 − PTR)e−λAFT
(λAFT

)f

f !
+ PTRe−λAFT

(λAFT
)f

f !
, (4.35)

= e−λAFT
(λAFT

)f

f !
. (4.36)

Situation 2, f = w − 1 :

P
(w)
(·),f=w−1(As) = P

(t+f<w)
0,w−1 (As) + P

(t+f=w)
1,w−1 (As) , (4.37)

= (1 − PTR)e−λAFT
(λAFT

)w−1

(w − 1)!
+

wPTR

λAFT

γ(w, λAFT
)

Γ(w)
. (4.38)

Situation 3, f = w :

P
(w)
(·),f=w

(As) = P
(t+f=w)
0,w (As) , (4.39)

=
γ(w, λAFT

)

Γ(w)
−

wPTR

λAFT

γ(w + 1, λAFT
)

Γ(w + 1)
. (4.40)
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So then the expected number of FTA, E[f ] is

E[f ] =
w
∑

f=0

fP
(w)
(·),f (As) , (4.41)

=
w−2
∑

f=0

fP
(w)
(·),f (As) + (w − 1)P

(w)
(·),w−1(As) + wP

(w)
(·),w(As) , (4.42)

=
w−2
∑

f=0

fe−λAFT
(λAFT

)f

f !
+

(w − 1)

(

(1 − PTRx)e−λAFT
(λAFT

)w−1

(w − 1)!
+

wPTR

λAFT

γ(w, λAFT
)

Γ(w)

)

+

w

(

γ(w, λAFT
)

Γ(w)
−

wPTR

λAFT

γ(w + 1, λAFT
)

Γ(w + 1)

)

. (4.43)

4.1.4 Probability of a Certain Number of Warheads Remaining After Region A Has

Been Searched. Since the events in (3.29) are mutually exclusive, their probabilities are

additive. When all the warheads are used, (3.30) becomes

PwA=0(x) =

∫ x

0
PTRe−λAFT

z (λAFT
z)w−1

(w − 1)!
dz +

∫ x

0
(1 − PTRz)e−λAFT

z (λAFT
z)w−1

(w − 1)!
λAFT

dz +

∫ x

0
PTRze−λAFT

z (λAFT
z)w−2

(w − 2)!
λAFT

dz

=
PTRλw−1

AFT
w + λw

AFT

(w − 1)!

∫ x

0
e−λAFT

zzw−1dz −

PTR

λw
AFT

(w − 1)!

∫ x

0
e−λAFT

zzwdz

=

(

wPTR

λAFT

+ 1

)

γ(w, λAFT
x)

Γ(w)
−

wPTR

λAFT

γ(w + 1, λAFT
x)

Γ(w + 1)
(4.44)

When fewer than w warheads are expended in A, (3.31) becomes

P 1≤wA≤w(x) = (1 − PTRx)e−λAFT
x (λAFT

x)w−wA

(w − wA)!
+

PTRxe−λAFT
x (λAFT

x)w−wA−1

(w − wA − 1)!
(4.45)

where 1
a! ≡ 0 if a < 0.
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4.1.5 Probability of TA Given a Certain Number of Warheads Remaining After the

Region A. We first note that αAy = λAFT
y. Then (3.36), (3.39) and (3.41) become

P
ty+fy=wA

1 (x) =
wAPTR

(1 − PTRx)λAFT
+ PTR (w − wA)

γ(wA, λAFT
(1 − x))

Γ(wA)
(4.46)

P
(ty+fy<wA)
1 (x) =

wA−2
∑

fy=0

PTRλAFT

(1 − PTRx)λAFT
+ PTR (w − wA)

×

(1 − x)e−λAFT
(1−x) (λAFT

(1 − x))fy

fy!
(4.47)

P
(wA)
1 (x) =

PTR

(1 − PTRx)λAFT
+ PTR (w − wA)

×





wA−2
∑

fy=0

e−λAFT
(1−x) (λAFT

(1 − x))fy+1

fy!
+ wA

γ(wA, λAFT
(1 − x))

Γ(wA)



 .(4.48)

We can also determine the probability of no TA in Am. For t = 0, (3.41) becomes

PwA
0 (x) =

wA−1
∑

fy=0

(

1 −
PTRλAFT

(1 − x)

(1 − PTRx)λAFT
+ PTR (w − wA)

)

e−λAFT
(1−x) (λAFT

(1 − x))fy

fy!
+

−
PTRwA

(1 − PTRx) λAFT
+ PTR (w − wA)

γ(wA + 1, λAFT
(1 − x))

Γ(wA + 1)
+

γ(wA, λAFT
(1 − x))

Γ(wA)
. (4.49)

Equations (4.48) and (4.49) can be shown numerically to sum to unity as expected.
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4.1.6 P(Mission Success) and Expected Time of Mission Success. For Scenario

1, (3.46) and (3.48) become

P
(w)
1 (x) =

∫ x

0

w−1
∑

f=0

e−λAFT
z (λAFT

z)f

f !
zfPTRdz (4.50)

=
w−1
∑

f=0

PTR

λAFT

γ(f + 1, λAFT
x)

Γ(f + 1)
(4.51)

E[xs] =

∑w−1
f=0

PTR(f+1)
λ2

AFT

γ(f+2,λAFT
)

Γ(f+2)

P
(w)
1 (As)

(4.52)

Note that the PTR’s would cancel, leaving no dependence on PTR in E[xs].

4.1.7 P(Mission Failure) and Expected Time of Mission Failure. We have already

calculated the probability of mission failure
(

P
(w)
0 (As) in (4.32)

)

.

4.1.8 Expected Vehicle Longevity. For Scenario 1 (3.57) becomes

E[xvl] = lim
n→+∞

n
∑

i=1

zi

[

PTR∆ize−λAFT
zi

(λAFT
zi)

w−1

(w − 1)!
+

(1 − PTRzi)e
−λAFT

zi
(λAFT

zi)
w−1

(w − 1)!
λAFT

∆iz +

PTRzie
−λAFT

zi
(λAFT

zi)
w−2

(w − 2)!
λAFT

∆iz

]

+

(1)
w−1
∑

wu=0

[

(1 − PTR)e−λAFT
(λAFT

)wu

wu!
+ PTRe−λAFT

(λAFT
)wu−1

(wu − 1)!

]

(4.53)

recalling that if wu − 1 < 0 then we say the term associated with 1
(wu−1)! = 0.
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Utilizing the definition of the definite integral, we have

E[xvl] = lim
n→+∞

∫ 1

0
z

[

PTRdze−λAFT
z (λAFT

z)w−1

(w − 1)!
+

(1 − PTRz)e−λAFT
z (λAFT

z)w−1

(w − 1)!
λAFT

dz +

PTRze−λAFT
z (λAFT

z)w−2

(w − 2)!
λAFT

dz

]

+

(1)

w−1
∑

wu=0

[

(1 − PTR)e−λAFT
(λAFT

)wu

wu!
+ PTRe−λAFT

(λAFT
)wu−1

(wu − 1)!

]

(4.54)

=

[

w
PTRλw−1

AFT
w + λw

AFT

λw+1
AFT

γ(w + 1, λAFT
)

Γ(w + 1)
−

PTRw(w + 1)

λ2
AFT

γ(w + 2, λAFT
)

Γ(w + 2)

]

+

w−1
∑

wu=0

[

(1 − PTR)e−λAFT
(λAFT

)wu

wu!
+ PTRe−λAFT

(λAFT
)wu−1

(wu − 1)!

]

. (4.55)

4.2 Scenario 2

Scenario 2 consists of a Poisson field of targets and a Poisson field of false targets.

For this new distribution we have the parameters β to represent the density of T’s in the

region As, βA represents the density of TA’s in As. We then define

λT = βAs , (4.56)

⇒ βA = λT x . (4.57)

λAT
= βAAs , (4.58)

⇒ βAA = λAT
x . (4.59)

Thus we have

P{Tt,A} = e−λAT
x (λAT

x)t

t!
, (4.60)

P{Tt,∆A} = λAT
dx , (4.61)

where P{Tt,∆A} is a differential probability. In addition, since Scenario 2 involves a possibly

infinite number of TA situations, the joint probabilities involving TA are independent (as
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the FTA’s were in Scenario 1), i.e.,

P {T0,A ∩ T1,∆A} = e−λAT
xλAT

dx . (4.62)

We will continue to formulate the probabilities in terms of a Poisson distribution of TA’s

and FTA’s although (as seen in Scenario 1) we can easily make the following substitutions

to generalize to Poisson distribution of T and FT with the associated confusion matrix.

λAFT
= λFT (1 − PFTR) , (4.63)

λAT
= λT PTR . (4.64)

For the single warhead case (w = 1) in Scenario 2, (3.9) becomes

P
(1)
1 (As) =

∫ 1

0
e−(λAT

+λAFT
)xλAT

dx . (4.65)

For multiple warheads in Scenario 2, (3.12) (the probability of at least one TA in As)

becomes

P
(w)
t≥1(As) =

∫ 1

0
λAT

e−(λAT
+λAFT

)x
w−1
∑

f=0

(λAFT
x)f

f !
dx . (4.66)

The FTA elemental probabilities for Scenario 2 were determined in Scenario 1. The prob-

abilities are similar for the TA elemental probabilities.

P (Tt,Ay) = e−λAT
y (λAT

y)t

t!
, (4.67)

P (T1,∆A) = λAT
dy , (4.68)

P (T0,Am−Ay) = e−λAT
(1−x−y) , (4.69)

P (Ff≤wA−t,Ay) =

wA−t
∑

f=0

e−λAFT
y (λAFT

y)f

f !
. (4.70)

4.2.1 Probability of an Exact Number of Target and False Target Attacks. Since

we are now dealing with a distribution of TA’s and FTA’s vice a distribution of T’s and
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FT’s, the confusion matrix is absorbed by the attack distribution parameters found in

(4.63) and (4.64). Therefore, in Scenario 2 we do not have subcases as in Scenario 1.

Case 1 [t + f = w (t ≥ 0)]: Equation (3.15) becomes

P
(w=t+f)
t,w−t (As) = λt

AT
λw−t

AFT

w

(t)!(w − t)!

∫ 1

0

{

e−(λAT
+λAFT

)xxw−1
}

dx (4.71)

After converting to incomplete gamma notation, we obtain

P
(w=t+f)
t,w−t (As) = λt

AT
λw−t

AFT

(

w

t

)

γ(w, (λAT
+ λAFT

))

Γ(w)(λAT
+ λAFT

)w
(4.72)

Case 2 [t + f < w (t ≥ 0)]: After some simplification of (3.17), we see that

P
(w>t+f)
t,f (As) = e−(λAT

+λAFT
)λt

AT
λf

AFT

1

(t)!(f)!
(4.73)

p
(w>t+f)
t,f (x) =

{

e−(λAT
+λAFT

)λt
AT

λf
AFT

t + f

(t)!(f)!
xt+f−1

}

(4.74)

4.2.2 Probability of Specified Number of Target Attacks and Expected Number.

Substituting (4.71) and (4.73) into (3.20) we calculate the overall probability of t TA’s.

P
(w)
t (As) = λt

AT
λw−t

AFT

w

t!(w − t)!

∫ 1

0

{

e−(λAT
+λAFT

)xxw−1
}

dx+

w−t−1
∑

f=0

e−(λAT
+λAFT

)λt
AT

λf
AFT

1

t!f !

(4.75)

Now, it is easy to show that
∑w

t=0 P
(w)
t (As) = 1 as expected, since having up to w TA’s in

As is exhaustive.

So then the expected number of TA, E[t] is

E[t] =
w
∑

t=0

tP
(w)
t (As) , (4.76)

(4.77)
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Recall our notation that whenever the upper limit on the summation sign is less than

zero, then the sum is zero.

E[t] =
w
∑

t=0

t
λt

AT
λ

(w−t)
AFT

(λAT
+ λAFT

)w

(

w

t

)

γ(w, (λAT
+ λAFT

) x)

Γ(w)
+

w−1
∑

t=0

w−t−1
∑

f=0

t
(λAT

x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x . (4.78)

4.2.3 Probability of Specified Number of False Target Attacks and Expected Number.

Similarly, for false target attacks we have

P
(w)
(·),f (As) =

λw−f
AT

λf
AFT

(λAT
+ λAFT

)w

(

w

f

)

γ(w, (λAT
+ λAFT

) x)

Γ(w)
+

w−f−1
∑

t=0

(λAT
x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x . (4.79)

So then

E[f ] =
w
∑

f=0

f
λw−f

AT
λf

AFT

(λAT
+ λAFT

)w

(

w

f

)

γ(w, (λAT
+ λAFT

) x)

Γ(w)
+

w−1
∑

f=0

w−f−1
∑

t=0

f
(λAT

x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x . (4.80)

4.2.4 Probability of a Certain Number of Warheads Remaining After Region A Has

Been Searched. Application of (3.30) and (3.31) to Scenario 2 is straightforward. We

compute

PwA=0(x) = (λAT
+ λAFT

)

(∫ x

0
e−(λAT

+λAFT
)zzw−1dz

)

×

(

w−1
∑

t=0

(λAT
)t

t!

(λAFT
)w−1−t

(w − 1 − t)!

) (4.81)
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= (λAT
+ λAFT

)
γ(w, (λAT

+ λAFT
)x)

(λAT
+ λAFT

)w

(

w−1
∑

t=0

(

w − 1

t

)

λt
AT

λw−1−t
AFT

(w − 1)!

)

(4.82)

=
γ(w, (λAT

+ λAFT
)x)

Γ(w)
(4.83)

P 1≤wA≤w(x) = e−(λAT
+λAFT

)xxw−wA

w−wA
∑

t=0

(λAT
)t

t!

(λAFT
)w−wA−t

(w − wA − t)!
, (4.84)

= e−(λAT
+λAFT

)x ((λAT
+ λAFT

)x)w−wA

(w − wA)!
. (4.85)

To illustrate the results of (4.82) and (4.85) we look at a sample case where n = 3, λAT
= 3,

and λAFT
= 10. We sum the previous probabilities and we see from Figure 4.1 that they

sum to one. We also see in this plot that the probability of having all the warheads

available is one at x = 0 and quickly approaches zero. Since we are expecting an average

of three target attack situations and ten false target attack situations in the battle space

(λAT
= 3, λAFT

= 10), the probability of having no warheads left becomes a practical

certainty as we approach the end of the battle space. Also note that since we are looking

at the probability of an exact number of warheads (which implies an exact number of

attacks - no more, no less), the probability for an intermediate number of warheads peaks

at some point in the battle space. For example, for wA = 2 (number of attacks = 1), we

initially have a probability of zero at x = 0 but at x ' .07 the probability peaks. This also

coincides with the most likely place where we would have our 2nd attack. After that, it

becomes more likely that another attack will occur (whether a TA or FTA).

A plot of the expected value of wA for the same set of parameters is found in Figure

4.2. Since the probabilities in (4.82) and (4.85) are continuous in x, the expected value is

continuous in x.
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= 3, λAFT

= 10, w = 3
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4.2.5 Probability of Additional TA’s Given a Certain Number of Warheads Remain-

ing After the Region A. Now (3.41) becomes

PwA
t (x) =

wA−ty−1
∑

fy=0

e−λAT
(1−x) (λAT

(1 − x))ty

ty!
e−λAFT

(1−x) (λAFT
(1 − x))fy

fy!
+

λ
ty
AT

λ
wA−ty
AFT

(λAT
+ λAFT

)wA

(

wA

ty

)

γ(wA, (λAT
+ λAFT

) (1 − x))

Γ(wA)
(4.86)

4.2.6 Probability of Mission Success. For Scenario 2, we will define mission

success as having at least m TA’s. We then have

P
(w)
t≥m(x) =

∫ x

0

w−m
∑

f=0

e−(λAT
+λAFT

)z (λAT
z)m−1

(m − 1)!

(λAFT
z)f

f !
λAT

dz (4.87)

=
w−m
∑

f=0

(

m + f − 1

f

)

λm
AT

λf
AFT

(λAT
+ λAFT

)m+f

γ(m + f, (λAT
+ λAFT

)x)

Γ(m + f)
.(4.88)

E[xs] =

∫ x

0

w−m
∑

f=0

ze−(λAT
+λAFT

)z (λAT
z)m−1

(m − 1)!

(λAFT
z)f

f !
λAT

dz (4.89)

=
w−m
∑

f=0

(

m + f

f

)

m
λm

AT
λf

AFT

(λAT
+ λAFT

)m+f+1

γ(m + f + 1, (λAT
+ λAFT

))

Γ(m + f + 1)
.(4.90)

4.2.7 Probability of Mission Failure. Plugging (4.72) and (4.73) into (3.51) we

calculate

P
(w)
t<m(As) =

m−1
∑

t=0

λt
AT

λw−t
AFT

w

t!(w − t)!

∫ 1

0

{

e−(λAT
+λAFT

)xxw−1
}

dx +

m−1
∑

t=0

w−t−1
∑

f=0

e−(λAT
+λAFT

)λt
AT

λf
AFT

1

t!f !
(4.91)

=
m−1
∑

t=0

λt
AT

λw−t
AFT

(

w

t

)

γ(w, (λAT
+ λAFT

))

Γ(w) (λAT
+ λAFT

)w +

m−1
∑

t=0

w−t−1
∑

f=0

e−(λAT
+λAFT

)λt
AT

λf
AFT

1

t!f !
. (4.92)
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4.2.8 Expected Vehicle Longevity.

E[xvl] = lim
n→+∞

n
∑

i=1

zi

w−1
∑

t=0

[

e−(λAT
+λAFT

)zi
(λAT

zi)
t

t!

(λAFT
zi)

w−1−t

(w − 1 − t)!
λAT

∆iz +

e−(λAT
+λAFT

)zi
(λAT

zi)
t

t!

(λAFT
zi)

w−1−t

(w − 1 − t)!
λAFT

∆iz

]

+

(1)
w−1
∑

wu=0

wu
∑

t=0

[

e−(λAT
+λAFT

) (λAT
)t

t!

(λAFT
)wu−t

(wu − t)!

]

. (4.93)

Using the definition of the definite integral, we have

E[xvl] =

∫ 1

0
z

w−1
∑

t=0

[

e−(λAT
+λAFT

)z (λAT
z)t

t!

(λAFT
z)w−1−t

(w − 1 − t)!
λAT

dz +

e−(λAT
+λAFT

)z (λAT
z)t

t!

(λAFT
z)w−1−t

(w − 1 − t)!
λAFT

dz

]

+

(1)

w−1
∑

wu=0

wu
∑

t=0

[

e−(λAT
+λAFT

) (λAT
)t

t!

(λAFT
)wu−t

(wu − t)!

]

(4.94)

=
w

(λAT
+ λAFT

)

γ(w + 1, (λAT
+ λAFT

))

Γ(w + 1)
+

w−1
∑

wu=0

wu
∑

t=0

e−(λAT
+λAFT

) (λAT
)t

t!

(λAFT
)wu−t

(wu − t)!
. (4.95)

4.3 Scenario 3

In this scenario we have N targets uniformly distributed amongst a Poisson field of

false targets. As stated earlier, we will only look at the probability of an exact number of

target attacks and false target attacks.

4.3.1 Probability of an Exact Number of Target and False Target Attacks. As in

the other scenarios, we must again split look at this probability for two cases.

Case 1 (t + f = w): Recall that we have to first determine the terms in (3.14). This

equation is repeated here:

p
(t+f=w)
t,f (x)dx = P (Tt−1,A ∩ T1,∆A)P (Ff,A) + P (Tt,A) P (Ff−1,A ∩ F1,∆A) .

4-16



Since we have a finite number of targets, the TA events in (Tt−1,A ∩ T1,∆A) are not

independent. We can determine this joint probability using conditional probabilities;

P (Tt−1,A ∩ T1,∆A) = P (Tt−1,A|T1,∆A)P (T1,∆A) . (4.96)

To have t− 1 TA in A means we have at least t− 1 T in A. Also, since we have only N T’s

in all of As then to have a TA in ∆A means we can have at most N −1 T in A. In addition,

recall that there can occur at most one event in a uniform distribution (see Appendix C).

Therefore,

P (Tt−1,A|T1,∆A) = P





N−1
⋃

t̄=t−1

{

Tt̄,A ∩ RTt−1

}



 , (4.97)

P (T1,∆A) = PTRNdx . (4.98)

Therefore,

P (Tt−1,A ∩ T1,∆A) =
N−1
∑

t̄=t−1

[(

N − 1

t̄

)

(x)t̄(1 − x)N−1−t̄

(

t̄

t − 1

)

×(PTR)t−1(1 − PTR)t̄−(t−1)
]

PTRNdx .

(4.99)

Similarly

P (Tt,A) =
N
∑

t̄=t

(

N

t̄

)

(x)t̄(1 − x)N−t̄

(

t̄

t

)

(PTR)t(1 − PTR)t̄−t . (4.100)

Since the FT’s are distributed according to a Poisson distribution, we have

P (Ff−1,A ∩ F1,∆A) = e−λAFT
x (λAFT

x)f−1

(f − 1)!
λAFT

dx, (4.101)

P (Ff,A) = e−λAFT
x (λAFT

x)f

f !
. (4.102)
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Therefore,

∫ x

0
p
(t+f=w)
t,f (x)dx

=

∫ x

0

N−1
∑

t̄=t−1

[(

N − 1

t̄

)

(x)t̄(1 − x)N−1−t̄

(

t̄

t − 1

)

(PTR)t−1(1 − PTR)t̄−(t−1)

]

×PTRNdxe−λAFT
x (λAFT

x)f

f !
+

∫ x

0

N
∑

t̄=t

(

N

t̄

)

(x)t̄(1 − x)N−t̄

(

t̄

t

)

×(PTR)t(1 − PTR)t̄−te−λAFT
x (λAFT

x)f−1

(f − 1)!
λAFT

dx .

