FLUORIDE / AZIDE LIGAND EXCHANGE REACTIONS

Ralf Haiges, Stefan Schneider, Thorsten Schroer, Michael Gerken, Jerry Boatz, Ashwani Vij, Muhammed Yousufuddin, and Karl Christe

University of Southern California and ERC, Inc and Propellants Branch, Propulsion Directorate, Air Force Research Laboratory, Edwards AFB
Fluoride/Azide Ligand Exchange Reactions

Ralf Haiges; Stefan Schneider; Thorsten Schroer; Michael Gerken; Jerry Boatz

Approved for public release; distribution unlimited
Project Sponsors

DARPA

AF Office of Scientific Research

NSF
Objective and Background

- Preparation and Characterization of High Energy Density Matter (HEDM) derived from binary covalent polyazides

- HN₃ was discovered in 1890 by Curtius, and binary covalent polyazides have been known for at least half a century (B(N₃)₃: Wiberg, 1954)

- Most compounds are extremely shock sensitive, difficult to handle and purify, and often have not been structurally characterized

- Important contributions to the field were made by Wiberg, Dehnicke, Schmidt, Roesky, Ang, Fillippou, and particularly Klapoetke
Synthesis of Covalent Binary Polyazides

• Conventional methods involve the reactions of chlorides or iodides with either HN₃, NaN₃, AgN₃, or (CH₃)₃SiN₃

 SbI₃ + 3 AgN₃ → Sb(N₃)₃ + 3 AgI
 BCl₃ + 3 HN₃ → B(N₃)₃ + 3 HCl
 PCl₅ + 6 NaN₃ → NaP(N₃)₆ + 5 NaCl
 L·BCl₃ + 3 (CH₃)₃SiN₃ → L·B (N₃)₃ + 3 (CH₃)₃SiCl

• Potential Problems with these methods
 ➢ Shock sensitivity of AgN₃ and HN₃
 ➢ Cl / N₃ ligand exchange is often incomplete
 ➢ Solvent problems (CH₂Cl₂ + 2 MN₃ → CH₂(N₃)₂)
Our Method

• Use of fluorides with (CH$_3$)$_3$SiN$_3$ in a suitable solvent, such as SO$_2$ (-64 C), CH$_3$CN (-40 C), or excess (CH$_3$)$_3$SiN$_3$ (-40 C)

• Advantages
 - Rapid exchange
 - Complete conversions in a single step
 - Highly pure products
 - Easy product separation
Results from our Studies, $\text{As(\text{N}_3)_3}$ and $\text{Sb(\text{N}_3)_3}$

- $\text{As(\text{N}_3)_3}$ and $\text{Sb(\text{N}_3)_3}$ were previously known as highly explosive oil or powder, respectively, but no structures were known.

- We obtained both compounds in crystalline form and determined their crystal structures.
Crystal Structure of \([\text{Sb}(\text{N}_3)_6]^-\)

- Sb\((\text{N}_3)_6^-\) anion had been known, but its structure was unknown

- We prepared the \([\text{P}(\text{C}_6\text{H}_5)_4][\text{Sb}(\text{N}_3)_6]\) salt and determined its structure
Syntheses and Vibrational Spectra of As(N₃)₅ and Sb(N₃)₅

• Neutral polyazides are generally the most sensitive and, therefore, most difficult to prepare and characterize

• Unstable neutral polyazides can usually be stabilized by
 • negative charges (anion formation)
 • adduct formation with large organic bases
 • large bulky inert spacers, such as cations, to stop propagation

• Although M(N₃)₆⁻ anions and M(N₃)₅ donor-acceptor adducts with amines (M = As or Sb) had been known, the free pentaazides had been considered to be too sensitive for isolation

• The free pentaazides were now successfully prepared from the pentafluorides and TMSazide in SO₂ solution and characterized by low-temperature Raman spectroscopy and theoretical calculations
Raman Spectra of $\text{As(N}_3\text{)}_5$ and $\text{Sb(N}_3\text{)}_5$

- Good agreement between observed spectra and those calculated for trigonal-bipyramidal monomers

As($\text{N}_3\text{)}_5$

Sb($\text{N}_3\text{)}_5$

12 July, 2004

14th European Symposium on Fluorine Chemistry, Poznan, Poland

Approved for Public Release; Distribution Unlimited
Tellurium Azides

• We prepared and characterized the novel Te(N₃)₄, [N(CH₃)₄][Te(N₃)₅], and [P(C₆H₅)₄]₂[Te(N₃)₆]

\[
\text{TeF}_6 + 6 \left(\text{CH}_3\right)_3\text{SiN}_3 \xrightarrow{\text{CH}_3\text{CN, CsF cat}} \text{Te(N}_3\text{)}_4 + 6 \left(\text{CH}_3\right)_3\text{SiF} + 3 \text{N}_2
\]

• Te(N₃)₄ is a shock sensitive, yellow solid and was characterized by vibrational and multinuclear NMR spectroscopy

• Te(N₃)₅⁻ and Te(N₃)₆²⁻ were characterized by their crystal structures

• The results were published in Angew. Chem. Int. Ed. 2003, 115, 1627 and highlighted in Chem. & Eng. News
Structures of $\text{Te}(N_3)_4$, $\text{Te}(N_3)_5^-$, and $[\text{Te}(N_3)_6]^{2-}$
Titanium azide, does it possess linear Ti-N-N bonds?

• Based on quantum chemical calculations, Gagliardi and Pyykköe have recently predicted, (*Inorg. Chem.* 2003, 42, 3074), for Ti(N₃)₄, Zr(N₃)₄, Hf(N₃)₄, and Th(N₃)₄ a novel type of bonding involving linear M-N-N bonds.