(4.103)

Which simplifies to

∫ x

0
p
(t+f=w)
t,f (x)dx =

∫ x

0 (t + f)
∑N

t̄=t

[

(

N
t̄

)

(x)t̄−1(1 − x)N−t̄
(

t̄
t

)

(PTR)t(1 − PTR)t̄−t
]

e−λAFT
x (λAFT

x)f

f ! dx ,

= (t + f)
∑N

t̄=t

(

N
t̄

)(

t̄
t

)

(PTR)t(1 − PTR)t̄−t (λAFT
)f

f !

×
∫ x

0 (x)t̄−1(1 − x)N−t̄e−λAFT
xxfdx . (4.104)

The solution is

P
(t+f=w)
t,f (x) =w

N
∑

t̄=t

(

N

t̄

)(

t̄

t

)

(PTR)t(1 − PTR)t̄−t (λAFT
)f

f !

×
N−t̄
∑

i=0

(

N − t̄

i

)

(−1)N−t̄−i γ(f + N − i, λAFT
x)

λf+N−i
AFT

(4.105)

Case 2 (t + f < w):

P
(t+f<w)
t,f (x) =

N
∑

t̄=t

(

N

t̄

)

(x)t̄(1 − x)N−t̄

(

t̄

t

)

(PTR)t(1 − PTR)t̄−te−λAFT
x (λAFT

x)f

f !
(4.106)

Using the truncated binomial conversion (see Appendix D), we have

P
(t+f<w)
t,f (x) =

(

N

t

)

(PTRx)t(1 − PTRx)N−te−λAFT
x (λAFT

x)f

f !
(4.107)
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As a reminder, for Scenarios 3 through 6 we are just showing the computation of

Pt,f (x). Once this probability is computed, it is a simple matter of using various combi-

nations of t and f to obtain other probabilities such as Pt(x), PwA , and probabilities of

mission success and mission failure. However, the probability of additional TA’s given a

certain number of warheads remaining after A cannot be obtained through combinations

of t and f . This is primarily because, for this probability, we must take into account all

the possible states we could be in when we are at the end of A with wA warheads left.

4.4 Scenario 4

In this scenario we have N targets uniformly distributed amongst M false targets,

also uniformly distributed. Again, we exclusively examine the probability of an exact

number of target attacks and false target attacks.

4.4.1 Probability of an Exact Number of Target and False Target Attacks. As in

the other scenarios, we must again split look at this probability for two cases.

Case 1 (t + f = w): Recall that we have to first determine the terms in (3.14). This

equation is repeated here:

p
(t+f=w)
t,f (x)dx = P (Tt−1,A ∩ T1,∆A)P (Ff,A) + P (Tt,A) P (Ff−1,A ∩ F1,∆A) .

As in Scenario 3, we have a finite number of targets, therefore the TA events in

(Tt−1,A ∩ T1,∆A) are not independent and evaluate the same as in Scenario 3. In Scenario 4

we do the same types of things for the FTA events in (Ff−1,A ∩ F1,∆A). We can determine

this joint probability using conditional probabilities. Following the same procedure for the

FTA’s as we did for the TA’s in Scenario 3, we see that

P (Ff,A) =
M
∑

f̄=f

(

M

f̄

)

(x)f̄ (1 − x)M−f̄

(

f̄

f

)

(1 − PFTR)f (PFTR)f̄−f . (4.108)
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Also

P (Ff−1,A ∩ F1,∆A) =

M−1
∑

f̄=f−1

[(

M − 1

f̄

)

(x)f̄ (1 − x)M−1−f̄

(

f̄

f − 1

)

(1 − PFTR)f−1(PFTR)f̄−(f−1)

]

×

(1 − PFTR)Mdx . (4.109)

Using the truncated binomial conversion,

N
∑

i=c

(

N

i

)

(A)i(B)(N−i)

(

i

c

)

(C)c(D)(i−c) =

(

N

c

)

(AC)c [(AD) + B](N−c) , (4.110)

which then makes

P t+f=w
t,f (x) =

∫ x

0

(

(

N

t

)

(PTRx)t(1 − PTRx)(N−t) ×

(

M

f

)

((1 − PFTR)x)f (1 − (1 − PFTR)x)M−f 1

x
(t + f)

)

dx (4.111)

We then use the binomial conversion to convert the polynomials with x into a series and

integrate to obtain

P t+f=w
t,f (x) =

(

N

t

)N−t
∑

i=0

(

N − t

i

)

(−1)N−t−i(PTR)N−i

(

M

f

)

×

M−f
∑

j=0

(

M − f

j

)

(−1)M−f−j(1 − PFTR)M−j(t + f)
xN−i+M−j

N − i + M − j
. (4.112)

Case 2 (t + f < w):

Since we can find the probability of t TA and f FTA directly,

P t+f<w
t,f (x) =

N
∑

t̄=t

(

N

t̄

)

xt̄(1 − x)N−t̄

(

t̄

t

)

P t
TR (1 − PTR)t̄−t

×
M
∑

f̄=f

(

M

f̄

)

xf̄ (1 − x)M−f̄

(

f̄

f

)

(1 − PFTR)f (PFTR)f̄−f . (4.113)
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Once again, we make use of the truncated binomial conversion to obtain

P t+f<w
t,f (x) =

(

N

t

)

(PTRx)t (1 − PTRx)N−t

×

(

M

f

)

((1 − PFTR)x)f (1 − (1 − PFTR)x)M−f . (4.114)

4.5 Scenario 5

In this scenario we have N targets distributed according to a circular normal distri-

bution amongst a Poisson field of false targets.

If the location of an object is distributed according to circular normal distribution

centered about the origin with a variance σ2
T , then the probability of the object being at

the point (x, y) is

f(x, y) =
1

2πσ2
T

e
−x2+y2

2σ2
T (4.115)

So to find the probability of the object being within a radius r with r2 = x2 + y2, we

convert to polar coordinates and compute as follows:

P (object in r) =

∫ r

0

∫ 2π

0

1

2πσ2
T

e
− ρ2

2σ2
T ρdθdρ (4.116)

=

∫ r

0

1

σ2
T

e
− ρ2

2σ2
T ρdρ (4.117)

= 1 − e
− r2

2σ2
T (4.118)

So then, the probability of one object out of N objects being in an annulus with inner

radius of ρ and width dρ is

N
ρ

σ2
T

e
− ρ2

2σ2
T PTR (4.119)
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To find the probability of an object being within a radius r of the origin, we simply integrate

the annulus probability from 0 to r.

P (ρ) =

∫ r

0

1

σ2
T

e
− ρ2

2σ2
T ρdρ (4.120)

= 1 − e
− r2

2σ2
T . (4.121)

From this we can see that the probability of the object being outside a circle of radius r is

P (object outside of r) = e
− r2

2σ2
T (4.122)

To find the probabilities of objects following a Poisson distribution being in a circular

region of radius ρ and being in an annulus whose inner diameter is ρ with a width of dρ,

we look at the comparable probabilities in a rectangular area.

In the rectangular area, for a Poisson distribution, we had for the area defined by x

P = e−λFT (1−PFTR)x (λFT (1 − PFTR)x)f

f !
(4.123)

and for the strip defined by dx

P = λFT (1 − PFTR)dx , (4.124)

where the strip equation is the derivative of the argument in the Poisson distribution.

We see that for the circular area, αcπr2(1 − PFTR) takes the place of λFT (1 − PFTR)x.

Therefore, we have

P{Ff,A} = e−αcπρ2(1−PFTR) (αcπρ2(1 − PFTR))f

f !
, (4.125)

P{Ff,∆A} = 2αcπρ(1 − PFTR) (4.126)

4.5.1 Probability of an Exact Number of Target and False Target Attacks. As in

the other scenarios, we must again examine this probability for two cases.
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Case 1 (t + f = w): Recall that we have to first determine the terms in (3.14). This

equation is repeated here:

p
(t+f=w)
t,f (x)dx = P (Tt−1,A ∩ T1,∆A)P (Ff,A) + P (Tt,A) P (Ff−1,A ∩ F1,∆A) .

Since we have a finite number of targets, the TA events in (Tt−1,A ∩ T1,∆A) are not

independent. We can determine this joint probability using conditional probabilities as we

did in Scenarios 3 and 4;

P (Tt−1,Aρ |T1,∆Aρ) =

N−1
∑

i=t−1

(

N − 1

i

)

(

1 − e
− ρ2

2σ2
T

)i(

e
− ρ2

2σ2
T

)N−1−i

×

(

i

t − 1

)

(PTR)t−1(1 − PTR)i−(t−1) , (4.127)

P (T1,∆Aρ) = N
ρ

σ2
T

e
− ρ2

2σ2
T PTRdρ . (4.128)

Therefore,

P
(

Tt−1,Aρ ∩ T1,∆Aρ

)

=
N−1
∑

i=t−1

(

N − 1

i

)

(

1 − e
− ρ2

2σ2
T

)i(

e
− ρ2

2σ2
T

)N−1−i

×

(

i

t − 1

)

(PTR)t−1(1 − PTR)i−(t−1)N
ρ

σ2
T

e
− ρ2

2σ2
T PTRdρ . (4.129)

So then

P
(t+f=w)
t,f (Aρ) =

∫ r

0

(

N−1
∑

i=t−1

(

N − 1

i

)(

1 − e−
ρ2

2σ2

)i(

e−
ρ2

2σ2

)N−1−i( i

t − 1

)

(PTR)t−1(1 − PTR)i−(t−1) ×

N
ρ

σ2
T

e
− ρ2

2σ2
T PTRe−αcπρ2(1−PFTR) (αcπρ2(1 − PFTR))f

f !

)

dρ +

∫ r

0

(

N
∑

i=t

(

N

i

)(

1 − e−
ρ2

2σ2

)i(

e−
ρ2

2σ2

)N−i(i

t

)

(PTR)t(1 − PTR)i−t) ×

e−αcπρ2(1−PFTR) (αcπρ2(1 − PFTR))f − 1

(f − 1)!
2αcπρ(1 − PFTR)

)

dρ . (4.130)
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Or put another way, define

A(ρ) =

(

1 − e−
ρ2

2σ2

)

PTR , (4.131)

A
′(ρ) =

ρ

σ2
T

e
− ρ2

2σ2
T PTR , (4.132)

B(ρ) = αcπρ2(1 − PFTR) , (4.133)

B
′(ρ) = 2αcπρ(1 − PFTR) . (4.134)

Then we have

Ṗ
(t+f=w)
t,f (Aρ) =

(

N

t

)

[A(ρ)]t[1 − A(ρ)]N−t

×eB(ρ) (B(ρ))f

f !

(

A
′(ρ)

A(ρ)
t +

B
′(ρ)

B(ρ)
f

)

. (4.135)

Just for completeness, it can be shown (using binomial conversions) that

P
(t+f=w)
t,f (Ar) =

t(αcπ(1 − PFTR))f

σ2
T f !

(

N

t

) t−1
∑

i=0

(

t − 1

i

)N−t
∑

j=0

(

N − t

j

)

PN−j
TR

N−t−j
∑

k=0

(

N − t − j

k

)

×

(−1)2N−t−i−2j−k−1 1

2

γ(f + 1,
(

N−i−j−k)
2σ2

T

+ αcπ(1 − PFTR)
)

r2)
(

N−i−j−k)
2σ2

T

+ αcπ(1 − PFTR)
)f+1

. (4.136)

Note, we found that when computing the probability, it was faster to use a numerical

integration routine.

Case 2 (t + f < w) :

Again, we can compute the probability directly,

P
(t+f<w)
t,f (Ar) =

(

N

t

)((

1 − e−
r2

2σ2

)

PTR

)t(

1 −

(

1 − e−
r2

2σ2

)

PTR

)N−t

×e−αcπr2(1−PFTR) (αcπρ2(1 − PFTR))f

f !
, (4.137)

=

(

N

t

)

(A(r))t (1 − A(r))N−t e−B(r) (B(r))f

f !
. (4.138)
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4.6 Scenario 6

In this scenario we have N targets distributed according to a circular normal distri-

bution with variance σ2
T amongst a circular normal field of M false targets with variance

σ2
FT .

As in Scenario 5, the probability density function (pdf) for a true target is

ft(x, y) =
1

2πσ2
T

e
−x2+y2

2σ2
T . (4.139)

However, now the pdf for a false target is

ff (x, y) =
1

2πσ2
FT

e
−x2+y2

2σ2
FT (4.140)

4.6.1 Probability of an Exact Number of Target and False Target Attacks. As in

the other scenarios, we must again split this probability into two cases.

Case 1 (t + f = w): Recall that we have to first determine the terms in (3.14). This

equation is repeated here:

p
(t+f=w)
t,f (x)dx = P (Tt−1,A ∩ T1,∆A)P (Ff,A) + P (Tt,A) P (Ff−1,A ∩ F1,∆A) .

The A(ρ) and A
′(ρ) are the same as for Scenario 5. We calculate the B(ρ) and B

′(ρ)

via similarity. That is

TA ∼ FTA (4.141)

σT ∼ σFT (4.142)

PTR ∼ 1 − PFTR . (4.143)
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We then have

B(ρ) =

(

1 − e
− ρ2

2σ2
FT

)

(1 − PFTR) , (4.144)

B
′(ρ) =

ρ

σ2
FT

e
− ρ2

2σ2
FT (1 − PFTR) . (4.145)

The result is

Ṗ
(t+f=w)
t,f (Aρ) =

(

N

t

)

[A(ρ)]t[1 − A(ρ)]N−t

(

M

f

)

[B(ρ)]f [1 − B(ρ)]M−f

×

(

A
′(ρ)

A(ρ)
t +

B
′(ρ)

B(ρ)
f

)

. (4.146)

Case 2 (t+f ¡w): Similarly, we have

P
(t+f<w)
t,f (Aρ) =
(

N

t

)

(A(r))t(1 − A(r))N−t

(

M

f

)

(B(r))f (1 − B(r))M−f . (4.147)

As in Scenario 5, this could be solved by converting the polynomials to series expressions

using the binomial conversion and then using the incomplete gamma function; however, this

method is computationally slower than using a standard numerical integration package.

Note that, as in Scenarios 3 and 5, Scenarios 4 and 6 are of the same form (in

terms of A(ρ) and B(ρ)). If one could solve (4.146) as written, both scenarios would be

simultaneously solved. Then all that would be required would be to plug in the appropriate

expressions for A(ρ) and B(ρ) for each scenario. However, solution of equation (4.146) is

nontrivial. Instead, it was necessary to make the appropriate substitutions for A(ρ) and

B(ρ) and then solve. However, as in Scenario 5, the calculation of the probability was faster

when using a numerical integration routine than when using the analytical result. In this

case, when using Matlab, the run time for the numerical integration was approximately 0.5

seconds, and the run time for the analytical computation was approximately 37 seconds.
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V. Markov Chain Model

The probabilities of interest can be determined by modelling the system “dynamics” using

Markov techniques in which the state of the system is described by an ordered pair of

states (T ,F) in which T is defined as the number of target attacks, and F is the number of

false target attacks. The state probabilities of this bivariate, continuous-time Markov chain

depend on normalized time (x) into the process. The instantaneous transition probabilities

may depend on the time into the process, the time increment, and the previous state. They

are split into two classes.

1. PTt(x,∆x): Probability of a TA in ∆x given there were exactly t TA’s by x.

2. PFf
(x,∆x): Probability of a FTA in ∆x given there were exactly f FTA’s by x.

Two arbitrary points in the Markov chain are diagramed in Figure 5.1. The top portion

of the Figure examines the state (T = t,F = f) where t + f is less than the number of

warheads the UCAV originally carried. The bottom portion of the Figure examines the

state where t + f is equal to the original number of warheads.

For brevity sake, we denote the state (T = t,F = f) at time x as Xt,f,x. The

probability of state Xt,f,x is then P {Xt,f,x}. This is the same probability we represented

as Pt,f (x) in the previous chapters. In this Markov approach, however, it is not only

necessary to keep track of states and previous states; but also to clearly distinguish the

state’s probability from the instantaneous transition probabilities entering and exiting the

Figure 5.1 Partial Transition Rate Diagram for the Markov Chain Model
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states. Note that the probability is equal to zero for any state where any of the subscripts

are less than 0. In addition, when necessary, we distinguish the absorbing states from the

non-absorbing states as follows:

1. (Xt,f,x : t + f < w) is the non-absorbing state in which the total number of attacks

represented by that state are less than the total number of warheads.

2. (Xt,f,x : t + f = w) is the absorbing state in which the total number of attacks

represented by that state are equal to the total number of warheads.

In Scenarios 1 and 2, we are dealing with Poisson and uniform distributions. At

any time instant there can occur, at most, one event. This event can either be a TA or a

FTA. We note that the last row of the Markov chain corresponds to the situation where

t + f = w, therefore these states are absorbing states.

We will be examining the probabilities of various events. Each probability can be

determined from the probability of either one state or some combination of states. If we

look at the Markov chain at a given time (x), we can determine the probability of each

state at that time. We can then determine the probability for each event of interest at

that time.

The most elemental probability is the probability of being in a particular state. For

Markov chains, the probability of being in a particular state at time x can be computed

using the Chapman-Kolmogorov equation for the Markov chain.

5.1 Probability of an Exact Number of Target and False Target Attacks

Recall we have defined the state of the system as being the number of target attacks

and the number of false target attacks at time x. We have also seen that we have absorbing

states and non-absorbing states. The derivation of an absorbing state’s probability differs

from the derivation of the probability of a non-absorbing state. When t + f < w (a
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non-absorbing state), the Chapman-Kolmogorov equation is developed as follows

P (Xt,f,x+∆x) = P (Xt−1,f,x)PTt−1(x,∆x) + P (Xt,f−1,x)PFf−1
(x,∆x) −

P (Xt,f,x)
(

1 − PTt(x,∆x) − PFf
(x,∆x)

)

(5.1)

⇒

Ṗ (Xt,f,x) = lim
∆x→0

P (Xt,f,x+∆x) − P (Xt,f,x)

∆x

= P (Xt−1,f,x) lim
∆x→0

PTt−1(x,∆x)

∆x
+ P (Xt,f−1,x) lim

∆x→0

PFf−1
(x,∆x)

∆x
−

P (Xt,f,x)

(

lim
∆x→0

PTt(x,∆x)

∆x
+ lim

∆x→0

PFf
(x,∆x)

∆x

)

. (5.2)

For the absorbing states (t + f = w), we obtain

Ṗ (Xt,f,x : t + f = w) = P (Xt−1,f,x) lim
∆x→0

PTt−1(x,∆x)

∆x
+

P (Xt,f−1,x) lim
∆x→0

PFf−1
(x,∆x)

∆x
, (5.3)

where lim
∆x→0

PTt−1
(x,∆x)

∆x
and lim

∆x→0

PFf−1
(x,∆x)

∆x
are the instantaneous transition probabilities.

We will now summarize these instantaneous transition probabilities for the various

distributions. The development of these probabilities will be discussed in subsequent sec-

tions.

Recall we are working with a non-dimensional, normalized x. For the Poisson distri-

bution of targets and false targets in the rectangular battle space, we have

lim
∆x→0

PTt(x,∆x)

∆x
= λAT

, (5.4)

lim
∆x→0

PFf
(x,∆x)

∆x
= λAFT

. (5.5)

For the uniform distribution of N targets and M false targets we have

lim
∆x→0

PTt(x,∆x)

∆x
=

(N − t)PTR

(1 − PTRx)
, (5.6)

lim
∆x→0

PFf
(x,∆x)

∆x
=

(M − f)(1 − PFTR)

(1 − (1 − PFTR)x)
. (5.7)
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For the circular normal distribution of N targets and M false targets, we have

lim
∆x→0

PTt(x,∆x)

∆x
=

(N − t) ρ

σ2
T

e
− ρ2

2σ2
T PTR

[

1 − PTR

(

1 − e
− ρ2

2σ2
T

)] =
(N − t)A′(ρ)

(1 − A(ρ))
, (5.8)

lim
∆x→0

PFf
(x,∆x)

∆x
=

(M − f) ρ

σ2
FT

e
− ρ2

2σ2
FT (1 − PFTR)

[

1 − (1 − PFTR)

(

1 − e
− ρ2

2σ2
FT

)] =
(M − f)B′(ρ)

(1 − B(ρ))
, (5.9)

where A(ρ), A
′(ρ), B(ρ), and B

′(ρ) are defined by (4.131), (4.132), (4.144), and (4.145).

For the Poisson distribution of false targets in a circular battle space, we have

lim
∆x→0

PFf
(x,∆x)

∆x
= 2αcπρ(1 − PFTR) . (5.10)

Therefore, for Scenario 1 we have

Ṗ (X1,f,x : t + f < w) =
PTR

1 − PTRx
P (X0,f,x) + λAFT

P (X1,f−1,x) −

λAFT
P (X1,f,x) , (5.11)

Ṗ (X0,f,x : t + f < w) = λAFT
P (X0,f−1,x) −

(

λAFT
+

PTR

1 − PTRx

)

P (X0,f,x) , (5.12)

Ṗ (X1,f,x : t + f = w) =
PTR

1 − PTRx
P (X0,f,x : t + f < w) +

λAFT
P (X1,f−1,x : t + f < w) , (5.13)

Ṗ (X0,f,x : t + f = w) = λAFT
P (X0,f−1,x : t + f < w) , (5.14)
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the solutions of which are

P (X1,f,x : t + f < w) = PTRxe−λAFT
x (λAFT

x)f

f !
, (5.15)

P (X0,f,x : t + f < w) = (1 − PTRx) e−λAFT
x (λAFT

x)f

f !
, (5.16)

P (X1,f,x : t + f = w) =
wPTR

λAFT

γ (w, λAFT
x)

Γ (w)
, (5.17)

P (X0,f,x : t + f = w) =
γ (w, λAFT

x)

Γ(w)
− PTR

w

λAFT

γ (w + 1, λAFT
x)

Γ (w + 1)
, (5.18)

where γ(α, z) is the incomplete gamma function.

For Scenario 2,

Ṗ (Xt,f,x : t + f < w) = λAT
P (Xt−1,f,x) + λAFT

P (Xt,f−1,x) −

(λAT
+ λAFT

)P (Xt,f,x) , (5.19)

Ṗ (Xt,f,x : t + f = w) = λAT
P (Xt−1,f,x : t + f < w) +

λAFT
P (Xt,f−1,x : t + f < w) . (5.20)

The solution is

P (Xt,f,x : t + f < w) =
(λAT

x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x , (5.21)

P (Xt,f,x : t + f = w) = λt
AT

λw−t
AFT

(

w

t

)

γ (w, (λAT
+ λAFT

)x)

Γ(w) (λAT
+ λAFT

)w . (5.22)

Several probabilities can then be derived from P (Xt,f,x : t + f < w) and

P (Xt,f,x : t + f = w). The first probability we will derive is the probability of a specific

number of target attacks in normalized time x. This probability (while perhaps important

in its own right) is most useful in the calculation of other probabilities. Specifically, an

operational commander may wish to weigh the cost versus benefit of starting a particular

search and attack operation. To assist the commander in making this decision, several

probabilities could be used as determining factors. In particular, the probability of at least

a specified number of attacks or the expected number of target attacks could be used by
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the commander when determining the value of starting a particular operation. Each of

these first requires the calculation of the probability of a specified number of target attacks.

5.2 Probability of Specified Number of Target Attacks

The probability of a specified number of target attacks is determined by summing

the probabilities of all the states which have that number of attacks. This requires a

summation over the number of false target attacks:

P (Xt,f≥0,x) =
w−t
∑

f=0

P (Xt,f,x) ,

=
w−t−1
∑

f=0

P (Xt,f,x : t + f < w) + P (Xt,w−t,x : t + f = w) , (5.23)

where we adopt the convention that if the upper limit on the summation is less than the

lower limit, the summation is equal to zero. We also adopt a convention that the notation

f ≥ 0 indicates that we include all allowable f ’s greater than or equal to 0; i.e.
⋃w−t

f=0 f .

For Scenario 1 this becomes

P (X1,f≥0,x) =

w−2
∑

f=0

{

PTRxe−λAFT
x (λAFT

x)f

f !

}

+
wPTR

λAFT

γ(w, λAFT
x)

Γ(w)
, (5.24)

P (X0,f≥0,x) =

w−1
∑

f=0

{

(1 − PTRx) e−λAFT
x (λAFT

x)f

f !

}

+
γ (w, λAFT

x)

Γ(w)
−

PTR
w

λAFT

γ (w + 1, λAFT
x)

Γ (w + 1)
. (5.25)

For Scenario 2, we have

P (Xt,f≥0,x) =

w−t−1
∑

f=0

{

(λAT
x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x

}

+

λt
AT

λw−t
AFT

(

w

t

)

1

(λAT
+ λAFT

)w

γ(w, (λAT
+ λAFT

)x)

Γ(w)
. (5.26)
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The expected number of target attacks is then

E[t] =
w
∑

t=0

tP (Xt,f≥0,x) . (5.27)

Now we can compute the probability of at least a specified number of target attacks.

5.3 Probability of at Least a Specified Number of Target Attacks

The probability of at least ξ TA in A is the summation:

P (Xt≥ξ,f≥0,x) =
w
∑

t=ξ

P (Xt,f≥0,x) . (5.28)

For Scenario 1, the probability is inconsequential since there is only one target. For Scenario

2, however, this becomes

P (Xt≥ξ,f≥0,x) =
w−1
∑

t=ξ

w−t−1
∑

f=0

(λAT
x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x +

w
∑

t=ξ

λt
AT

λw−t
AFT

(

w

t

)

γ(w, (λAT
+ λAFT

)x)

Γ(w) (λAT
+ λAFT

)w , (5.29)

or equivalently

P (Xt≥ξ,f≥0,x) = 1 −

ξ−1
∑

t=0

w−t−1
∑

f=0

(λAT
x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x −

ξ−1
∑

t=0

λt
AT

λw−t
AFT

(

w

t

)

γ(w, (λAT
+ λAFT

)x)

Γ(w) (λAT
+ λAFT

)w . (5.30)

In addition, of potential interest to a tactical commander is knowing the expected

number of warheads left after searching a percentage of the battle space. This information

could be useful in planning area coverage using multiple UCAVs.
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5.4 Probability of a Certain Number of Warheads Remaining After Region A Has Been

Searched

We designate WA as the random variable representing the remaining number of

warheads after covering A. A realization of the random variable is wA. The probability of

wA warheads left after A (denoted PwA) is equivalently stated as the probability of w−wA

attacks (whether TA or FTA) in A:

PwA(x) ≡ P (WA = wA) (5.31)

= P (w − wA attacks after x) . (5.32)

By assuming wA 6= 0 we obtain the following for Scenario 1:

PwA(x) =
1
∑

t=0

P (Xt,f=w−wA−t,x : t + f < w) ,

= P (X0,f=w−wA,x : t + f < w) + P (X1,f=w−wA−1,x : t + f < w) ,

= (1 − PTRx) e−λAFT
x (λAFT

x)w−wA

(w − wA)!
+

PTRxe−λAFT
x (λAFT

x)w−wA−1

(w − wA − 1)!
, (5.33)

If wA = 0 then

PwA=0(x) =

1
∑

t=0

P (Xt,f=w−t,x : t + f = w) ,

= P (X0,w−0,x : t + f = w) + P (X1,w−1,x : t + f = w) ,

=
γ(w, λAFT

x)

Γ(w)
− PTR

w

λAFT

γ(w + 1, λAFT
x)

Γ(w + 1)
+

wPTR

λAFT

γ(w, λAFT
x)

Γ(w)
. (5.34)
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For Scenario 2 we have the following for wA 6= 0 and wA = 0:

PwA>0(x) =

w−wA
∑

t=0

(λAT
x)t

t!

(λAFT
x)w−wA−t

(w − wA − t)!
e−(λAT

+λAFT
)x (5.35)

= e−(λAT
+λAFT

)x ((λAT
+ λAFT

)x)w−wA

(w − wA)!
(5.36)

PwA=0(x) =
w
∑

t=0

λt
AT

λw−t
AFT

(

w

t

)

1

(λAT
+ λAFT

)w

γ(w, (λAT
+ λAFT

) x)

Γ(w)
(5.37)

=
γ(w, (λAT

+ λAFT
)x)

Γ(w)
. (5.38)

Once we have covered region A and realize we have wA warheads left, we can then

look at how many TA’s we can expect in the remaining region. This remaining region we

denote as Am, where Am ≡ As − A. Its area is Am = As − A. As x marked our passage

through As, so y will mark our passage through Am. That is, y is the proportion of Am

we have already covered when looking at the Markov chain. At the end of A, y = 0 and y

increases to y = 1 at the end of As. Also, we will denote the number of TA’s in Am as ty.

5.5 Probability of Additional TA’s Given WA Warheads Remaining After A

At the end of A, any state such that t + f = w−wA leaves us wA warheads. Each of

these states is a new starting point when looking at the possible number of target attacks

in Am. In essence, we have new Markov chains, one Markov chain for each possible state

that gives us wA warheads after A. As with the previous Markov chains, the instantaneous

transition probabilities may depend on the previous state. In addition, the transition rate

may also depend on the state we were in at the end of A, i.e. the probability of a state

in Am will be conditioned on a previous state as well as the state which started the new

Markov chain. To allow for this, we replace our old instantaneous transition probability

of PTt−1(x,∆x) with P
(

T1,∆y|Xty−1,fy ,y ∩ Xt,f,x

)

which is the probability of a TA in ∆y

given ty − 1 TA’s in y and being in state Xt,f at end of A (i.e. Xt,f,x). Similarly, we also

now have P
(

F1,∆y|Xty ,fy−1,y ∩ Xt,f,x

)

.
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Using these conditional probabilities in the Chapman-Kolmogorov equation yields

Ṗ
(

Xty ,fy ,y|Xt,f,x

)

= lim
∆y→0

P
(

Xty ,fy ,(y+∆y)|Xt,f,x

)

− P
(

Xty ,fy ,y|Xt,f,x

)

∆y
,

= P
(

Xty−1,fy ,y|Xt,f,x

)

lim
∆y→0

P
(

T1,∆y|Xty−1,fy ,y ∩ Xt,f,x

)

∆y
+

P
(

Xty ,fy−1,y|Xt,f,x

)

lim
∆y→0

P
(

F1,∆y|Xty ,fy−1,y ∩ Xt,f,x

)

∆y
−

P
(

Xty ,fy ,y|Xt,f,x

)





lim∆y→0
P(T1,∆y |Xty,fy,y∩Xt,f,x)

∆y
+

lim∆y→0
P(F1,∆y |Xty,fy,y∩Xt,f,x)

∆y



 .(5.39)

Equation (5.39) applies to the situation where ty + fy < wA. To make this equation

applicable to ty + fy = wA, simply add back in the last term (there is no outflow from a

state such that ty + fy = wA).

To evaluate (5.39), we need to examine the terms of the form

lim
∆y→0

P
(

T1,∆y|Xty ,fy ,y ∩ Xt,f,x

)

∆y
.

In evaluating this expression (and a similar expression for FTA), we take advantage

of the fact that the TA’s and FTA’s are independent of each other assuming there are

enough warheads (similarly, one TA is independent of another TA and the same for the

FTA’s):

lim
∆y→0

P
(

T1,∆y|Xty ,fy ,y ∩ Xt,f,x

)

∆y
= lim

∆y→0

P
(

T1,∆y|Tty ,y ∩ Ffy ,y ∩ Tt,x ∩ Ff,x

)

∆y
,

= lim
∆y→0

P
(

T1,∆y|Tty ,y ∩ Tt,x

)

∆y
,

=
P
(

Tty ,y ∩ Tt,x|T1,∆y

)

P
(

Tty ,y ∩ Tt,x

) lim
∆y→0

P (T1,∆y)

∆y
. (5.40)

Similarly,

lim
∆y→0

P
(

F1,∆y|Xty ,fy ,y ∩ Xt,f,x

)

∆y
=

P
(

Ffy ,y ∩ Ff,x|F1,∆y

)

P
(

Ffy ,y ∩ Ff,x

) lim
∆y→0

P (F1,∆y)

∆y
.(5.41)
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Also recall that t+ f = w−wA. Assuming that with these last two equations we can solve

(5.39), we would then have P
(

Xty ,fy ,y|Xt,w−wA−t,x

)

.

If we knew our state when we left A we could then make the following calculation;

P
(

Tty |Xt,w−wA−t,x

)

=

wA−ty
∑

fy=0

P
(

Xty ,fy ,y|Xt,w−wA−t,x

)

. (5.42)

However, when all we know is the number of warheads left after A we must include

all the possible states we could have been in after A. To do so, we shall make use of the

concept of the conditional probability as well as the fact that

P
(

Tty ∩ Xt,w−wA−t,x

)

=

wA−ty
∑

fy=0

P
(

Xty ,fy ,y|Xt,w−wA−t,x

)

P (Xt,w−wA−t,x) . (5.43)

We shall use the notation P
(

Tty |WA = wA

)

to denote P
(

Tty |
⋃w−wA

t=0 Xt,w−wA−t,x

)

. That

is, the probability of ty TA’s assuming wA warheads left after x (or w −wA attacks in x):

P
(

Tty |WA = wA

)

=

w−wA
∑

t=0

wA−ty
∑

fy=0

P
(

Xty ,fy ,y|Xt,w−wA−t,x

)

P (Xt,w−wA−t,x)

w−wA
∑

t=0
P (Xt,w−wA−t,x)

,(5.44)

P
(

Tty≥ξ|WA = wA

)

=

wA
∑

ty=ξ

w−wA
∑

t=0

wA−ty
∑

fy=0

P
(

Xty ,fy ,y|Xt,w−wA−t,x

)

P (Xt,w−wA−t,x)

w−wA
∑

t=0
P (Xt,w−wA−t,x)

.(5.45)

5.5.1 Scenario 1. For Scenario 1, to have a TA in Am means we could not have

a TA by x (nor could we have a TA by the end of y). Therefore, t = 0 (and ty = 0) in
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(5.40), and (5.41). For Scenario 1, we also have the following;

P (T1,∆y) = PTR∆y , (5.46)

P (T0,y ∩ T0,x|T1,∆y) = 1 , (5.47)

P (T1,y ∩ T0,x|T1,∆y) = 0 , (5.48)

P (T0,y ∩ T0,x) = 1 − PTRx − PTRy . (5.49)

And since the FTA’s follow a Poisson distribution, the number of FTA’s in any area are

independent of the number of FTA’s in any other area. Therefore,

lim
∆y→0

P
(

F1,∆y|Xty ,fy ,y ∩ Xt,f,x

)

∆y
= λAFT

. (5.50)

In the Markov chain that we are examining in Am, the probability equals zero for

any state which has a subscript that is less than zero. With that in mind, we note that

the Markov chain in Am is composed of two types of states. One where there are no TA’s

in Am, the other where there is one TA in Am.

Utilizing (5.46) thru (5.50), the ty = 0 situation has the following Chapman-Kolmogorov

equation and solution;

Ṗ
(

X0,fy ,y|X0,f,x : ty + fy < wA

)

= P
(

X0,fy−1,y|X0,f,x

)

λAFT
−

P
(

X0,fy ,y|X0,f,x

)

(

PTR

1 − PTRx − PTRy
+

λAFT
) , (5.51)

P
(

X0,fy ,y|X0,f,x : ty + fy < wA

)

=
1 − PTRx − PTRy

1 − PTRx
e−λAFT

y (λAFT
y)fy

fy!
. (5.52)

Now when ty = 1 we have the following;

Ṗ
(

X1,fy ,y|X0,f,x : ty + fy < wA

)

= P
(

X0,fy ,y|X0,f,x

) PTR

1 − PTRx − PTRy
+

P
(

X1,fy−1,y|X0,f,x

)

λAFT
−

P
(

X1,fy ,y|X0,f,x

)

λAFT
, (5.53)

P
(

X1,fy ,y|X0,f,x : ty + fy < wA

)

=
PTR

1 − PTRx
ye−λAFT

y (λAFT
y)fy

fy!
. (5.54)
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To solve (5.39) when ty + fy = wA in closed form, we will make use of the incomplete

gamma function. The solutions are then

P
(

X0,fy ,y|X0,f,x : ty + fy = wA

)

=
γ(wA, λAFT

y)

Γ(wA)
−

PTR

(1 − PTRx)

wA

λAFT

γ(wA + 1, λAFT
y)

Γ(wA + 1)
, (5.55)

and

P
(

X1,fy ,y|X0,f,x : ty + fy = wA

)

=
wAPTR

(1 − PTRx)λAFT

γ(wA, λAFT
y)

Γ(wA)
. (5.56)

Equations (5.51) through (5.56) provides the probabilities for the states in the new

Markov chain which start from a T = 0 state. We need to compute the same probabilities

for the Markov chain which starts from a T = 1 state.

Since Scenario 1 has only 1 target, it is easy to see that

P
(

X1,fy ,y|X1,f,x : ty + fy < wA

)

= 0 , (5.57)

P
(

X1,fy ,y|X1,f,x : ty + fy = wA

)

= 0 . (5.58)

When ty = 0 we have the following:

Ṗ
(

X0,fy ,y|X1,f,x : ty + fy < wA

)

= P
(

X0,fy−1,y|X1,f,x

)

λAFT
−

P
(

X0,fy ,y|X1,f,x

)

λAFT
, (5.59)

P
(

X0,fy ,y|X1,f,x : ty + fy < wA

)

= e−λAFT
y (λAFT

y)fy

fy!
. (5.60)

When ty + fy = wA, we have

P
(

X0,fy ,y|X1,f,x : ty + fy = wA

)

=
γ(wA, y)

Γ(wA)
(5.61)
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Substituting the appropriate expressions into (5.44) and simplifying, we have

P
(

Tty=0|WA = wA

)

=

wA−1
∑

fy=0

(

1 −
PTRλAFT

y

(1 − PTRx)λAFT
+ PTR (w − wA)

)

e−λAFT
y (λAFT

y)fy

fy!
+

−
PTRwA

(1 − PTRx)λAFT
+ PTR (w − wA)

γ(wA + 1, λAFT
y)

Γ(wA + 1)
+

γ(wA, λAFT
y)

Γ(wA)
, (5.62)

P
(

Tty=1|WA = wA

)

=
PTR

(1 − PTRx)λAFT
+ PTR (w − wA)

×





wA−2
∑

fy=0

e−λAFT
y (λAFT

y)fy+1

fy!
+ wA

γ(wA, λAFT
y)

Γ(wA)



 . (5.63)

We see that (5.62) and (5.63) is the same as (4.49) and (4.48) when we set y = 1 − x.

5.5.2 Scenario 2. As stated in Scenario 1, when dealing with Poisson distribution

of FTA’s (and now TA’s), the number of attacks in an area are independent of the number

of attacks in any other area. Therefore, (5.39) and its solution become

Ṗ
(

Xty ,fy ,y|Xt,f,x : ty + fy < wA

)

=

P
(

Xty−1,fy ,y

)

λAT
+ P

(

Xty ,fy−1,y

)

λAFT
− P

(

Xty ,fy ,y

)

(λAT
+ λAFT

) , (5.64)

P
(

Xty ,fy ,y|Xt,f,x : ty + fy < wA

)

= P
(

Xty ,fy ,y

)

= e−λAT
y (λAT

y)ty

ty!
e−λAFT

y (λAFT
y)fy

fy!
. (5.65)

For the ty + fy = wA situation, we again just add back in the last term of (5.64) and solve:

P
(

Xty ,fy ,y|Xt,f,x : ty + fy = wA

)

=

λ
ty
AT

λ
fy

AFT

(

wA

ty

)

1

(λAT
+ λAFT

)wA

γ(wA, (λAT
+ λAFT

) y)

Γ(wA)
. (5.66)
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So then we have

P
(

Tty |WA = wA

)

=

wA−ty−1
∑

fy=0

e−(λAT
+λAFT

)y (λAT
y)ty

ty!

(λAFT
y)fy

fy!
+

λ
ty
AT

λ
wA−ty
AFT

(

wA

ty

)

γ(wA, (λAT
+ λAFT

) y)

Γ(wA) (λAT
+ λAFT

)wA
, (5.67)

which matches (4.86) when y = 1 − x. We see that we also have

P
(

Tty≥ξ|WA = wA

)

=

wA−1
∑

ty=ξ

wA−ty−1
∑

fy=0

e−(λAT
+λAFT

)y (λAT
y)ty

ty!

(λAFT
y)fy

fy!
+

wA
∑

ty=ξ

λ
ty
AT

λ
wA−ty
AFT

(

wA

ty

)

γ(wA, (λAT
+ λAFT

) y)

Γ(wA) (λAT
+ λAFT

)wA
, (5.68)

and

E [ty|WA = wA] =

wA
∑

ty=0

tyP
(

Tty |WA = wA

)

. (5.69)

Other probabilities are of importance as well. We’ll now look at the probability of mission

success and mission failure.
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5.6 Probability of Mission Success

Mission success is defined as attacking at least a pre-specified number, m of targets.

So we simply have a repeat of a previous probability which can be expressed in two ways:

P (X≥m,f≥0,x) =
w
∑

t=m

w−t
∑

f=0

P (Xt,f,x) ,

=
w−1
∑

t=m

w−t−1
∑

f=0

P (Xt,f,x : t + f < w) +

w
∑

t=m

P (Xt,w−t,x : t + f = w) , (5.70)

= 1 −
m−1
∑

t=0

w−t
∑

f=0

P (Xt,f,x) ,

= 1 −
m−1
∑

t=0

w−t−1
∑

f=0

P (Xt,f,x : t + f < w) −

m−1
∑

t=0

P (Xt,w−t,x : t + f = w) . (5.71)

We have already computed the probability of mission success for Scenario 1 (since there is

only one target). It is simply Equation (5.24). For Scenario 2, we utilize (A.5) and (A.6)

to determine

P (X≥m,f≥0,x) =
w−1
∑

t=m

w−t−1
∑

f=0

(λAT
x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x +

w
∑

t=m

λt
AT

λw−t
AFT

(

w

t

)

γ(w, (λAT
+ λAFT

)x)

Γ(w) (λAT
+ λAFT

)w . (5.72)

or equivalently

P (X≥m,f≥0,x) = 1 −
m−1
∑

t=0

w−t−1
∑

f=0

(λAT
x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x −

m−1
∑

t=0

λt
AT

λw−t
AFT

(

w

t

)

γ(w, (λAT
+ λAFT

)x)

Γ(w) (λAT
+ λAFT

)w , (5.73)
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5.7 Probability of Mission Failure

Mission failure is the complement of mission success;

Pmf (x) = 1 − Pms = 1 − (1 − P (X≤m−1,f≥0,x)) = P (X≤m−1,f≥0,x) ,

=
m−1
∑

t=0

w−t
∑

f=0

P (Xt,f,x) ,

=
m−1
∑

t=0

w−t−1
∑

f=0

P (Xt,f,x : t + f < w) +
m−1
∑

t=0

P (Xt,w−t,x : t + f = w) . (5.74)

For Scenario 1 we have

Pmf (x) = 1 −
w−2
∑

f=0

PTRxe−λAFT
x (λAFT

x)f

f !
−

wPTR

λAFT

γ(w, λAFT
x)

Γ(w)
. (5.75)

For Scenario 2 we have

Pmf (x) =

m−1
∑

t=0

w−t−1
∑

f=0

(λAT
x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x +

m−1
∑

t=0

λt
AT

λw−t
AFT

(

w

t

)

γ(w, (λAT
+ λAFT

) x)

Γ(w) (λAT
+ λAFT

)w . (5.76)

Now that we have the probabilities of various combinations of target and false target

attacks, we can look at probabilities which are also important, especially to commanders

in the field. These probabilities involve not just target attacks but target kills.