• We have confirmed these calculations for Ti(N₃)₄ and also predict that other azides, such as Fe(N₃)₂ (Melanie Teichert), can form linear M-N-N bonds. However, based on our calculations, we expect that the Ti(N₃)₆²⁻ anion possesses the usual bent M-N-N bonds.
Synthesis and Characterization of Ti(N₃)₄

• Synthesis

\[\text{TiF}_4 + \text{exc. TMSN}_3 \rightarrow \text{Ti(N}_3\text{)}_4 + 4 \text{TMSF} \]

• Properties

- Yellow-orange solid
- Very shock-sensitive
- Very low volatility, decomposes on sublimation
- Could not get single crystals for structure determination, but Raman spectrum and comparison with calculated spectra suggest that CN is higher than 4 and the Ti-N-N angle is bent.
- Need a gas-phase structure of free Ti(N₃)₄
Possible explanations for linear M-N-N bonds

- Gagliardi and Pyykkoe invoke conjugation.

- We prefer the following interpretation because the calculated Ti-N bond distances are relatively long and are similar to single bonds. Also, the N_β-N_γ bonds are quite short, and the Ti-N-N bonds in $\text{Ti(N}_3\text{)}_6^{2-}$ are strongly bent.

 ➢ The N_α atom of the –N$_3$ ligand has three free valence electron pairs which can act as a tridentate ligand and, in a tetrahedron, can perfectly overlap with three of the lobes of the Ti $3d$-orbitals. This scheme is analogous to the structure of $\text{Zr(BH}_4\text{)}_4$ which possesses 4 trihapto BH$_4$ groups. In the usual covalent azides, the azide ligands utilize only one electron pair of the N_α atom for the bonding, and the presence of two additional, sterically active free valence electron pairs results in a pyramidal configuration with an M-N-N angle of about 120 °.
Crystal Structure of $[\text{Ti}(\text{N}_3)_6]^{2-}$

- Synthesized the $[\text{Ti}(\text{N}_3)_6]^{2-}$ anion according to

$$\text{Ti}(\text{N}_3)_4 + 2 \text{P(Ph)}_4^+\text{N}_3^- \rightarrow [\text{P(Ph)}_4]^2[\text{Ti}(\text{N}_3)_6]$$

and determined its crystal structure.

Tantalum Azides

• Ta(N₃)₅ and Ta(N₃)₆⁻, the first examples of binary Group V azides, were prepared from TaF₅ and were characterized by vibrational spectroscopy.

• Ta(N₃)₅ is very sensitive and unstable, whereas the P(C₆H₅)₄⁺Ta(N₃)₆⁻ salt is a stable white solid.
Molybdenum and Tungsten Azides

• Mo(N₃)₆ and W(N₃)₆, the first examples of binary Group VI azides, were prepared from MoF₆ and WF₆, respectively.

• Both compounds are highly shock sensitive and were characterized by low-temperature Raman spectroscopy and, in the case of WF₆, also by its crystal structure.

• W(N₃)₆ can be stabilized as its P(C₆H₅)₄⁺W(N₃)₇⁻ salt which was also characterized by vibrational spectroscopy.
Oxoazides

• WO(N$_3$)$_4$, the first example of an oxoazide, was prepared from WOF$_4$ and characterized by vibrational spectroscopy

• Recrystallization from CH$_3$CN solution resulted in a hexa-coordinated structure

• The P(C$_6$H$_5$)$_4$$^+$WO(N$_3$)$_5^-$ salt was also prepared and characterized by vibrational spectroscopy
Combination of N_5^+ with $P(N_3)_6^-$ and $B(N_3)_4^-$

- First successful combinations of N_5^+ with highly energetic anions:

$$\text{N}_5\text{SbF}_6 + \text{NaP(N}_3\text{)}_6 \xrightarrow{\text{SO}_2, -64 \text{ C}} \text{N}_5\text{P(N}_3\text{)}_6 + \text{NaSbF}_6$$

$$\text{N}_5\text{SbF}_6 + \text{NaB(N}_3\text{)}_4 \xrightarrow{\text{SO}_2, -64 \text{ C}} \text{N}_5\text{B(N}_3\text{)}_4 + \text{NaSbF}_6$$

- $\text{NaP(N}_3\text{)}_6$ and $\text{NaB(N}_3\text{)}_4$ are already extremely shock-sensitive and their N_5^+ salts are even more vicious.

- $\text{N}_5\text{B(N}_3\text{)}_4$ contains 96 weight % of energetic nitrogen.

- Paper has been accepted by Angewandte for publication.
Characterization of $N_5P(N_3)_6$ and $N_5B(N_3)_4$

- Low-temperature Raman spectra

- Material balances

- Stable at -64 °C, explode on warm-up toward room temperature
Summary

• Fluorine compounds and trimethylsilylazide undergo rapid and quantitative fluoride / azide ligand exchange

• This reaction is ideally suited for the preparation of binary polyazides in high purity and quantitative yield

• Compounds studied so far under this program include:

 $W(N_3)_6, Mo(N_3)_6, W(N_3)_7^-, WO(N_3)_4, WO(N_3)_4\cdot CH_3CN, WO(N_3)_5^-, Ta(N_3)_5, Ti(N_3)_4, Ti(N_3)_5^-, Ti(N_3)_6^{2-}, Te(N_3)_4, Te(N_3)_5^-, Te(N_3)_6^{2-}, Sb(N_3)_5, As(N_3)_5, Sb(N_3)_6^-, As(N_3)_3, Sb(N_3)_3, N_5^+B(N_3)_4^-, and N_5^+P(N_3)_6^-$

• This work is extremely challenging, because of the high energy content and explosiveness of these materials