5.8 Target Kills

Once we have the probability of target attacks, we can then incorporate the proba-

bility of killing a target. Similar to our notation for events involving TA’s, we define the

following events involving target kills (TK).

1. K: Target Kill

2. Ktk,(·) tk TK’s in the space represented by (·) (usually the normalized time, x)
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Define Pk as the probability of a target kill (TK) given a target attack and P (Ktk,x|Tt,x)

as the probability of exactly tk target kills in x given there were exactly t target attacks

in x. When Pk < 1 this probability takes the form of a binomial distribution:

P (Ktk,x|Tt,x) =

(

t

tk

)

(Pk)
tk(1 − Pk)

(t−tk) . (5.77)

However, when Pk = 1;

P (Ktk,x|Tt,x) = 1 : Pk = 1, tk = t , (5.78)

P (Ktk,x|Tt,x) = 0 : Pk = 1, tk 6= t . (5.79)

We assume in this research Pk < 1.

We can write the equation for the probability of exactly tk TK’s:

P (Ktk,x) = P (Tt≥tk,x)P (Ktk,x|Tt,x) ,

= P (Tt≥tk,x)

(

t

tk

)

(Pk)
tk(1 − Pk)

(t−tk) . (5.80)

Recall that P (Tt≥tk,x) involves a summation over t. In equation (5.80) (and any other time

we see such a combination of terms), the terms after the P (Tt≥tk,x) term are included in

that summation. Now if we want to compute the probability of at least tk TK’s in x, we

have

P (Ktk≥k,x) =

w
∑

tk=k

P (Tt≥tk,x)

(

t

tk

)

(Pk)
tk(1 − Pk)

(t−tk) . (5.81)
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When computing these probabilities in Am we have

P
(

Ktky
|WA = wA

)

=

wA
∑

ty=tky

w−wA
∑

t=0

wA−ty
∑

fy=0

P
(

Xty ,fy ,y|Xt,w−wA−t,x

)

P (Xt,w−wA−t,x)
(

ty
tky

)

(Pk)
tky (1 − Pk)

ty−tky

w−wA
∑

t=0
P (Xt,w−wA−t,x)

,

(5.82)

P
(

Ktky≥k|WA = wA

)

=

wA
∑

tky =k

wA
∑

ty=tky

w−wA
∑

t=0

wA−ty
∑

fy=0

P
(

Xty ,fy ,y|Xt,w−wA−t,x

)

P (Xt,w−wA−t,x)
(

ty
tky

)

(Pk)
tky (1 − Pk)

ty−tky

w−wA
∑

t=0
P (Xt,w−wA−t,x)

.

(5.83)

So, for example, in Scenario 2 we see that the probability of exactly tk kills is

P (Ktk,x) =
w−1
∑

t=tk

w−t−1
∑

f=0

(λAT
x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x

(

t

tk

)

(Pk)
tk(1 − Pk)

(t−tk) +

w
∑

t=tk

λt
AT

λ
(w−t)
AFT

(

w

t

)

γ(w, (λAT
+ λAFT

)x)

Γ(w)(λAT
+ λAFT

)w

(

t

tk

)

(Pk)
tk(1 − Pk)

(t−tk) .(5.84)

Recall our convention that any time the summation superscript is less than the subscript,

the summation is equal to zero.

Equation (5.84) would be used in any situations requiring the expected number of

TK’s in x, namely

E[tk] =
w
∑

tk=0

tkP (Ktk,x) . (5.85)
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For Scenario 2, we have

E[tk] =
w−1
∑

tk=0

w−1
∑

t=tk

w−t−1
∑

f=0

{

tk
(λAT

x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x

(

t

tk

)

P tk
k (1 − Pk)

t−tk

}

+

w
∑

tk=0

w
∑

t=tk

{

tkλ
t
AT

λw−t
AFT

(

w

t

)

γ(w, (λAT
+ λAFT

)x)

Γ(w)(λAT
+ λAFT

)w

(

t

tk

)

P tk
k (1 − Pk)

t−tk

}

.(5.86)

We also see that

P (Ktk≥k,x) =
w−1
∑

tk=k

w−1
∑

t=tk

w−t−1
∑

f=0

{

(λAT
x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x

(

t

tk

)

P tk
k (1 − Pk)

t−tk

}

+

w
∑

tk=k

w
∑

t=tk

{

λt
AT

λw−t
AFT

(

w

t

)

γ(w, (λAT
+ λAFT

)x)

Γ(w)(λAT
+ λAFT

)w

(

t

tk

)

P tk
k (1 − Pk)

t−tk

}

.(5.87)

Now when looking in Am we have for Scenario 2

P
(

Ktky
|WA = wA

)

=

wA−1
∑

ty=tky

wA−ty−1
∑

fy=0

(λAT
y)ty

ty!

(λAFT
y)fy

fy!
e−(λAT

+λAFT
)y

(

ty
tky

)

(Pk)
tky (1 − Pk)

ty−tky +

wA
∑

ty=tky

λ
ty
AT

λ
wA−ty
AFT

(

wA

ty

)

γ(wA, (λAT
+ λAFT

) y)

Γ(wA) (λAT
+ λAFT

)wA

(

ty
tky

)

(Pk)
tky (1 − Pk)

ty−tky , (5.88)

P
(

Ktky≥k|WA = wA

)

=

wA−1
∑

tky=k

wA−1
∑

ty=tky

wA−ty−1
∑

fy=0

(λAT
y)ty

ty!

(λAFT
y)fy

fy!
e−(λAT

+λAFT
)y

(

ty
tky

)

(Pk)
tky (1 − Pk)

ty−tky +

wA
∑

tky=k

wA
∑

ty=tky

λ
ty
AT

λ
wA−ty
AFT

(

wA

ty

)

γ(wA, (λAT
+ λAFT

) y)

Γ(wA) (λAT
+ λAFT

)wA

(

ty
tky

)

(Pk)
tky (1 − Pk)

ty−tky ,

(5.89)

and

E
[

Ktky
|WA = wA

]

=

wA
∑

tky =0

tkyP
(

Ktky
|WA = wA

)

. (5.90)
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Which we see is the same as Equation (5.85) with some variable replacements. This is

due to the independent and stationary increments associated with the Poisson processes

inherent in Scenario 2.

We have used Scenarios 1 and 2 to show detailed development of the various prob-

abilities using the Markov chain model. To be complete, we will examine the remaining

scenarios; but, as we did for the sequential events method, we will focus on the develop-

ment of the important probability of exactly t TA and f FTA. Once this is done, we will

summarize that probability for each scenario. Then we can conduct a sensitivity anal-

ysis on various parameters. The parameters λT and λFT are determined by the battle

space. These parameters represent the expected density of targets and false targets, re-

spectively. However, the following parameters are determined by equipment investment

and operational considerations; PTR, PFTR, Pk, w.

5.9 Scenario 3: Markov Chain Approach

For Scenario 3 the evaluation of the instantaneous transition probabilities is deter-

mined as follows:

PTt(x,∆x) = P {T1,∆x|Tt−1,x} (5.91)

=
P {Tt,x|T1,∆x}P {T1,∆x}

P {Tt,x}
(5.92)

Since there are N targets uniformly distributed, then we have (assuming N∆x � 1)

P {T1,∆x} = PTRN∆x , (5.93)

P {Tt,x} =
N
∑

i=t

(

N

i

)

xi(1 − x)N−i

(

i

t

)

P t
TR(1 − PTR)i−t . (5.94)

We use the truncated binomial conversion on the last equation to obtain

P {Tt,x} =

(

N

t

)

(PTRx)t (1 − PTRx)N−t . (5.95)
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Similarly,

P {Tt,x|T1,∆x} =
N−1
∑

i=t

(

N − 1

i

)

xi(1 − x)N−1−i

(

i

t

)

P t
TR(1 − PTR)i−t , (5.96)

=

(

N − 1

t

)

(PTRx)t (1 − PTRx)N−1−t . (5.97)

Therefore,

PTt(x,∆x) =

(

N−1
t

)

(PTRx)t (1 − PTRx)N−1−t NPTR∆x
(

N
t

)

(PTRx)t (1 − PTRx)N−t
, (5.98)

=

(

N−1
t

)

NPTR
(

N
t

)

(1 − PTRx)
∆x , (5.99)

=
(N − t)PTR

(1 − PTRx)
∆x . (5.100)

Recall that PTt(x,∆x) is the probability of a TA occurring after t TA’s have occurred by

x.

Because of the independent and stationary increments of the Poisson process, PFf
(x,∆x)

is a constant;

PFf
(x,∆x) = λAFT

∆x . (5.101)

Therefore

PTt(x) = lim
∆x→0

PTt(x,∆x)

∆x
=

(N − t)PTR

(1 − PTRx)
, (5.102)

PFf
(x) = lim

∆x→0

PFf
(x,∆x)

∆x
= λAFT

. (5.103)
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Making

Ṗ (Xt,f,x : t + f < w) =
(N − (t − 1))PTR

(1 − PTRx)
P (Xt−1,f,x : t + f < w) +

λAFT
P (Xt,f−1,x : t + f < w) −

(

(N − t)PTR

(1 − PTRx)
+ λAFT

)

P (Xt,f,x : t + f < w) , (5.104)

Ṗ (Xt,f,x : t + f = w) =
(N − (t − 1))PTR

(1 − PTRx)
P (Xt−1,f,x : t + f < w) +

λAFT
P (Xt,f−1,x : t + f < w) . (5.105)

Again, whenever a subscript is less than zero, that probability is zero. We solve these

differential equations recursively. That is, we start with state (i = 0, j = 0) incrementing

the number of FTA’s (j) for the given i till we get to j = f , then increment the i. We

continue this until we get to (i = t, j = f). The author used variation of parameters to

solve the differential equations whenever i + j < w and determined that

P (Xt,f,x : t + f < w) =
t−1
∏

i=0

(N − i)
(PTRx)t

t!
(1 − PTRx)N−t e−λAFT

x (λAFT
x)f

f !
, (5.106)

=

(

N

t

)

(PTRx)t (1 − PTRx)N−t e−λAFT
x (λAFT

x)f

f !
. (5.107)

See Appendix E for the derivation of (5.107).

By substituting (5.107) into (5.105) we obtain the derivative for the subsequent

t + f = w probability,

Ṗ (Xt,f,x : t + f = w) =

t−1
∏

i=0

(N − i)P t
TR (1 − PTRx)N−t

×e−λAFT
xλf

AFT
xt+f−1

(

t + f

t!f !

)

,

(5.108)

=

(

N

t

)

(PTRx)t (1 − PTRx)N−t e−λAFT
x (λAFT

x)f

f !

(

1

x
t +

1

x
f

)

(5.109)
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For notational convenience and to show similarities between scenarios, define

Au = PTRx , (5.110)

A
′
u = PTR , (5.111)

Bp = λAFT
x , (5.112)

B
′
p = λAFT

. (5.113)

We then have

PTt(x) =
(N − t) A

′
u

(1 − Au)
, (5.114)

PFf
(x) = B

′
p , (5.115)

and

P (Xt,f,x : t + f < w) =

(

N

t

)

A
t
u (1 − Au)N−t e−Bp

B
f
p

f !
, (5.116)

Ṗ (Xt,f,x : t + f = w) =

(

N

t

)

A
t
u (1 − Au)N−t e−Bp

B
f
p

f !

(

A
′
u

Au
t +

B
′
p

Bp
f

)

. (5.117)

5.10 Scenario 4: Markov Chain Approach

For Scenario 4 the evaluation of the instantaneous transition probabilities is as fol-

lows:

PTt(x,∆x) = P {T1,∆x|Tt,x} (5.118)

=
P {Tt,x|T1,∆x}P {T1,∆x}

P {Tt,x}
(5.119)
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Since there are N targets uniformly distributed, then we have the same results as in

Scenario 3

PTt(x,∆x) =
(N − t)PTR

(1 − PTRx)
∆x , (5.120)

lim
∆x→0

PTt(x,∆x)

∆x
=

(N − t)PTR

(1 − PTRx)
. (5.121)

Using the similarity between a TA and FTA where

N ∼ M, (5.122)

t ∼ f , (5.123)

PTR ∼ (1 − PFTR) , (5.124)

makes

PFf
(x,∆x) =

(M − f)(1 − PFTR)

(1 − (1 − PFTR)x)
∆x , (5.125)

PFf
(x) = lim

∆x→0

PFf
(x,∆x)

∆x
=

(M − f)(1 − PFTR)

(1 − (1 − PFTR)x)
. (5.126)

Making

Ṗ (Xt,f,x : t + f < w) =

(N − (t − 1))PTR

(1 − PTRx)
P (Xt−1,f,x : t + f < w) +

(M − (f − 1))(1 − PFTR)

(1 − (1 − PFTR)x)
P (Xt,f−1,x : t + f < w) −

(

(N − t)PTR

(1 − PTRx)
+

(M − f)(1 − PFTR)

(1 − (1 − PFTR)x)

)

P (Xt,f,x : t + f < w) , (5.127)

Ṗ (Xt,f,x : t + f = w) =

(N − (t − 1))PTR

(1 − PTRx)
P (Xt−1,f,x : t + f < w) +

(M − (f − 1))(1 − PFTR)

(1 − (1 − PFTR)x)
P (Xt,f−1,x : t + f < w) . (5.128)
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Again, whenever a subscript is less than zero, that probability is zero. We solve these

differential equations recursively. That is, we start with state (i = 0, j = 0) incrementing

the number of FTA’s (j) for the given i until we get to j = f , then increment the i. We

continue this until we get to (i = t, j = f). The author used variation of parameters to

solve the differential equations whenever i + j < w and determined that

P (Xt,f,x : t + f < w) =
t−1
∏

i=0

(N − i)
(PTRx)t

t!
(1 − PTRx)N−t ×

f−1
∏

j=0

(M − j)
((1 − PFTR)x)f

f !
(1 − (1 − PFTR)x)M−f , (5.129)

P (Xt,f,x : t + f < w) =

(

N

t

)

(PTRx)t(1 − PTRx)N−t×

(

M

f

)

((1 − PFTR)x)f (1 − (1 − PFTR)x)M−f . (5.130)

So then for t + f = w

Ṗ (Xt,f,x : t + f = w) =
t−1
∏

i=0

(N − i)P t
TR (1 − PTRx)N−t ×

f−1
∏

j=0

(M − j) ((1 − PFTR))f (1 − (1 − PFTR)x)M−f xt+f−1

(

t + f

t!f !

)

(5.131)

Ṗ (Xt,f,x : t + f = w) =

(

N

t

)

(PTRx)t(1 − PTRx)N−t×

(

M

f

)

((1 − PFTR)x)f (1 − (1 − PFTR)x)M−f

(

1

x
t +

1

x
f

)

. (5.132)

Similar to Scenario 3, we utilize

Au = PTRx , (5.133)

A
′
u = PTR , (5.134)

5-26



and define

Bu = (1 − PFTR)x , (5.135)

B
′
u = (1 − PFTR) . (5.136)

We then have the same PTt(x) as in Scenario 3 and in addition we have

PFf
(x) =

(M − f)B′(x)

1 − B(x)
. (5.137)

Therefore,

P (Xt,f,x : t + f < w) =

(

N

t

)

A
t
u (1 − Au)N−t

(

M

f

)

B
f
u (1 − Bu)M−f , (5.138)

Ṗ (Xt,f,x : t + f = w) =

(

N

t

)

A
t
u (1 − Au)N−t

(

M

f

)

B
f
u (1 − Bu)M−f

×

(

A
′
u

Au
t +

Bu

Bu
f

)

. (5.139)

5.11 Scenario 5: Markov Chain Approach

For Scenario 5 the evaluation of the instantaneous transition probabilities is as fol-

lows:

PTt(ρ, ∆ρ) = P {T1,∆ρ|Tt,ρ} (5.140)

=
P {Tt,ρ|T1,∆ρ}P {T1,∆ρ}

P {Tt,ρ}
(5.141)
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Since there are N targets with a circular normal distribution we have (assuming

Nρ∆ρ � 1)

P {T1,∆ρ} = N
ρ

σ2
T

e
− ρ2

2σ2
T PTR∆ρ , (5.142)

P {Tt,ρ|T1,∆ρ} =
N−1
∑

i=t

(

N − 1

i

)

(

1 − e
− ρ2

2σ2
T

)i(

e
− ρ2

2σ2
T

)(N−1−i)

×

(

i

t

)

P t
TR(1 − PTR)i−t , (5.143)

P {Tt,ρ} =
N
∑

i=t

(

N

i

)

(

1 − e
− ρ2

2σ2
T

)i(

e
− ρ2

2σ2
T

)(N−i)

×

(

i

t

)

P t
TR(1 − PTR)i−t . (5.144)

Using truncated binomial conversion, we obtain

P {Tt,ρ|T1,∆ρ} =

(

N − 1

t

)

(

(1 − e
− ρ2

2σ2
T )PTR

)t

×

[(

1 − e
− ρ2

2σ2
T

)

(1 − PTR) +

(

e
− ρ2

2σ2
T

)](N−t−1)

, (5.145)

P {Tt,ρ} =

(

N

t

)

((

1 − e
− ρ2

2σ2
T

)

PTR

)t

×

[(

1 − e
− ρ2

2σ2
T

)

(1 − PTR) +

(

e
− ρ2

2σ2
T

)]N−t

. (5.146)

Therefore,

PTt(ρ, ∆ρ) =
(N − t) ρ

σ2
T

e
− ρ2

2σ2
T PTR∆ρ

[

1 − PTR

(

1 − e
− ρ2

2σ2
T

)] (5.147)

and for the Poisson distribution of false targets we have

PFf
(ρ, ∆ρ) = 2αcπρ(1 − PFTR)ρ∆ρ . (5.148)
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By defining

Ac =

(

1 − e
− ρ2

2σ2
T

)

PTR , (5.149)

A
′
c =

ρ

σ2
T

e
− ρ2

2σ2
T PTR , (5.150)

Bcp = αcπρ2(1 − PFTR) , (5.151)

B
′
cp = 2αcπρ(1 − PFTR) , (5.152)

we can write our instantaneous transition probabilities as

PTt(ρ) =
(N − t)A′

c

[1 − Ac]
, (5.153)

and

PFf
(ρ) = B

′
cp . (5.154)

So then the Chapman-Kolmogorov equations are

Ṗ (Xt,f,ρ : t + f < w) = PTt−1(ρ)P (Xt−1,f,ρ : t + f < w) +

PFf−1
(ρ)P (Xt,f−1,ρ : t + f < w) −

(

PTt(ρ) + PFf
(ρ)
)

P (Xt,f,ρ : t + f < w) , (5.155)

Ṗ (Xt,f,ρ : t + f = w) = PTt−1(ρ)P (Xt−1,f,ρ : t + f < w) +

PFf−1
(ρ)P (Xt,f−1,ρ : t + f < w) . (5.156)

Using same method for solving the differential equation as in previous scenarios, we

obtain

P (Xt,f,ρ : t + f < w) =

(

N

t

)

A
t
c (1 − Ac)

N−t e−Bcp
B

f
cp

f !
, (5.157)

Ṗ (Xt,f,ρ : t + f = w) =

(

N

t

)

A
t
c (1 − Ac)

N−t e−Bcp
B

f
cp

f !

(

A
′
c

Ac
t +

B
′
cp

Bcp
f

)

. (5.158)
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At this point we note the similarity in form between Scenarios 3 and 5. This similarity

can be seen by comparing (5.116) and (5.117) with (5.157) and (5.158). If we could solve

(5.158) in that form, we would solve the Markov formulation for Scenario 3 at the same

time. All that would be required would be to make the appropriate substitutions for A

and B. However, this equation proved intractable in that form.

We have noted in Chapter IV that Ṗ (Xt,f,ρ : t + f = w) can be integrated by using

binomial conversions to convert polynomials to series; however, the solution is very compu-

tationally intensive. It is also time intensive to solve (5.155) recursively (such as shown in

Appendix E). Therefore, an attempt was made to solve the Chapman-Kolmogorov equa-

tion without having to use the recursive solution to the differential equations approach.

The unsuccessful attempt to solve it can be found in Appendix F.

5.12 Scenario 6: Markov Chain Approach

For Scenario 6 the evaluation of the instantaneous transition probabilities is as fol-

lows:

PTt(ρ, ∆ρ) = P {T1,∆ρ|Tt,ρ} (5.159)

=
P {Tt,ρ|T1,∆ρ}P {T1,∆ρ}

P {Tt,ρ}
(5.160)

We use the same equations for the targets as we did in Scenario 5.

PTt(ρ, ∆ρ) =
(N − t) ρ

σ2
T

e
− ρ2

2σ2
T PTR∆ρ

[

1 − PTR

(

1 − e
− ρ2

2σ2
T

)] (5.161)

By similarity, we have for the M false targets,
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PFf
(ρ, ∆ρ) =

(M − f) ρ

σ2
FT

e
− ρ2

2σ2
FT (1 − PFTR)∆ρ

[

1 − (1 − PFTR)

(

1 − e
− ρ2

2σ2
FT

)] (5.162)

By utilizing previous definitions

Ac =

(

1 − e
− ρ2

2σ2
T

)

PTR , (5.163)

A
′
c =

ρ

σ2
T

e
− ρ2

2σ2
T PTR , (5.164)

and defining new ones

Bc =

(

1 − e
− ρ2

2σ2
FT

)

(1 − PFTR) , (5.165)

B
′
c =

ρ

σ2
FT

e
− ρ2

2σ2
FT (1 − PFTR) , (5.166)

we can write our instantaneous transition probabilities as

PTt(ρ) =
(N − t)A′

c

[1 − Ac]
, (5.167)

and

PFf
(ρ) =

(M − f)B′
c

[1 − Bc]
, . (5.168)
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So then the Chapman-Kolmogorov equations are

Ṗ (Xt,f,ρ : t + f < w) = PTt−1(ρ)P (Xt−1,f,ρ : t + f < w) +

PFf−1
(ρ)P (Xt,f−1,ρ : t + f < w) −

(

PTt(ρ) + PFf
(ρ)
)

P (Xt,f,ρ : t + f < w) , (5.169)

Ṗ (Xt,f,ρ : t + f = w) = PTt−1(ρ)P (Xt−1,f,ρ : t + f < w) +

PFf−1
(ρ)P (Xt,f−1,ρ : t + f < w) . (5.170)

Using same method for solving the differential equation as in previous scenarios, we

obtain

P (Xt,f,ρ : t + f < w) =

(

N

t

)

A
t
c (1 − Ac)

N−t

(

M

f

)

B
f
c (1 − Bc)

M−f , (5.171)

Ṗ (Xt,f,ρ : t + f = w) =

(

N

t

)

A
t
c (1 − Ac)

N−t

(

M

f

)

B
f
c (1 − Bc)

M−f

×

(

A
′
c

Ac
t +

B
′
c

Bc
f

)

. (5.172)

We can see the similarities in form between Scenarios 4 and 6 by comparing (5.138) and

(5.139) with (5.171) and (5.172). As with Scenarios 3 and 5, (5.172) proved intractable in

this form. And solutions derived using the sequential events method were computationally

intensive. It was much faster to solve (5.117), (5.139), (5.158), and (5.172) using numerical

integration techniques. Appendix A summarizes the probability of an exact number of TA

and FTA for each scenario.
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VI. Application of Main Results

We now discuss the application of the probabilities computed in this research. We will

follow a notional UCAV from design to use in the battlefield and examine the use of these

probabilities at several critical stages: weapon system design, operational employment,

and tactical decision making. In this discussion we confine our attention to Scenario 2,

although it is possible to perform a similar analysis for the other scenarios.

6.1 System Design

When designing the system, we must balance the desire to attack real targets with the

desire to minimize false targets (collateral damage). In essence, this is a tradeoff between

the PTR and PFTR parameters in the confusion matrix. Recall that

λAT
= PTRλT , (6.1)

λAFT
= (1 − PFTR)λFT . (6.2)

In addition to the parameters involving the sensor, PTR and PFTR, we also have the

parameter which defines the effectiveness of the warhead, Pk. Each sensor has its own

possible values of PTR and PFTR and each warhead design has a particular value of Pk.

We must choose appropriate values (the appropriate sensor settings and warhead) for

these parameters. We can use the probabilities developed in this research to make that

determination. First, we must have some understanding of, or make assumptions about, the

range of environments in which this design will be utilized. Based on intelligence or enemy

doctrine, a distribution of targets and false targets is assumed. For purposes of illustration,

we will assume Poisson distributions. For now we will assume λFT = 20, λT = 10, but

the ratio of these parameters will be varied in subsequent sections. To start this analysis,

we calculate the expected number of target kills and assume for the time being that we

have ten warheads, each with Pk = 0.7. We have a choice of two sensors. For each sensor,

we assume that the probability of target attack PTR and probability of false target attack

1 − PFTR are related to a threshold parameter, h. When the target correlation is above

the threshold parameter, the object being examined is declared a target. When it is below
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Figure 6.1 Scenario 2: ROC curves for two possible sensors

the threshold, it is declared a false target. For simplicity sake, we define PTR and PFTR

to be related to h in the following way.

Table 6.1 Sensors
Sensor P (T ) Eqn P (F) Eqn ROC Eqn PFTR(PTR) Eqn

Sensor 1 PTR = 1 − h 1 − PFTR = (1 − h)10 1 − PFTR = P 10
TR PFTR = 1 − P 10

TR

Sensor 2 PTR = 1 − h 1 − PFTR = (1 − h)18 1 − PFTR = P 18
TR PFTR = 1 − P 18

TR

So, in general, our sensors are characterized by the governing equation PFTR =

1−P q
TR, where q = 10, 18. The Receiver Operating Characteristic (ROC) curve shows the

relation between PTR and 1 − PFTR by plotting one as a function of the other. The ROC

curves for these sensors are found in Figure 6.1. We can examine the various sensors in

terms of the expected number of target kills. This produces the plots in Figure 6.2.

The designer sees from this Figure that for this scenario, and for Pk = 0.7 and

w = 10, the q = 18 sensor does the better job. In addition, we see that at this Pk, there is

no point in raising the threshold so that PTR > 0.84. The reason is found in this sensors’

ROC curve in Figure 6.1, where it can be seen that above PTR = 0.84, the probability of

false target attack increases faster than the probability of target attack. We also see from
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Figure 6.2 Scenario 2: Expected number of TK for two sensors, w = 10, λFT = 20, λT =
10, Pk = 0.7, x = 1

Figure 6.2 that if for some reason we were to limit PTR to less than 0.7, then we might as

well go with the q = 10 sensor - presumably a cheaper sensor.

We now examine the relationship between PTR and Pk for the q = 18 sensor as shown

in Figure 6.3. Figure 6.3 not only indicates that PTR = 0.84 gives the maximum expected

number of target kills, but it also shows that this value is linear (or at least nearly so) with

respect to Pk. This seems to verify an expectation that E[tk] = PkE[t].

Now we analyze the impact of the number of warheads on the expected number of

TK’s. Note that our previous determination of the PTR which gave the maximum E[tk]

was only applicable for w = 10. For example, with everything else the same, the PTR

giving the best E[tk] went up as high as PTR = 0.92 for w = 18. For the rest of the

analysis in this section we will set PTR = 0.9.

The expected number of TK’s for various warhead capacities is found in Figure

6.4. From this Figure we note that with more than fourteen warheads, we start to get

diminishing returns. Obviously, the point at which we get diminishing returns is strongly

related to λT and λFT . As a result of Figure 6.4, we decide to incorporate into our design

a maximum of fourteen warheads.
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The preceding discussion examined the number of expected target kills regardless of

the number of FTA’s. However, FTA’s can be considered to be equivalent to collateral

damage. Therefore, we want to minimize FTA’s or constrain the number of FTA’s to some

number. We will examine the expected number of target kills for various w’s (w = 2 : 20)

and various PTR’s (for a particular λFT and λT ) with a maximum expected number of

FTA’s (E[f ] ≤ 0.1). This is found in Figure 6.5.

The unconstrained maximum E[tk]’s are marked in Figure 6.5 by x’s in the top plot.

Not surprisingly, the maximum increases as w increases. However, there is a plateau for

each curve due to the fact that we have more false targets than targets. As PTR increases,

the correlation threshold decreases meaning we are less discriminating when declaring a

target. Therefore, we will have more FTA’s. At some point, the FTA’s use up too many

warheads reducing the number of possible TA’s.

We see that as we increase w, along with more TK’s, we have more FTA’s. We also

see that we have more FTA’s as we increase PTR. We can therefore limit the number of

FTA’s by setting a minimum threshold level which gives a maximum PTR and therefore a

maximum number of FTA’s for that w. On the upper plot we can then plot the E[tk] for
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that constrained PTR and w. The result is the vertically diagonal line on the upper plot

of Figure 6.5. This line represents the constraint of keeping E[f ] below 0.1. Anywhere to

the left of this line violates the constraint. If we stick to the constraint, we notice that as

we increase w we get to a point of diminishing returns. In this case, it appears there is no

advantage in increasing w above w = 12. Therefore, a designer who is designing for this

situation might decide to design for a maximum of twelve warheads. In addition, we can

examine the variance for target kills.

Figure 6.6 shows the expected number of target kills, its standard deviation of the

mean, and two constraint lines for the same scenario as used in Figure 6.5 except that

Pk is now 0.8. One constraint line is associated with the constraint E[f ] ≤ 0.1. The

other constraint displayed is E[f ] + σ ≤ 0.1. The second constraint will obviously be

more stringent since a greater percentage of the possible number of FTA’s are below the

constraint line. Note that in Figure 6.6 we do not show the E[f ] plots. To meet the more

stringent constraint on FTA’s we must raise the ROC threshold thereby lowering PTR

which of course lowers E[tk]. To take the variance into account, we could then compute

E[tk] − σ for any given PTR and w. This will not necessarily be an integer, but we can

round down to the lower integer and round up to the higher integer to determine upper

and lower approximations to the E[tk]−σ value. We can then determine the probability of

obtaining at least those approximate number of target kills. This was done for the values

along the two constraint lines. The result is found in Figure 6.7. This figure could be used

whenever the values of E[tk] − σ are approximately the same for the two constraints. In

that case, we would use the values from the constraint where the probability is greatest

according to plots such as that found in Figure 6.7.

The design factor of w = 12 is valid for this particular set of λFT and λT . We can do

similar analysis for other λT ’s and λFT ’s and create a plot which, in effect, gives a design

space. To make this plot we must first set a desired increment for E[tk]. The first time

an increase in w produces an increment less than the desired increment will be considered

the point of diminishing returns. That w is then declared to be the maximum constrained

w. In addition, we decided to use a ratio r = λFT /λT which in combination with a λT
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defines a λFT . The result is found in Figure 6.8. This figure gives the best PTR and w

which maximizes E[tk] while constraining E[f ] ≤ 0.1.

Once a design is chosen, we can then see how robust it is to the possible ranges of

λT ’s and r’s we could expect to come across. Figure 6.9 shows the expected number of

TK’s for various λT ’s and r’s. The x’s correspond to the constraint E[f ] ≤ 0.1. This figure

shows some general rules of thumb a designer should keep in mind. We shall first conduct

our analysis assuming no constraint on FTA, then examine those results when enforcing

a constraint on FTA. To see the first rule of thumb, let us assume that we have correctly

guessed/estimated/determined the ratio but are incorrect about λT . Let us say that we

designed for λT = 5 and r = 10. That being the case, we would have chosen the PTR which

gives us point A1 in the figure. Let us then assume that in reality, unbeknownst to us,

r = 10 but λT is less than 5, say λT = 2. So then, while we are thinking we are operating

at point A1, we are actually operating at point A2. We see that the resulting E[tk] is not

very different from what we would have obtained had we operated at the maximum for

λT = 2, r = 10. Now let us examine the opposite situation, where we underestimate λT

instead of overestimate it. Say that once again we think we are operating at A1 but in

reality λT = 10 which means we are really operating at A3. We see that in this case the
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result is significantly different than if we would have know we were at λT = 10, r = 10 and

had set PTR to be on the curve’s maximum. We can see from the figure, that this is true

in general, it is better to overestimate λT than to underestimate it (given the estimate of

r is correct). That is the first rule of thumb.

The second rule of thumb is determined by assuming we have correctly determined λT

but incorrectly determined r. Using the same type of analysis, let us say that we designed

for λT = 10, r = 2 (point B1) but in reality had either underestimated (in reality r = 10,

point B2) or had overestimated (r really 0.1, point B3). We see that while overestimating

r causes some loss in E[tk] compared to the optimum for that curve, underestimating

creates an even bigger loss. Again, the figure indicates this is true in general. Therefore,

the second rule of thumb is that it is better to overestimate the ratio (given λT is correct).

Therefore, the more robust design would be one that is designed for the maximum λT and

r (when designing for a given range of λT and r).

We now examine the rules of thumb when we include the FTA constraint. Recall the

x’s in Figure 6.9 represent the FTA constraint. For each λT , the x on the furthest right

is for the minimum ratio and the x on the furthest left is for the maximum ratio. We see

that if we underestimate either λT or r we would violate the constraint. Therefore, the

rules of thumb hold for the constrained design as well. It should be pointed out that if the

threshold level of the ATR can be changed in the field, then Figure 6.9 becomes important

at the tactical level as well. Without good estimates of the distribution parameters, the

operator would want to set the ATR ROC threshold to coincide with the high λT and high

r curve (for either the unconstrained or constrained case, as desired).

For the rest of this chapter, we will assume that we are designing for 1 ≤ λT ≤ 10

and 0.1 ≤ r ≤ 2. Therefore, according to the rules of thumb we design for λT = 10 and

r = 2.

Once we have the values we will use for PTR, PFTR, Pk, w, we may then want to

evaluate this design further by doing some simulations. Whenever simulations are being

used, the question usually arises as to the validity of the simulation. A partial validation

can be accomplished using the probabilities described in this research. The designer sets
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Figure 6.9 Scenario 2: Environment Robustness E[tk]: w = 12, Pk = 0.8, q =
18, E[f ] ≤ 0.1

up the simulation to correspond with Scenario 2 and conducts a Monte Carlo experiment.

The probabilities from the Monte Carlo analysis should converge to those calculated using

the equations in this research. Validation work along these lines has been done by Schulz

[51] for the single warhead case.

6.2 Operational Employment

Once the UCAV is fielded, we may want to know the expected number of target kills

as the mission progresses. This information is found in Figure 6.4. We can also use this

figure when preparing to deploy the UCAV. We have to make a tradeoff between range

of the UCAV and number of warheads the UCAV carries (up to a maximum of fourteen

due to weight considerations). We could put the max load of warheads on the UCAV, but

this would reduce the fuel load and therefore the region being searched. What would be

the right combination of fuel and warheads? In this case, let us assume calculations show

that with a full complement of warheads (w = 14), the UCAV can only cover 40% of the

region it could cover if it only carried a payload of two warheads. So we can trade off area

covered for max possible number of targets killed (the number of warheads). Let us also
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assume that calculations show that starting with two warheads, for every two warheads we

add, the UCAV loses 10% of its two warhead range. The decision points are displayed in

Figure 6.10. Based on this Figure, we opt to carry ten warheads to maximize the expected

number of target kills and expect to kill four targets.

Once the decision is made to reduce the max area covered, we need to either rescale

the normalized time (x) or we need to rescale the parameters. We opt to do the latter. To

complete the rescaling, we need the old parameters and the x value which will be the new

maximum x value (denoted xm):

λT = λTold
xm = 10(0.6) = 6.0 , (6.3)

λFT = λFTold
xm = 20(0.6) = 12 . (6.4)

We then re-normalize the x values so that when we have reached the maximum range with

w = 10 we have x = 1. In addition, we will plot the expected value versus xc = 1−x. The

reason for this will become clearer in the next section.
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Figure 6.11 Scenario 2: Expected Number of Target Kills with Rescaled Area, λFT =
12, λT = 6, Pk = 0.8, PTR = 0.9, q = 18

6.3 Tactical Decision Making

The UCAV originally had ten warheads and, based on Figure 6.11, we expect four

target kills (point A in Figure 6.11). This is based on allowing the UCAV to exhaustively

and non-duplicatively search a region until its fuel is exhausted (represented by the nor-

malized time/normalized area covered x = 1). However, let us assume that partway into

the flight, the UCAV is called out of the battle space to help another UCAV kill some of

its targets. It takes a normalized time of xc = 0.3 from the time it leaves its search, assists

the other UCAV and gets back to the point it left (xc = 0.3 can be thought of as using

30% of its fuel for this deviation from its original mission). In the process of assisting the

other UCAV, this UCAV expended four warheads. Since the amount of fuel available for

the search of the original area and the total number of warheads which can be used in the

original battle space have both decreased, we now have a new (lower) expected value for

the total number of target kills in the original battle space. Figure 6.11 can be used to

determine the new expected value (point B). This figure would also be useful for a UCAV

that does not leave the battle space, but spends time loitering to improve classification of

a target. In this situation, the time spent loitering would be the xc and the number of

warheads would not change from the original.
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Figure 6.12 Scenario 2: Expected number of Target Kills assuming wA warheads remain
after x, λFT = 20, λT = 10, Pk = 0.8, PTR = 0.9, q = 18

Finally, let us examine a tactical situation where the UCAV started with ten warheads

and has covered 30% of the battle space and has expended six warheads. We may then

wonder what is the expected number of target kills from this point on. This information

can help us decide if we want the UCAV to continue searching or if we want to forsake this

originally assigned area to send the UCAV to help another UCAV in its search (or attack).

The needed information is found in Figure 6.12, where we see that with four warheads left

and 30% of the originally assigned battle space covered, we can expect two more target

kills (point A). This would be the cost of assisting another UCAV in its search and attack

mission (forsaking the currently assigned area). We note here that Figures 6.11 and 6.12

are equivalent due to the independent and stationary increments inherent in the Poisson

process. These figures would not necessarily be equivalent for other scenarios.

If the UCAV was operating autonomously, the UCAV might have an algorithm that

continuously updates the probability of at least one more target kill, given its current

position. Based on that probability, combined with knowledge of its fuel status, it could

decide whether to continue the search or assist another UCAV which has transmitted a

possible target location. In this case, the UCAV has covered 30% of its region and has

four warheads left. The probability of killing at least one more target is obtained by
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Figure 6.13 Scenario 2: Probability of at least one Target Kill assuming wA warheads
remain after x, λFT = 20, λT = 10, Pk = 0.8, PTR = 0.9, q = 18

P (Ktk≥k,x). We can see in Figure 6.13 that the probability of at least one more target

kill if we continue to search is approximately 97%. Of course, the validity of the results

presented in this section are all subject to the validity of the assumed distributions.
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VII. Control Formulation

In reality, our knowledge of the distribution of targets and false targets is limited. In

addition, when we attack an object, we do not know if we attacked a true target or not.

We just know the ATR declared the object to be a target. However, if we had a Bomb

Damage Assessment (BDA) capability, we could then know (after the fact) that we hit

a target. In fact, we could use this knowledge to assist us in making a better guess at

the distributions of the targets and false targets. With a better guess/estimate of the

distributions, we could improve our chances of attacking targets and avoiding false targets.

Our problem could then be viewed as a control type formulation.

In this formulation, we will again focus on Scenario 2. We assume the BDA capability

is able to detect whether an attacked object was a target or a false target. The states of the

system could be (Tt,x,Ff,x) (or Xt,f,x), λT , and λFT . The actuators would be the UCAV’s,

the sensors would correspond to the mechanism providing the BDA capability as well as

a counter which keeps track of the number of warheads we have used up to this point (or

equivalently, the number of warheads left after the last attack).

The question then arises as to the control command. To answer this question, we

look to the ROC. Recall that we assumed the ATR was such that a correlation factor was

used to decide if the object was a target or a false target. If the correlation was above a

certain threshold, the object was declared to be a target. If below the threshold, it was

declared to be a false target. This threshold is our candidate control. By way of example,

let us assume that we had thought λT = 5, and λFT = 20. As we attack objects and

conduct BDA, we find that λT was higher than expected, say λT = 20. Assuming we can

not change to a different sensor with a different ROC curve (whether in reality or in effect

via cooperative classification with another UCAV), about the only thing left to us is to

change where we are on the ROC curve, via the threshold. In our example, since it looks

like we have more targets than we originally thought, we can be more discriminating and

raise the threshold thereby lowering PTR. For simplicity, we assume that the threshold

parameter, h, and PTR are related as follows;

PTR = 1 − h . (7.1)

7-1



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

lt=1

lt=2

lt=5

lt=10

lt=15
lt=20

lt=30
lt=40

lt=60

P
TR

E(t
k
)

Figure 7.1 Scenario 2: Expected Number of Target Kill as a function of PTR, λT :
λFT = 20, w = 10, Pk = 0.8, q = 18

This erroneously assumes that we can know PTR for certain, when in truth we would most

likely only know its expected value for certain situations. However, in this chapter as well

as Chapter VI, we assume we can know PTR.

By using (7.1) and a ROC curve such as found in Table 6.1 we see that when lowering

the probability of correctly classifying a target given we have come across a target (low-

ering the number of target attacks), we will also lower the number of false target attacks,

leaving more warheads available for attacking targets. This, coupled with the fact that we

now have more targets than originally thought, will serve to increase the total number of

targets attacked. For the rest of this chapter, we seek to maximize the number of target

attacks/kills.

Once we have a good estimate of λT , we can use that knowledge to increase our

expected number of TK’s. Figure 7.1 shows this expected number of TA’s as a function of

PTR and λT ,. The maximum expected number for each λT is marked by a ×. Figure 7.2

shows a plot of the best PTR for a given λT ,(λFT assumed fixed) to maximize our expected

number of target kills. Once we have a good estimate of λT , λFT , we can find the PTR

(the control) to maximize our expected number of target kills.
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For now, we will guess that along with λFT = 20, that λT = 5. We choose the

threshold such that PTR = 0.8 based on Figures 7.1 and 7.2. Recall that for our sensor

model, the ROC curve is defined as

PFTR = 1 − P q
TR .

If our BDA was 100% accurate, after each measurement (BDA cycle) we would

know the state Xt,f,x exactly, but the values for λT and λFT remain uncertain. We need to

estimate their correct values. We chose to try and estimate these parameters via hypothesis

testing.

A probability which will be very useful in trying to determine the correct values of

λT and λFT is the probability of being in state Xt,f,x given wA warheads left after A,

P {Xt,f,x|wA}. For Scenario 2, this probability is calculated via the following;

P (Xt,f,x|wA) =
P {Xt,w−wA−t,x}

∑w−wA

i=0 P {Xi,w−wA−i,x}
. (7.2)
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Now we look at two cases wA 6= 0 and wA = 0. For the former case,

P (Xt,f,x|wA 6= 0) =

(λAT
x)t

t!

(λAFT
x)w−wA−t

(w−wA−t)! e−(λAT
+λAFT

)x

∑w−wA

i=0

(λAT
x)i

i!

(λAFT
x)w−wA−i

(w−wA−i)! e−(λAT
+λAFT

)x
, (7.3)

=

λt
AT

t!

λ−t
AFT

(w−wA−t)!

∑w−wA

i=0

λi
AT

i!

λ−i
AFT

(w−wA−i)!

, (7.4)

=

(

w−wA

t

)

(

λAT

λAFT

)t

(

1 +
λAT

λAFT

)w−wA
, (7.5)

=

(

w−wA

t

)

(

PTR

(1−PFTR)
λT

λFT

)t

(

1 + PTR

(1−PFTR)
λT

λFT

)w−wA
. (7.6)

A similar development of the wA = 0 case provides the same answer, so

P (Xt,f,x|wA) =

(

w−wA

t

)

(

PTR

(1−PFTR)
λT

λFT

)t

(

1 + PTR

(1−PFTR)
λT

λFT

)w−wA
. (7.7)

We can see that (7.7) does not depend on the values of λT and λFT , only their ratio.

However, the expected number of TA or FTA is dependent on their values. We also note

that (7.7) does not depend on x. This dependence was cancelled out due to the ratio of

λAT
to λAFT

. Therefore, any subsequent analysis can be applied to any x. This analysis

is obviously only applicable for Scenario 2. Let

r ≡
λFT

λT
. (7.8)

For now, let us assume that we have four hypotheses on the value of r (r = 1, 2, 4, 20).

These plots are found in Figure 7.3. Even though the plots in this figure only depend on

the ratio of λFT to λT , we must keep in mind that the actual values of λFT and λT affect

the expected number of target kills and therefore impact the control value we would use.

We see from this figure that if our measurement told us we had six TA’s, then it

would be reasonable to assume (out of these four choices) r = 1, with potential refinement
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Figure 7.3 Scenario 2: Probability of target attack for various ratios of λFT /λT given
four warheads left after A: PTR = 0.9, q = 18, w = 10

later as more warheads are dropped. However, having a good estimate of the ratio r is not

enough to determine a good control value. We also need a good estimate of λT (or λFT ).

Once we have good estimates of r and λT we can determine λFT and use plots similar to

that found in Figure 7.2 to determine the appropriate control.

We can estimate the correct value of λT in a fashion similar to that used in estimating

the ratio. In this case, instead of using the statistic P {Xt,f,x|wA} as we did for the ratio,

we could use the statistic P {WA = wA} as a function of x. Letting r = λFT /λT , (4.85)

becomes

P (wA : 1 ≤ wA ≤ w) = e−(λAT
+λAFT

)x ((λAT
+ λAFT

)x)w−wA

(w − wA)!

= eλT (PTR+r(1−PFTR))x (λT (PTR + r(1 − PFTR))x)w−wA

(w − wA)!
.(7.9)

We can then plot this probability as a function of x for various λT ’s as in Figure 7.4. If

we started with ten warheads and had our sixth attack at x = 0.28 and from our previous

analysis we had determined that it was most likely that r = 1, then we would conclude

from Figure 7.4 that of the five choices represented (λT = 20, 10, 5, 2, 1) that λT = 20
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Figure 7.4 Scenario 2: Probability of wA = 4 warheads left after A: r = 1, PTR =
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seems the best choice. Therefore, if r = 1 and λT = 20, then λFT = 20; and we see from

Figure 7.2 that the new command should be the threshold where PTR = 0.75. Assuming

we have the correct λT and r, this new PTR will maximize our number of target kills.

The previous discussion details the control for the estimated parameter issue. Several

methods for estimating the parameters λT , λFT could be used along with the previous

discussion.

7.1 Hypothesis Testing

Since we do not have just a null and an alternate hypotheses, but instead we have

multiple hypotheses, we will need to use a variation of the traditional hypothesis testing.

One of the potential methods is the Generalized Sequentially Rejective Bonferroni Test

(GSRBT). For an example see [50].

At this point, we note that while Figure 7.2 is to some extent a summary of Figure

7.1, we should not ignore Figure 7.1. We seek the best PTR to maximize the expected

number of target kills. But we can see from Figure 7.1 that as λT increases (decreasing

the ratio r) we get to a point where the maximum number of target kills is unchanging
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even though the best PTR is changing significantly. This can be very useful information.

We can see from Figure 7.1 that we do not have to account for a myriad of hypotheses.

For the situation represented by Figure 7.1 (λFT = 20, w = 10, λT ranging from 1 to 60,

which means r ranges from 20 to 1/3, etc), we can eliminate hypotheses above λT = 30

because the change in expected value is relatively insignificant for a wide range of PTR

values. In fact, we decided that λT = 20 was high enough and were able to limit the

number of possible hypotheses accordingly. We will limit the complexity by choosing four

hypotheses for our analysis of this example. The λT ’s we shall choose are λT = 1, 5, 10, 20

and their corresponding ratios (since λFT = 20) are r = 20, 4, 2, 1.

For a particular value of λT or λFT there will be a particular ratio (designated r∗)

beyond which no significant increase in E[tk] is observed. In the case represented by Figure

7.1, λFT = 20 has r∗ = 1 (corresponds to λT = 20 in the figure). This r∗ value depends

on the value for λFT (or λT ). Recall that our proposed method is to first estimate r then

use that value to estimate λT (or λFT ). Therefore, we should not at this point, limit our

possible ratios for a particular value of λT (or λFT ). Instead we should examine a feasible

range of λT ’s (or λFT ’s) and determine the most extreme r∗ for that range. This then

would be the appropriate limit for the range of our hypotheses. However, since we are

merely illustrating a potential use of our research, we will continue with a particular value

of λFT .

Table 7.1 Probabilities of #TA Given wA = 4 and Given Several Hypotheses
H20 H4 H2 H1

#TA r = 20 r = 4 r = 2 r = 1

0 0.2074 0.0041 0.0002 0.0000
1 0.3730 0.0369 0.0044 0.0003
2 0.2796 0.1384 0.0330 0.0046
3 0.1118 0.2766 0.1320 0.0368
4 0.0251 0.3110 0.2967 0.1654
5 0.0030 0.1865 0.3558 0.3966
6 0.0002 0.0466 0.1778 0.3964

p value 0.0002 0.0466 0.1778 0.3964

The first step in the GSRBT process is to make an observation and then find the p

values of each hypothesis. Let us assume that BDA tells us that we have hit six actual
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targets. In that case the p values for our hypotheses are found on the bottom row of Table

7.1. Let us also assume that we had decided a priori to set α (the probability of a Type I

error) of α = 0.05 (a typical value).

We can incorporate any a priori information on the hypotheses by using a set of

positive real constants c1, . . . , cP , which have values directly proportional to the importance

of the individual hypotheses. We then define new p values defined as Si = pi/ci. In our

case we will assume we have no a priori information and so will set all the constants equal

to one.

We order the new Si values in ascending order, S(1) ≤ S(2) ≤ · · · ≤ S(P ), letting

c(i) and H(i) be the corresponding constants and hypotheses respectively. In addition, we

define αi = α/
∑P

j=i c(j). Sequential tests can now be conducted as follows: As i goes from

0 to P , if S(i) ≤ αi we reject H(i) and continue on to test the next increment. If S(j) > αj

then we fail to reject H(j) (j = i, . . . , P ).

In our example, with an observation of six TA, we see that the hypotheses are already

in ascending order. That is, H(1) = H20, H(2) = H4, H(3) = H2, H(4) = H1. Our first

test in the sequential testing is for H(1). We see that S(1) = 0.0002 ≤ α1 = 0.05/4, therefore

H(1) is rejected. However, since S(1) = 0.0466 > α2 = 0.05/3 which means we fail to reject

H(i) (i = 2, 3, 4).

The reason for the division of α by the number of tests (and then by decreasing

amounts thereafter) is to correct for a problem that occurs when performing k multiple

independent significance tests each at the α level. The probability of incorrectly rejecting

the null (Type I error) at least once is 1− (1−α)k. For example, with k = 4 and α = 0.05,

there is a 19% chance of at least one of the four tests being declared significant when the

null hypothesis is true. However, it is not certain that the condition of performing four

multiple independent tests is met. If this requirement could be relaxed then we would be

able to reject H(2) as well. In addition, there are other less restrictive modifications to

account for this error.

An alternative approach to this problem is provided by maximum likelihood methods.

In general and simplified terms, these methods would multiply the resulting command from
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each hypothesis by the probability that that hypothesis is true. The resulting command

would be a weighted sum of each hypothesis’ command with the heavier weight placed on

the most probable hypothesis. This might be more fruitful especially when we note that

the real range of possible r’s is not limited to just these four, but could be any real number

on the interval.
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VIII. Cooperation

This chapter examines uses of the probability factors for cooperative behavior. We will ex-

amine some very basic cooperative schemes for two UCAV’s. For mathematical tractability

we will concentrate on Scenario 2. In all schemes we will examine two rules of engagement

(ROE). The schemes, ROE’s, and resulting confusion matrix parameters are similar to

those devised by Jacques [28] and Jacques and Pachter [29]. The first ROE is that both

vehicles must agree that an object is a target before attacking. The second ROE is that

at least one must declare the object a target before attacking. We do not address which

UCAV attacks the target.

8.1 Rules of Engagement

As far as the sensors are concerned, by using these two ROE’s, we have, in effect,

combined both sensors to produce a meta-sensor. This meta-sensor’s properties are de-

termined by the individual UCAV’s sensors and the ROE that governs the classification

process. Let us assume that both UCAV’s have the same type of sensors such that their

sensor parameters are the same. Further, let us assume for the sake of simplicity, that the

declaration of an object as a target by one sensor is independent of the declaration of that

object by the other sensor. If we are working under ROE 1 the meta-sensor’s confusion

matrix is as shown in Table 8.1. We see that the sensor parameters for ROE 1 (both must

Table 8.1 Meta-Sensor Confusion Matrix for ROE 1
H

H
H

H
HH

Object Encountered

Object
H

H
H

H
HH

T FT

Reported T P 2
TR (1 − PFTR)2

as FT 1 − P 2
TR 1 − (1 − PFTR)2

declare it a target) is

PTRB
= P 2

TR , (8.1)

PFTRB
= 1 − (1 − PFTR)2 . (8.2)
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The meta-sensor’s PTR (i.e. PTRB
) is lower than the single sensor’s, but the meta-sensor’s

PFTR (i.e. PFTRB
) is higher than the single sensor’s. Therefore, we will attack targets less

often, but we will also attack false targets less often. Note this is true even if our PTR and

PFTR could be altered independently (i.e. not related via the ROC).

If working under ROE 2 the confusion matrix is found in Table 8.2. From Table 8.2,

Table 8.2 Meta-Sensor Confusion Matrix for ROE 2
H

H
H

H
HH

Object Encountered

Object
H

H
H

H
HH

T FT

Reported T 1 − (1 − PTR)2 1 − P 2
FTR

as FT (1 − PTR)2 P 2
FTR

we see that the sensor parameters for ROE 2 (either must declare it a target) is

PTRE
= 1 − (1 − PTR)2 , (8.3)

PFTRE
= P 2

FTR . (8.4)

So then, the meta-sensor’s PTR (i.e. PTRE
) is higher than the single sensor’s, but the

meta-sensor’s PFTR (i.e. PFTRE
) is lower than the single sensor’s. We will be more likely

to have target attacks, but also more likely to have false target attacks (given everything

else is the same). Again, this is independent of whether a ROC curve is governing PTR

and PFTR or not. With this information we may consider various cooperative schemes.

8.2 Scheme 1: Travel the Same Path

The first cooperative scheme will be where both UCAV’s travel the same path to-

gether. Figure 8.1 depicts this scheme

In this scheme, each UCAV sees everything the other one sees and both have the same

probability of coming across a T or FT. And since the two UCAV’s are flying together,

either UCAV’s warheads are capable of hitting any target.

Since either UCAV’s warheads can be used and since we are utilizing both UCAV’s

sensors simultaneously on the same field, we in effect have a super-UCAV. One in which
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Figure 8.1 Cooperative Scheme 1

the super-UCAV sensor is defined by the ROE’s described in Tables 8.1 and 8.2 and who

has wB = wucav1 + wucav2 warheads.

For Scenario 2 we will need to define the following variables for the Poisson distribu-

tions.

λATB
= PTRB

λT , (8.5)

λAFTB
= (1 − PFTRB

)λFT . (8.6)

This, then, makes the Scenario 2 equations as follows

P (Xt,f,x : t + f < wB) =

(

λATB
x
)t

t!

(

λAFTB
x
)f

f !
e
−
(

λATB
+λAFTB

)

x
, (8.7)

P (Xt,f,x : t + f = wB) = λt
ATB

λf
AFTB

(

wB

t!f !

) γ(wB,
(

λATB
+ λAFTB

)

x)
(

λATB
+ λAFTB

)wB
. (8.8)
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Figure 8.2 Cooperative Scheme 1 Comparison of ROE 1 and 2: wucav1 = 10, λT =
10, λFT = 20, PTR = 0.8, q = 18

Similarly, for ROE 2 we have

λATE
= PTRE

λT , (8.9)

λAFTE
= (1 − PFTRE

)λFT , (8.10)

and

P (Xt,f,x : t + f < wB) =

(

λATE
x
)t

t!

(

λAFTE
x
)f

f !
e
−
(

λATE
+λAFTE

)

x
, (8.11)

P (Xt,f,x : t + f = wB) = λt
ATE

λf
AFTE

(

wB

t!f !

) γ(wB,
(

λATE
+ λAFTE

)

x)
(

λATE
+ λAFTE

)wB
. (8.12)

Now we can compare the two ROE’s. To do this we will plot the expected number

of target kills vs x (percentage into the battle space) and expected number of false target

attacks vs x. We see this comparison in Figure 8.2. Note what happens when we make

the density of the targets larger than the density of the false targets as seen in Figure 8.3.

In this figure we see a plateau effect, in this case, due to the number of warheads.
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Figure 8.3 Cooperative Scheme 1 Comparison of ROE 1 and 2: wucav1 = 10, λT =
40, λFT = 20, PTR = 0.8, q = 18, Pk = 0.8

We see from these figures that ROE 2 is the best if we are willing to accept the

resulting number of false target attacks. However, if we are not willing to accept the

requisite number of false target attacks, then ROE 1 would be the ROE to choose.

Figure 8.4 shows the same info as a function of PTR. From this figure we can

evaluate the ROE’s for any PTR. In this example, we see from Figure 8.4 that ROE 1 is

more advantageous for both the expected number of target kills as well as the expected

number of FTA’s when PTR > .8. For PTR < .7 ROE 2 is more advantageous for expected

number of target kills with approximately the same expected number of FTA’s. This kind

of information is useful in determining the desired ROE for a given situation.

8.3 Scheme 2: Travel Parallel Paths

For Scheme 2, the two UCAV’s follow parallel paths but with the capability to

instantaneously look at the other path to help in the classification when directed by the

UCAV on that path. The UCAVs can also drop warheads on either path. This either

involves invoking a simplifying assumption of instantaneous transport from one path to

the other, or maybe a bit more realistic, the two UCAV’s flying side by side but using a
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Figure 8.4 Cooperative Scheme 1 Comparison of ROE 1 and 2 and PTR: wucav1 =
10, λT = 40, λFT = 20, q = 18, Pk = 0.8

sensor looking out the side of the UCAV. Each UCAV’s sensor concentrates their search

on their path but can instantly swing the sensors field of view to the other path when

requested by the other UCAV. Figure 8.5 depicts this scheme.

With this scenario, we will assume that when UCAV1 sees an object, it asks UCAV2

to confirm regardless of if UCAV1 classified it as a target or a false target.

The parameters PTRE
, PFTRE

, PTRB
, PFTRB

are the same as in the previous scheme,

but the distributions of the targets and false targets are now different. We will designate

the distribution of the targets and false targets on UCAV1’s side as λT1 , λFT1 , respectively.

Similarly, on UCAV2’s side we have λT2 , λAFT2
.

Therefore,

λATE1
= PTRE

λT1 , (8.13)

λAFTE1
= (1 − PFTRE

)λAFT1
, (8.14)

λATB1
= PTRB

λT1 , (8.15)

λAFTB1
= (1 − PFTRB

)λAFT1
, (8.16)
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Figure 8.5 Cooperative Scheme 2

and similar equations for UCAV2’s territory.

As a side note, if we were to take the same battle space we had in Scheme 1 and use

cooperative Scheme 2 on it, we would have

λT1 = λT2 =
λT

2
, (8.17)

λFT1 = λFT2 =
λFT

2
. (8.18)

In addition, we must take into account the various combinations of TA’s and FTA’s

in each of the areas when finding the probability that the system has attacked a certain

number of targets and false targets.

P
(t+f<wB)
t,f,system =

t
∑

t1=0

f
∑

f1=0

P
(t+f<wB)
t1,f1,U1 P

(t+f<wB)
t−t1,f−f1,U2 . (8.19)
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We find

P
(t+f<wB)
t,f,system =

t
∑

t1=0

f
∑

f1=0

e
−(λATB1

+λAFTB1
+λATB2

+λAFTB2
)x (λATB1

)t1

t1!

×
(λAFTB1

)f1

f1!

(λATB2
)t−t1

(t − t1)!

(λAFTB2
)f−f1

(f − f1)!
,

(8.20)

P
(t+f=wB)
t,f,system =

t
∑

t1=0

f
∑

f1=0

Ct1,f1,t−t1,f−f1

×
γ(wB, (λATB1

+ λAFTB1
+ λATB2

+ λAFTB2
)x)

(λATB1
+ λAFTB1

+ λATB2
+ λAFTB2

)wB
,

(8.21)

where each subscript of C has a term associated with it and when a subscript is zero, the

corresponding term is zero as well,

Ct1,f1,t−t1,f−f1 =
(λATB1

)t1

(t1 − 1)!

(λAFTB1
)f1

f1!

(λATB2
)t−t1

(t − t1)!

(λAFTB2
)f−f1

(f − f1)!
+

(λATB1
)t1

t1!

(λAFTB1
)f1

(f1 − 1)!

(λATB2
)t−t1

(t − t1)!

(λAFTB2
)f−f1

(f − f1)!
+

(λATB1
)t1

t1!

(λAFTB1
)f1

f1!

(λATB2
)t−t1

(t − t1 − 1)!

(λAFTB2
)f−f1

(f − f1)!
+

(λATB1
)t1

t1!

(λAFTB1
)f1

f1!

(λATB2
)t−t1

(t − t1)!

(λAFTB2
)f−f1

(f − f1 − 1)!
.

(8.22)

We can simplify further, then (8.20) becomes

P
(t+f<wB)
t,f,system =

t
∑

t1=0

f
∑

f1

e
−(λATB1

+λAFTB1
+λATB2

+λAFTB2
)x 1

t1!(t − t1)!

1

f1!(f − f1)!

×
(

λATB1
x
)t1
(

λATB2
x
)t−t1

(

λAFTB1
x
)f1
(

λAFTB2
x
)f−f1

,

(8.23)
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P
(t+f<wB)
t,f,system =

t
∑

t1=0

f
∑

f1

e
−(λATB1

+λAFTB1
+λATB2

+λAFTB2
)x t!

t1!(t − t1)!

f !

f1!(f − f1)!

×

(

λATB1
x

λATB2
x

)t1
(

λATB2
x
)t

t!

(

λAFTB1
x

λAFTB2
x

)f1

(

λAFTB2
x
)f

f !
,

(8.24)

= e
−(λATB1

+λAFTB1
+λATB2

+λAFTB2
)x (λATB2

x)t

t!

(λAFTB2
x)f

f !

×
t
∑

t1=0

(

t

t1

)

(

λATB1

λATB2

)t1

(1)t−t1

f
∑

f1=0

(

f

f1

)

(

λAFTB1

λAFTB2

)f1

(1)f−f1 ,

(8.25)

P
(t+f<wB)
t,f,system = e

−(λATB1
+λAFTB1

+λATB2
+λAFTB2

)x (λATB2
x)t

t!

(λAFTB2
x)f

f !

×

(

1 +
λATB1

λATB2

)t(

1 +
λAFTB1

λAFTB2

)f

.

(8.26)

To simplify (8.21) requires a simplification of the summation of the C term.

t
∑

t1=0

f
∑

f1=0

Ct1,f1,t−t1,f−f1 =

(

λATB2

)t (

λAFTB2

)f
t
∑

t1=0

f
∑

f1=0

(

λATB1

λATB2

)t1
(

λAFTB1

λAFTB2

)f1

×

(

1

(t1 − 1)!(t − t1)!

1

f1!(f − f1)!
+

1

(t1)!(t − t1)!

1

(f1 − 1)!(f − f1)!
+

1

(t1)!(t − t1 − 1)!

1

f1!(f − f1)!
+

1

(t1)!(t − t1)!

1

f1!(f − f1 − 1)!

)

, (8.27)

=
(

λATB2

)t (

λAFTB2

)f
t
∑

t1=0

f
∑

f1=0

1

(t1)!(t − t1)!

(

λATB1

λATB2

)t1

×
1

f1!(f − f1)!

(

λAFTB1

λAFTB2

)f1

(t + f) ,

(8.28)
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=
t + f

t!f !

(

λATB2

)t (

λAFTB2

)f
t
∑

t1=0

(

t

t1

)

(

λATB1

λATB2

)t1

(1)t−t1

×

f
∑

f1=0

(

f

f1

)

(

λAFTB1

λAFTB2

)f1

(1)f−f1 ,

(8.29)

=
(t + f)(t + f − 1)!

t!f !

1

Γ(t + f)

(

λATB2

)t

(

1 +
λATB1

λATB2

)t

×
(

λAFTB2

)f

(

1 +
λAFTB1

λAFTB2

)f

.

(8.30)

Therefore, we have

P
(t+f=wB)
t,f,system =

(

wB

t

)

λt
ATB2

λf
AFTB2

(

1 +
λATB1

λATB2

)t(

1 +
λAFTB1

λAFTB2

)f

×
γ(wB, (λATB1

+ λAFTB1
+ λATB2

+ λAFTB2
)x)

Γ(wB)(λATB1
+ λAFTB1

+ λATB2
+ λAFTB2

)wB
.

(8.31)

We note what happens when the two areas (UCAV1 side and UCAV2 side) have the

same distribution. In fact we will incorporate (8.17) and (8.18). We have

λATB1
= λATB2

=
λATB

2
, (8.32)

λAFTB1
= λAFTB2

=
λAFTB

2
. (8.33)

Equation (8.26) becomes

P
(t+f<wB)
t,f,system = e

−
(

λATB
+λAFTB

)

x

(

λATB

2 x

)t

t!

(

λAFTB

2 x

)f

f !
(2)t (2)f , (8.34)

= e
−
(

λATB
+λAFTB

)

x

(

λATB
x
)t

t!

(

λAFTB
x
)f

f !
, (8.35)
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which is the same as in Scheme 1 (as would be expected). We also see that (8.31) becomes

P
(t+f=wB)
t,f,system =

(

wB

t

)(

λATB

2

)t(λAFTB

2

)f

(2)t (2)f

×
γ(wB,

(

λATB
+ λAFTB

)

x)

Γ(wB)
(

λATB
+ λAFTB

)wB
,

(8.36)

P
(t+f=wB)
t,f,system =

(

wB

t

)

λt
ATB

λwB−t
AFTB

γ(wB,
(

λATB
+ λAFTB

)

x)

Γ(wB)
(

λATB
+ λAFTB

)wB

,
(8.37)

which is, again, the same as in Scheme 1.
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IX. Conclusions

9.1 Summary

Various probabilities of a multi-warhead UCAV searching an area consisting of targets

and false targets were presented. The process was modelled using two methods. In the first

method, an event was described as a series of attacks. The probability of the occurrence

of that event was then obtained by computing the probability that the final attack which

defines that event occurs in [x, x + dx] and integrating that probability as x goes from 0

to 1. This gives the probability of occurrence of the event over the battle space. In the

second method, the process is modelled as a Markov chain and the Chapman-Kolmogorov

equations for the probabilities of the states of the system are developed. These probabilities

are then combined in various ways to compute the probabilities of the event in question.

Using either method, we were able to provide expressions for the probabilities of key

events and expected values, regardless of assumed distributions. We then evaluated several

probabilities and expected values for specific distributions associated with six scenarios.

Scenario 1: A single target uniformly distributed throughout As and a Poisson field

of false targets.

Scenario 2: A Poisson field of targets and a Poisson field of false targets.

Scenario 3: N targets uniformly distributed, and a Poisson field of false targets.

Scenario 4: N uniformly distributed targets, and M uniformly distributed false tar-

gets.

Scenario 5: N targets distributed according to a circular normal distribution centered

at the origin and a Poisson field of false targets.

Scenario 6: N targets distributed according to a circular normal distribution and M

false targets distributed according to a circular normal distribution.

Examples were provided in which the results of this research can be used as decision

factors for either the design and/or operation of a multi-munition UCAV in a search and

attack mode. At a minimal level, probabilities of target attack and mission success can be

analytically determined. In addition, though not included in this research, the expected
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life spans of munition and target can be computed. Furthermore, the examples showed

how these calculated probabilities could be utilized to make acquisition, operational as

well as tactical decisions. Acquisition decisions may come in the form of determining

cost effectiveness and trade-off studies such as deciding whether to spend scarce resources

improving sensors on the UCAVs (i.e. changing the values of PTR and/or PFTR), increasing

warhead effectiveness (i.e. increasing Pk), or buying more UCAVs / increasing each UCAV

warhead capacity (i.e. increasing w). Design considerations could utilize the expected

life spans of munition and target when making any decisions regarding max flight time

of the munition. Operational decisions could be made in terms of deciding the number

of warheads to place on the UCAV when sending it to a battle space given a probable

number and/or layout of targets or false targets. The expected number of target kills

and the expected life spans of munition and target could then be the design factors in

these mission planning / resource allocation decisions. Tactical decisions could take place

within the UCAVs themselves or the operators of the UCAV could make the decisions. For

example, E[Ktky
|WA = wA] or P (Ktky≥k,y) can be used as real time decision factors in

online algorithms to determine if the remaining time should be spent searching for another

target or attacking (or re-attacking) a previously designated target. The problem was also

formulated as a control problem. Control inputs were defined for estimated target and

false target distribution parameters. A particular probability was proposed for use in the

estimation process. A cursory investigation was conducted on using that probability and

hypotheses testing as a means to estimate those parameters. Another potential method

which may be more suited to the problem is maximum likelihood estimation using the

proposed probability.

In addition, some rules of engagement for several cooperation schemes were exam-

ined. The long term goal is to develop an analytic tool to reliably assess the benefits of

autonomous vs. cooperative operations. Such a tool should prove to be very useful to

weapon system designers.

9.2 Contributions

The contributions of this dissertation are as follows:
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1. The derivation of analytic expressions of relevant probabilities for a multiple

warhead UCAV in Scenarios 1 thru 6 as defined in Chapter II. Besides providing analytic

rigor to the field, this work is filling a void in search theory in the area of continuous search

for stationary targets among multiple false targets using a multi-warhead UCAV.

2. Illustration of possible applications of this research to design of UCAV systems,

as well as their operational and tactical employment.

3. Illustration of a method for evaluation of Rules of Engagement (ROE’s) for coop-

erative schemes for multi-warhead UCAV’s. In this method, the effect of the cooperative

scheme on the distribution parameters was determined. Then the effect of the ROE on

the confusion matrix was computed. Then a parametric analysis can be performed with

which we can compare the effect of the ROE’s and cooperative schemes on performance,

e.g. the expected number of target kills.

4. Introduction of the idea of estimating the distribution parameters and formulating

the problem as a control problem. A particular probability was proposed for use in the

estimation process. This probability should be useful whatever the estimation scheme,

although we performed a cursory look at a particular estimation scheme.

9.3 Recommendations for Further Research

1. Pursue control formulation. Conduct more study on possible estimation methods

to include maximum likelihood methods. Hypotheses testing was only given a cursory

look. This should be examined further as well as maximum likelihood methods and other

estimation methods.

2. Incorporate into the analytics the concept that PTR is a random variable. This

dissertation made the simplifying assumption that PTR was deterministic. This could be

a matter of conditioning the probabilities on another factor; that PTR is a certain value.

We would then multiply the conditional probability by the probability of that PTR value

and integrate over the possible PTR values. This would of course require assuming a

distribution of the PTR value.
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3. Pursue several more cooperative schemes, compare the two ROE’s for those

schemes and compare schemes. First try opposing paths; recognizing that once a UCAV

covers an area, the probability distributions for the targets and false targets have changed

from given a priori distributions to different a posteriori distributions. Also look at a

cooperative scheme where the UCAV’s have orthogonal paths. Then start to look at three

or more UCAV’s cooperating.

4. Incorporate variances into the analysis. We used expected values in our appli-

cations. However, a user does not want to know they have a good system given enough

missions, they want to know their particular mission has a good chance of success.

5. Incorporate multiple types of targets. This then could mean new ROE’s. For

example; attack priority 1 targets immediately (without confirmation), attack priority 2

targets upon confirmation of the classification, attack priority 3 targets only when a UCAV

is unlikely to find a priority 1 or 2 target. This ROE could be compared with standard

ROE’s regardless of the type of target. One could then incorporate ROE’s for cooperative

attack, where the number of warheads dispensed depends on the priority of the target.

6. Incorporate cooperative attack. The cooperation discussed in this dissertation

was mainly for classification and did not investigate the concept of allowing more than one

attack on a target. Further work could be done where a UCAV trades off the chance of

attacking another target in its assigned area versus the chance of killing a target found

(and perhaps attacked) by another UCAV. This would be an extension of work done by

Jacques [28] for the single-warhead case. This development would have some desired level

of probability of kill for which multiple warheads may be required.

7. If multiple types of targets are utilized. Incorporate ROE’s for cooperative attack.

For example: Use two warheads immediately in attacking a priority one target (from the

UCAV that found the target if enough warheads are available). For a priority 2 target, use

only one warhead from the UCAV that found it and one from another UCAV if it is below

a certain probability threshold of finding a priority 1 target. For a priority 3 target, only

use a warhead if below a certain probability threshold of finding a priority 1 or 2 target.

This is just an example. Maybe instead, we would want to use three different required
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probabilities of kill for three types of targets. The possible tie in to the multiple target

classification ROE’s is obvious.

8. Incorporate moving targets into the analytics. Maybe once a target is found it

then has a circular normal distribution for its location. Similarly then, extend the circular

normal distribution work by allowing a center other than the origin.

9. Eliminate the assumption that there are more targets than warheads and more

false targets than warheads. This assumption is inherent in each scenario with a finite

number of targets and/or false targets (with the exception of Scenario 1).

10. Incorporate correlated looks. That is, eliminate the assumption of independence

when looking at the same type of target with the same type of sensor. With this assumption

we were able to say that the probability of declaring three targets given that there are three

targets is (PTR)3. Without this assumption, the probability of correctly declaring the first

target is PTR but the probability of correctly declaring the second target given we correctly

declared the first target is possibly greater than PTR.
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Appendix A. Probability of an Exact Number of TA and FTA

We have the following equations for the probability of exactly t target attacks (TA) and f

false target attacks (FTA) in normalized time x.

Scenario 1:

P (X1,f,x : t + f < w) = PTRxe−λAFT
x (λAFT

x)f

f !
, (A.1)

P (X0,f,x : t + f < w) = (1 − PTRx) e−λAFT
x (λAFT

x)f

f !
, (A.2)

P (X1,f,x : t + f = w) =
wPTR

λAFT

γ (w, λAFT
x)

Γ (w)
, (A.3)

P (X0,f,x : t + f = w) =
γ (w, λAFT

x)

Γ(w)
− PTR

w

λAFT

γ (w + 1, λAFT
x)

Γ (w + 1)
. (A.4)

Scenario 2:

P (Xt,f,x : t + f < w) =
(λAT

x)t

t!

(λAFT
x)f

f !
e−(λAT

+λAFT
)x , (A.5)

P (Xt,f,x : t + f = w) = λt
AT

λw−t
AFT

(

w

t

)

γ (w, (λAT
+ λAFT

)x)

Γ(w) (λAT
+ λAFT

)w . (A.6)

Scenario 3:

P (Xt,f,x : t + f < w) =

(

N

t

)

(PTRx)t(1 − PTRx)N−te−λAFT
x (λAFT

x)f

f !
, (A.7)

Ṗ (Xt,f,x : t + f = w) =

(

N

t

)

(PTRx)t(1 − PTRx)N−t

×e−λAFT
x (λAFT

x)f

f !

(

1

x
t +

1

x
f

) (A.8)

P (Xt,f,x : t + f < w) =

(

N

t

)

A
t
u(1 − Au)N−te−Bp

B
f
p

f !
, (A.9)

Ṗ (Xt,f,x : t + f = w) =

(

N

t

)

A
t
u(1 − Au)N−te−Bp

B
f
p

f !

(

A
′
u

Au
t +

B
′
p

Bp
f

)

. (A.10)
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Where

Au = PTRx , (A.11)

Bp = λAFT
x . (A.12)

Scenario 4:

P (Xt,f,x : t + f < w) =

(

N

t

)

(PTRx)t(1 − PTRx)N−t

×

(

M

f

)

((1 − PFTR)x)f (1 − (1 − PFTR)x)M−f ,

(A.13)

Ṗ (Xt,f,x : t + f = w) =

(

N

t

)

(PTRx)t(1 − PTRx)N−t

×

(

M

f

)

((1 − PFTR)x)f (1 − (1 − PFTR)x)M−f 1

x
(t + f) .

(A.14)

P (Xt,f,x : t + f < w) =

(

N

t

)

A
t
u(1 − Au)N−t

×

(

M

f

)

B
f
u(1 − Bu)M−f ,

(A.15)

Ṗ (Xt,f,x : t + f = w) =

(

N

t

)

A
t
u(1 − Au)N−t

×

(

M

f

)

B
f
u(1 − Bu)M−f

(

A
′
u

Au
t +

B
′
u

Bu
f

)

.

(A.16)

Where

Au = PTRx , (A.17)

Bu = (1 − PFTR) x . (A.18)

Scenario 5:

P (Xt,f,ρ : t + f < w) =

(

N

t

)

A
t
c(1 − Ac)

N−te−Bcp
B

f
cp

f !
, (A.19)
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Ṗ (Xt,f,ρ : t + f = w) =

(

N

t

)

A
t
c(1 − Ac)

N−te−Bcp
B

f
cp

f !

(

A
′
c

Ac
t +

Bcp

B′
cp

f

)

. (A.20)

Where

Ac =

(

1 − e
− ρ2

2σ2
T

)

PTR , (A.21)

Bcp = αcπρ2(1 − PFTR) . (A.22)

Scenario 6:

P (Xt,f,ρ : t + f < w) =

(

N

t

)

A
t
c(1 − Ac)

N−t

(

M

f

)

B
f
c (1 − Bc)

M−f , (A.23)

Ṗ (Xt,f,ρ : t + f = w) =

(

N

t

)

A
t
c(1 − Ac)

N−t

×

(

M

f

)

B
f
c (1 − Bc)

M−f

(

A
′
c

Ac
t +

B
′
c

Bc
f

)

.

(A.24)

Where

Ac =

(

1 − e
− ρ2

2σ2
T

)

PTR , (A.25)

Bc =

(

1 − e
− ρ2

2σ2
FT

)

(1 − PFTR) . (A.26)
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Appendix B. A proof that we can substitute Poisson parameters for T and FT with

Poisson parameters for TA and FTA

In [29] a proof is submitted which shows that we can substitute the parameters (1 −

PFTR)αA for αAA when determining P (F0,A). This relates the Poisson distribution pa-

rameter for FT’s to the Poisson distribution parameter for FTA. In this way, we do not

have to talk in terms of rate of occurrence of attacks (which is composed of many events).

Now we can discuss the rate of occurrence of FT’s we encounter. A proof is submitted here

which shows we can do the same thing when using multiple warheads. We shall concentrate

on FT, but similar things can be done for TA and T.

We have seen previously that for the multiple warhead case, the probability of f

FTA’s in A (assuming not all warheads are used) is

P (Ff,A) = e−λAFT
x (λAFT

x)f

f !
,

but if we can say (as was done in the single warhead case) that

λAFT
= λFT (1 − PFTR) (B.1)

then

P (Ff,A) = e−λFT (1−PFTR)x (λFT (1 − PFTR)x)f

(f)!
. (B.2)

At the same time when we derive P (Ff,A) we find

P (Ff,A) = P {FTj≥f,A ∩ NRFTf} (B.3)

=
∞
∑

j=f

e−λFT x (λFT x)j

(j)!

(

j

f

)

(1 − PFTR)f (PFTR)j−f , (B.4)

where NRf indicates that exactly f of the FT’s are not recognized (seen as T’s). Note that

we have assumed here that the multiple events of (mistaking a FT for T) and (mistaking

a subsequent FT for T) are independent of each other. The binomial coefficient is the
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number of combinations possible when only misdiagnosing f FT’s out of the j FT’s we

have actually come across.

So if (B.2) and (B.4) are equal, we can conclude that we can make the substitution

described in (B.1) when dealing with a not-all-warheads-used situation.

Theorem 1. When computing the probability of a certain number of false target attacks

given that not all the warheads have been used, we can make the substitution

λAFT
= λFT (1 − PFTR) .

Proof. We will start with an identity and then show that (B.2) and (B.4) are equal

eλFT PFTRx = eλFT PFTRx

⇒

∞
∑

j=0

(λFT PFTRx)j

(j)!
= eλFT PFTRx

⇒

∞
∑

j=f

(λFT PFTRx)j−f

(j − f)!
= eλFT PFTRx

⇒

∞
∑

j=f

[

(λFT x)j−f (PFTR)j−f

(j − f)!

]

= eλFT PFTRx

⇒
∞
∑

j=f

[

e−λFT x (λFT x)j (PFTR)j−f

(j − f)!

]

= e−λFT xeλFT PFTRx (λFT x)f

⇒
∞
∑

j=f

[

e−λFT x (λFT x)j

(j)!

j!

f !(j − f)!
(PFTR)j−f

]

= e−λFT (1−PFTR)x (λFT x)f

(f)!

⇒
∞
∑

j=f

[

e−λFT x (λFT x)j

(j)!

(

j

f

)

(1 − PFTR)f (PFTR)j−f

]

= e−λFT (1−PFTR)x (λFT (1 − PFTR)x)f

(f)!

In the case where all the warheads are used, we have seen that

P (Ff,A) =

∫ x

0
e−λAFT

z (λAFT
z)f−1

f − 1!
λAFT

dz ,
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which becomes (after the substitution in (B.1))

P (Ff,A) =

∫ x

0
e−λFT (1−PFTR)z (λFT (1 − PFTR)z)f−1

(f − 1)!
λFT (1 − PFTR)dz . (B.5)

Whereas a straight derivation leads to

P (Ff,A) =

∑∞
j=f

∫ x

0 e−λFT z (λFT z)j−1

(j−1)!

(

j−1
f−1

)

(1 − PFTR)f (PFTR)(j−1)−(f−1)λFT (1 − PFTR)dz .(B.6)

If (B.5) and (B.6) are equal, then we can make the substitution (B.1) when dealing with

an all-warheads-used situation.

Theorem 2. When computing the probability of a certain number of false target attacks

given that all the warheads have been used, we can make the substitution

λAFT
= λFT (1 − PFTR) .

Proof. We shall start with an identity and then show that (B.5) and (B.6) are equal

⇒

∫ x

0
e−λFT zzf−1eλFT PFTRzdz =

∫ x

0
e−λFT zeλFT PFTRzzf−1dz

⇒

∫ x

0
e−λFT zzf−1

∞
∑

j=0

(λFT PFTRz)(j)

(j)!
dz =

∫ x

0
e−λFT zeλFT PFTRzzf−1dz

⇒
∞
∑

j=0

∫ x

0
e−λFT zzj+f−1 (λFT PFTR)(j)

(j)!
dz =

∫ x

0
e−λFT zeλFT PFTRzzf−1dz

⇒
∞
∑

j=f

∫ x

0
e−λFT zzj−1 (λFT PFTR)(j−f)

(j − f)!
dz =

∫ x

0
e−λFT (1−PFTR)zzf−1dz

⇒
∞
∑

j=f

[∫ x

0
e−λFT z zj−1

(j − 1)!

(j − 1)!

(f − 1)!(j − f)!
(λFT PFTR)(j−f)dz

]

=

∫ x

0
e−λFT (1−PFTR)z zf−1

(f − 1)!
dz

⇒

∞
∑

j=f

[

∫ x

0
e−λFT z λj−f

FT zj−1

(j − 1)!

(

j − 1

f − 1

)

(PFTR)(j−f)dz

]

=

∫ x

0
e−λFT (1−PFTR)z zf−1

(f − 1)!
dz
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⇒
∞
∑

j=f

[

∫ x

0
e−λFT z λj

FT zj−1

(j − 1)!

(

j − 1

f − 1

)

(1 − PFTR)f (PFTR)(j−f)dz

]

=

∫ x

0
e−λFT (1−PFTR)z λf

FT (1 − PFTR)fzf−1

(f − 1)!
dz

∞
∑

j=f

[∫ x

0
e−λFT z (λFT z)j−1

(j − 1)!

(

j − 1

f − 1

)

(1 − PFTR)f (PFTR)(j−1)−(f−1)λFT (1 − PFTR)dz

]

=

∫ x

0
e−λFT (1−PFTR)z (λFT (1 − PFTR)z)f−1

(f − 1)!
λFT (1 − PFTR)dz
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Appendix C. Proof of at most one event in infinitesimal area

We wish to determine if the probability of more than one event in ∆x as ∆x → ∞ is

negligible. This is a well known result for a Poisson process. We will see if it is also true

for the uniform and circular normal distribution. To make this determination, we will

follow the same reasoning that Kulkarni [40] uses to show the statement is true for the

Poisson distribution.

In that development, they show that the Poisson process {N(h) : h ≥ 0} has proba-

bility masses for j ≥ 2 events given by

P {N(h) = j} = o(h), j ≥ 2 , (C.1)

where a function f(h) is o(h) if

lim
h→0

f(h)

h
= 0 . (C.2)

First we shall examine the Poisson process to demonstrate the methodology. Then we shall

apply it to the uniform and circular normal distributions.

C.1 Poisson distribution

First we will find (verify) the probability of one target in ∆x and find the limit as

∆x → 0. We will let this probability equal f(∆x) + o(∆x),

P{T1,∆x} = f(∆x) + o(∆x) . (C.3)

Then

o(∆x) = P{T1,∆x} − f(∆x) (C.4)

⇒

0 = lim
∆x→0

P{T1,∆x} − f(∆x)

∆x
(C.5)

0 = lim
∆x→0

e−λT ∆xλT ∆x − f(∆x)

∆x
. (C.6)
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For this to be true, f(0) = 0 must be true otherwise our limit would be infinity. Therefore,

we must also be able to use L’Hopital’s rule.

0 = lim
∆x→0

e−λT ∆xλT ∆x − f(∆x)

∆x
(C.7)

0 = lim
∆x→0

d
d(∆x)

(

e−λT ∆xλT ∆x − f(∆x)
)

d
d(∆x)∆x

(C.8)

0 = lim
∆x→0

(

−λT e−λT ∆xλT ∆x + eλT ∆xλT − f ′(∆x)
)

1
. (C.9)

Therefore

f ′(∆x) = λT , (C.10)

⇒

f(∆x) = λT ∆x + c . (C.11)

Because of our initial condition f(0) = 0, we see that c = 0 and therefore

P{T1,∆x} = λT ∆x + o(∆x) . (C.12)

Similarly, for P{Tj,∆x}, j ≥ 2, we let

P{Tj,∆x} = f(h) + 0(h) (C.13)

So then

o(∆x) = P{Tj,∆x} − f(∆x) (C.14)

⇒

0 = lim
∆x→0

P{Tj,∆x} − f(∆x)

∆x
(C.15)

0 = lim
∆x→0

e−λT ∆x (λT ∆x)j

j! − f(∆x)

∆x
. (C.16)
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For this to be true, we must use L’Hopitals rule; hence f(0) = 0. Therefore

0 = lim
∆x→0

e−λT ∆x (λT ∆x)j

j! − f(∆x)

∆x
(C.17)

0 = lim
∆x→0

d
d(∆x)

(

e−λT ∆x (λT ∆x)j

j! − f(∆x)
)

d
d(∆x)∆x

(C.18)

0 = lim
∆x→0

(

−λT e−λT ∆x (λT ∆x)j

j! + eλT ∆x j(λT ∆x)j−1λT

j! − f ′(∆x)
)

1
. (C.19)

Which means

0 =
0 + 0 − f ′(0)

1
, (C.20)

f ′(∆x) = 0 , (C.21)

⇒

f(∆x) = c . (C.22)

Because of our initial condition f(0) = 0, we see that c = 0 and therefore

P{Tj,∆x} = o(∆x) , j ≥ 2 . (C.23)

C.2 Uniform distribution

Now we will use the same procedure to examine the uniform scenario. We will limit

our discussion to a uniform distribution of N targets although the same thing can be done

for the uniform distribution of M false targets.

The development for P{T1,∆x} is the same down to equation (C.5). And the devel-

opment of P{T1,∆x}, j ≥ 2, is the same down to equation (C.15). Therefore we will start

with these equations.

The probability of one target in ∆x as ∆x → ∞ for the uniform distribution leads

to

0 = lim
∆x→0

(

N
1

)

(∆x)1(1 − ∆x)N−1 − f(∆x)

∆x
. (C.24)
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Again, we must use L’Hopitals rule for this to be true, therefore f(0) = 0 and

0 = lim
∆x→0

d
d(∆x)

(

(

N
1

)

(∆x)1(1 − ∆x)N−1 − f(∆x)
)

d
d(∆x)∆x

, (C.25)

0 = lim
∆x→0

(

(

N
1

) (

(1 − ∆x)N−1 − ∆x(N − 1)(1 − ∆x)N−2
)

− f ′(∆x)
)

1
,(C.26)

0 =

(

N

1

)

− f ′(∆x) , (C.27)

⇒

f ′(∆x) = N , (C.28)

⇒

f(∆x) = N∆x + c . (C.29)

Since f(0) = 0, then c = 0, so

P{T1,∆x} = N∆x + o(∆x) (C.30)

Similarly, examining P{Tj,∆x}, j ≥ 2 leads us to

0 = lim
∆x→0

(

N
j

)

(∆x)j(1 − ∆x)N−j − f(∆x)

∆x
(C.31)
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Again, we must force the use of L’Hopitals rule for this to be true, therefore f(0) = 0 and

0 = lim
∆x→0

d
d(∆x)

(

(

N
j

)

(∆x)j(1 − ∆x)N−j − f(∆x)
)

d
d(∆x)∆x

, (C.32)

= lim
∆x→0

((

N

j

)

[

j(∆x)j−1(1 − ∆x)N−1+

(∆x)j(N − j)(1 − ∆x)N−j−1(−1)
]

− f ′(∆x)
)

, (C.33)

= 0 − f ′(∆x) , (C.34)

⇒

f ′(∆x) = 0 , (C.35)

⇒

f(∆x) = c . (C.36)

Since f(0) = 0, then c = 0, so

P{Tj,∆x} = o(∆x), j ≥ 2 . (C.37)

C.3 Circular Normal

Recall that the probability of the ith target being in a circular area of radius ρ is

fi(ρ, θ) =
1

2πσ2
T

e
− ρ2

2σ2
T . (C.38)
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Also recall that the elemental area in the annulus with an inner radius of ρ and a

width of dh is ρdθdh so then

P{Tith,[ρ,ρ+h]} =

∫ ρ+h

ρ

∫ 2π

0

1

2πσ2
T

e
− ρ2

2σ2
T ρdθdh , (C.39)

=

∫ ρ+h

ρ

1

σ2
T

e
− ρ2

2σ2
T ρdh , (C.40)

= −

[

e
− ρ2

2σ2
T

]ρ+h

ρ

, (C.41)

= e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T . (C.42)

Therefore,

P{T1,[ρ,ρ+h]} =

(

N

1

)

[

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

]1 [

1 −

(

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

)]N−1

(C.43)

Now, to see what the probability is as h → 0, we follow the same method we have

used previously in this appendix. That is, we let P{ρ, ρ + h} = f(h) + o(h) and compute

something very similar to (C.5) (the only difference being we have replaced ∆x in (C.5)).

We now continue from this point.

0 = lim
h→0





(

N
1

)

[

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

]1 [

1 −

(

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

)]N−1

− f(h)





dh
(C.44)

As we have seen so far, we must force the use of L’Hopitals’ rule for (C.44) to be true.

Therefore, f(0) = 0 and

0 = lim
h→0

d
dh





(

N
1

)

[

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

]1 [

1 −

(

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

)]N−1

− f(h)





d
dh

dh
(C.45)
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0 = lim
h→0





(

N

1

)

([

−
−(ρ + h)

σ2
T

e
− 1

2
(ρ+h)2

σ2
T

][

1 − e
− ρ2

2σ2
T + e

− 1
2

(ρ+h)2

σ2
T

]N−1

+

[

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

]

(N − 1)

[

1 − e
− ρ2

2σ2
T + e

− 1
2

(ρ+h)2

σ2
T

]N−2 [

−(ρ + h)

σ2
T

e
− 1

2
(ρ+h)2

σ2
T

]





−f ′(h)

)

, (C.46)

0 =

(

(

N

1

)





[

−
−(ρ)

σ2
T

e
− ρ2

2σ2
T

][

1 − e
− ρ2

2σ2
T + e

− ρ2

2σ2
T

]N−1

+

[

e
− ρ2

2σ2
T − e

− ρ2

2σ2
T

]

(N − 1)

[

1 − e
− ρ2

2σ2
T + e

− ρ2

2σ2
T

]N−2 [

−(ρ)

σ2
T

e
− ρ2

2σ2
T

]





−f ′(0)

)

(C.47)

0 = N
ρ

σ2
T

e
− ρ2

2σ2
T − f ′(0) . (C.48)

Therefore,

f ′(0) = N
ρ

σ2
T

e
− ρ2

2σ2
T , (C.49)

⇒

f(h) = N
ρ

σ2
T

e
− ρ2

2σ2
T h + c . (C.50)

Again, since f(0) = 0, then c = 0. Recognizing that we were using h in place of dρ (to try

and minimize confusion), we have

P{T1,dρ} = N
ρ

σ2
T

e
− ρ2

2σ2
T dρ + o(dρ) . (C.51)
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Similarly, for P{Tj,h}, j ≥ 2, we start with something similar to (C.15),

0 = lim
h→0





(

N
j

)

[

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

]j [

1 −

(

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

)]N−j

− f(h)





dh
(C.52)

Again, we must forcing the use of L’Hopitals’ rule. Therefore, f(0) = 0 and

0 = lim
h→0

d
dh





(

N
j

)

[

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

]j [

1 −

(

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

)]N−j

− f(h)





d
dh

dh
(C.53)

0 = lim
h→0

(

(

N

j

)



j

[

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

]j−1 [

−
−(ρ + h)

σ2
T

e
− 1

2
(ρ+h)2

σ2
T

]

×

[

1 − e
− ρ2

2σ2
T + e

− 1
2

(ρ+h)2

σ2
T

]N−j−1

+

[

e
− ρ2

2σ2
T − e

− 1
2

(ρ+h)2

σ2
T

]j

(N − j)×

[

1 − e
− ρ2

2σ2
T + e

− 1
2

(ρ+h)2

σ2
T

]N−j−1 [

−(ρ + h)

σ2
T

e
− 1

2
(ρ+h)2

σ2
T

]



− f ′(h)

)

, (C.54)

0 =

(

(

N

j

)



j

[

e
− ρ2

2σ2
T − e

− ρ2

2σ2
T

]j−1 [

−
−(ρ)

σ2
T

e
− ρ2

2σ2
T

][

1 − e
− ρ2

2σ2
T + e

− ρ2

2σ2
T

]N−j−1

+

[

e
− ρ2

2σ2
T − e

− ρ2

2σ2
T

]j

(N − j)

[

1 − e
− ρ2

2σ2
T + e

− ρ2

2σ2
T

]N−j−1 [

−(ρ)

σ2
T

e
− ρ2

2σ2
T

]





−f ′(0)

)

, (C.55)

0 = 0 − f ′(0) (C.56)
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Therefore,

f ′(0) = 0, (C.57)

⇒

f(h) = c . (C.58)

Again, since f(0) = 0, then c = 0. Recognizing that we were using h in place of dρ, we

have

P{Tj,dρ} = o(dρ), j ≥ 2 . (C.59)
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Appendix D. Truncated Binomial Conversion

We note that we often come across expression such as

N
∑

i=c

(

N

i

)

AiBN−i

(

i

c

)

. (D.1)

Recall the binomial theorem states

N
∑

i=0

(

N

i

)

AiBN−i = (A + B)N . (D.2)

Our expression would be the normal binomial theorem except the lower limit on the

series is not zero and we have multiplied by another binomial coefficient;

N
∑

i=c

(

N

i

)

AiBN−i

(

i

c

)

=
N
∑

i=c

N !

i!(N − i)!

i!

c!(i − c)!
AiBN−i , (D.3)

=
N
∑

i=c

N !

(N − i)!

1

c!(i − c)!
AiBN−i . (D.4)

Let k = i − c, then

N
∑

i=c

(

N

i

)

AiBN−i

(

i

c

)

=
N−c
∑

k=0

N !

(N − (k + c))!

1

c!k!
Ak+cBN−(k+c) , (D.5)

=
N−c
∑

k=0

(N − c)!

k!(N − c − k)!

N !

(N − c)!c!
Ak+cBN−k−c , (D.6)

=
N−c
∑

k=0

(

N − c

k

)(

N

c

)

AkAcBN−c−k , (D.7)

=

(

N

c

)

Ac
N−c
∑

k=0

(

N − c

k

)

AkBN−c−k , (D.8)

=

(

N

c

)

Ac [A + B]N−c . (D.9)
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Now we also come across

N
∑

i=c

(

N

i

)

AiBN−i

(

i

c

)

CcDi−c =

(

C

D

)c N
∑

i=c

(

N

i

)

AiBN−i

(

i

c

)

Di , (D.10)

=

(

C

D

)c N
∑

i=c

(

N

i

)

(AD)iBN−i

(

i

c

)

. (D.11)

Now using Equation (D.9) we obtain

N
∑

i=c

(

N

i

)

AiBN−i

(

i

c

)

CcDi−c =

(

C

D

)c(N

c

)

(AD)c [AD + B]N−c , (D.12)

=

(

N

c

)

(AC)c [AD + B]N−c . (D.13)
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Appendix E. Scenario 3 Markov Example

What follows is an example of the derivation of the equations using the Markov chain

method. Along with the Markov model, we will be using variation of parameters to solve

the subsequent differential equations.

For Scenario 3, we have

Ṗ (Xt,f,x : t + f < w) =
(N − (t − 1))PTR

(1 − PTRx)
P (Xt−1,f,x : t + f < w)+

λAFT
P (Xt,f−1,x : t + f < w)−

(

(N − t)PTR

(1 − PTRx)
+ λAFT

)

P (Xt,f,x : t + f < w) ,

(E.1)

P (Xt,f,x : t + f = w) =
(N − (t − 1))PTR

(1 − PTRx)
P (Xt−1,f,x : t + f < w)+

λAFT
P (Xt,f−1,x : t + f < w) .

(E.2)

We will walk thru the sequence and observe the pattern. For brevity sake, we define

P (Xt,f,x) ≡ P (Xt,f,x : t + f < w).

State (t = 0, f = 0) (with initial condition P (X0,0,0) = 1):

Ṗ (X0,0,x) = −

(

NPTR

[1 − PTRx]
+ λAFT

)

P (X0,0,x) , (E.3)

lnP (X0,0,x) = N

∫ x

0

−PTR

[1 − PTRx]
−

∫ x

0
λAFT

+ C1 , (E.4)

lnP (X0,0,x) = N ln(1 − PTRx) − λAFT
x + C1 , (E.5)

P (X0,0,x) = (1 − PTRx)Ne−λAFT
xC , (E.6)

P (X0,0,x) = (1 − PTRx)Ne−λAFT
x . (E.7)

State (t = 0, f = 1) (with initial condition P (X0,1,0) = 0):

Ṗ (X0,1,x) = λAFT
P (X0,0,x) −

(

NPTR

[1 − PTRx]
+ λAFT

)

P (X0,1,x) , (E.8)
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which has the same homogenous solution as P (X0,0,x). Therefore when we use the variation

of parameters method, we assume the particular solution takes the form

P (X0,1,x)p = v (1 − PTRx)N e−λAFT
xC1 , (E.9)

where v is some function of x. Then, using variation of parameters, we have

v′ (1 − PTRx)N e−λAFT
x = λAFT

P (X0,0,x) = λAFT
(1 − PTRx)N e−λAFT

x , (E.10)

v′ = λAFT
, (E.11)

v = λAFT
x (E.12)

Therefore,

P (X0,1,x) = (1 − PTRx)Ne−λAFT
xλAFT

x . (E.13)

Following similar evaluations we can calculate the other solutions. For each state we

will give the differential equation and the subsequent solution.

State (t = 0, f = 2) (with initial condition P (X0,2,0) = 0):

Ṗ (X0,2,x) = λAFT
P (X0,1,x) −

(

NPTR

[1 − PTRx]
+ λAFT

)

P (X0,2,x) , (E.14)

P (X0,2,x) = (1 − PTRx)Ne−λAFT
x (λAFT

x)2

2!
. (E.15)

State (t = 0, f = 3) (with initial condition P (X0,3,0) = 0):

Ṗ (X0,3,x) = λAFT
P (X0,2,x) −

(

NPTR

[1 − PTRx]
+ λAFT

)

P (X0,3,x) , (E.16)

P (X0,3,x) = (1 − PTRx)N e−λAFT
x (λAFT

x)3

3!
. (E.17)

Now we see the pattern for the increasing f ’s. For t = 0, we have

P (X0,f,x) = (1 − PTRx)N e−λAFT
x (λAFT

x)f

f !
. (E.18)
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Now we will look at t = 1.

State (t = 1, f = 0) (with initial condition P (X1,0,0) = 0):

Ṗ (X1,0,x) =
NPTR

(1 − PTRx)
P (X0,0,x) −

(

(N − 1)PTR

(1 − PTRx)
+ λAFT

)

P (X1,0,x) , (E.19)

P (X1,0,x)h = (1 − PTRx)N−1 e−λAFT
xC2 . (E.20)

Using variation of parameters,

P (X1,0,x)p = v (1 − PTRx)N−1 e−λAFT
x , (E.21)

v′ (1 − PTRx)N−1 e−λAFT
x =

NPTR

(1 − PTRx)
(1 − PTRx)N e−λAFT

x , (E.22)

v = NPTRx . (E.23)

Therefore,

P (X1,0,x) = NPTRx (1 − PTRx)N−1 e−λAFT
x . (E.24)

Using the same method we used for t = 0, we determine that

P (X1,f,x) = NPTRx (1 − PTRx)N−1 e−λAFT
x (λAFT

x)f

f !
. (E.25)

Similarly, we can determine that

P (X2,f,x) = N(N − 1)
(PTRx)2

2
(1 − PTRx)N−2 e−λAFT

x (λAFT
x)f

f !
. (E.26)

Then, if we continue, we see that

P (Xt,f,x) =
t−1
∏

i=0

(N − i)
(PTRx)t

t!
(1 − PTRx)N−t e−λAFT

x (λAFT
x)f

f !
. (E.27)
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Appendix F. Attempt to solve time varying differential equation

The Chapman-Kolmogorov equations for our work is of the form

Ṗ (Xt,f,ρ : t + f < w) = PTt−1(ρ)P (Xt−1,f,ρ : t + f < w) +

PFf−1
(ρ)P (Xt,f−1,ρ : t + f < w) −

(

PTt(ρ) + PFf
(ρ)
)

P (Xt,f,ρ : t + f < w) , (F.1)

Ṗ (Xt,f,ρ : t + f = w) = PTt−1(ρ)P (Xt−1,f,ρ : t + f < w) +

PFf−1
(ρ)P (Xt,f−1,ρ : t + f < w) . (F.2)

We can put this in a linear algebra form. We will do this by defining the state vector

such that
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(F.3)
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where D is of the form

D =



























[D0] 0 . . . 0 0
[

H1
0

]

[D1] . . . 0 0

0

[

H
. . .
1

]

. . . 0 0

0 0 . . . [Dt−1] 0

0 0 . . .
[

Ht
t−1

]

[Dt]



























(F.4)

and

H i−1
i−2 (s1) = PTi−2(s1)[I](f+1)×(f+1) , (F.5)

Di =






























−(PTi
+ PF0) 0 0 . . . 0 0

PF1−1 −(PTi
+ PF1) 0 . . . 0 0

0 PF2−1 −(PTi
+ PF2) . . . 0 0

0 0 PF3−1

. . . 0 0

0 0 0
. . . −(PTi

+ PFf−1
) 0

0 0 0 . . . PFf−1
−(PTi

+ PFf
)































(F.6)

where when t + f < w we have

dir,r = −
(

PTi
+ PFr−1

)

, (F.7)

dir,r−1 = PFr−2 . (F.8)

where r goes from 1 to f + 1, every other element is zero.

Note that in the preceding and subsequent discussion, i indicates the number of

TA’s (i.e., for the state X1,2, i = 1). In addition, we use the upper case letters (e.g. D)

to represent a matrix. We use the corresponding lower case letter (e.g. d) to represent
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the element of the matrix denoted by that letter’s upper case. A pair of subscripts on the

lower case letter indicate a specific element of the matrix (e.g. d3,2 would indicate the 3rd

row and 2nd column). Since we are dealing with block matrices, we designate the matrix

which is a part of the diagonal with a subscript. For example, the matrices which are on

the diagonal of the block matrix D are Di where, again i indicates that that block matrix

corresponds to the states that have i TA’s. The sub-diagonal block matrices are designated

by H i−1
i−2 with a subscript and superscript. These are just notational conveniences. The

subscript indicates which states are being multiplied (in this case, the states with i − 2

TA’s). The superscript indicates the states to whose derivatives this matrix is contributing

(in this case, the states with i − 1 TA’s). If the subscript is less than zero, that matrix

does not exist.

DeRusso [13] says

ẋ = A(t)x (F.9)

has the solution

x(t) = e
∫ t

τ
A(λ)dλx(τ) (F.10)

if and only if

d

dt
eB(t) =

dB(t)

dt
eB(t) (F.11)

where

B(t) =

∫ t

τ

A(λ)dλ . (F.12)

This requirement is equivalent to the requirement that

A(t1)A(t2) = A(t2)A(t1) . (F.13)
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Let T = AB and T̃ = BA. Further, let tx,y be the element in the xth row and yth column

of T. Apply similar definitions for t̃ and T̃ ; a and A; b and B. Further, let A and B both

be n × n and each is lower triangular with only one sub-diagonal, then

ti,i = ai,ibi,i , (F.14)

ti+1,i = ai+1,ibi,i + ai+1,i+1bi+1,i , (F.15)

ti+2,i = ai+2,i+1bi+1,i . (F.16)

In the same way, we also have

t̃i,i = bi,iai,i , (F.17)

t̃i+1,i = bi+1,iai,i + bi+1,i+1ai+1,i , (F.18)

t̃i+2,i = bi+2,i+1ai+1,i . (F.19)

It can be shown that T = T̃ if the following are conditions are met:

1) ai,ibi,i = bi,iai,i (a necessary condition)

2) The elements of diagonal of A are equal, and the elements of diagonal of B are

equal (a sufficient condition). The necessary part is: ai+1,ibi,i + ai+1,i+1bi+1,i = bi+1,iai,i +

bi+1,i+1ai+1,i.

3) ai+2,i+1bi+1,i = bi+2,i+1ai+1,i

Now in our case (initially), the A and B matrices are the A matrix of the differential

equation evaluated at two different times and the elements of the these matrices (a and b)

are matrices in and of themselves. Let s1 and s2 denote two different times, then we have

ai,i = Di−1(s1) , (F.20)

bi,i = Di−1(s2) , (F.21)

ai,i−1 = H i−1
i−2 (s1) , (F.22)

bi,i−1 = H i−1
i−2 (s2) . (F.23)
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and all other elements are zero.

We must first apply the three requirements to the block matrix found in (F.4), then

we apply the three conditions to the resulting matrices.

For example, for the first condition to be met; ai,ibi,i = bi,iai,i we see from (F.20)

thru (F.23) that

Di−1(s1)Di−1(s2) = Di−1(s2)Di−1(s1) (F.24)

must be true. To see if this is true, we must apply the three condition to (F.24).

Ultimately, the conditions that must be met boil down to

PFr−1(s1)PFr(s2) = PFr−1(s2)PFr(s1) , (F.25)

PTi
(s1)PTi−1(s2) = PTi

(s2)PTi−1(s1) (F.26)

These conditions are met for all six scenarios.

Now when t + f = w, we have

dir,r = −(PTi
+ PFr−1) , (F.27)

dir,r−1 = PFr−2 (F.28)

as r goes from 1 to f + 1 except when i = t, then

dtf+1,f+1
= 0 . (F.29)

The final result is that when t+f = w we have two additional conditions which must

be met.

PFf−1
(s1)PTt(s2) = PFf−1

(s2)PTt(s1) , (F.30)

PTt−1(s1)PFf
(s2) = PTt−1(s2)PFf

(s1) . (F.31)
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Five of the six scenarios do not meet these conditions. Scenario 2 does.

Therefore, the only scenario for which this method can help us find the probability

of a state where t + f < w is Scenario 2. But that is of little help, since the probabilities

for this scenario are readily found without this method.
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