<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 SEP 2003</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Air Collision Avoidance Air Collision Avoidance System Auto-ACAS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryden Flight Research Center - NASA USA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also ADM001676, UAV 2002 Conference & Exhibition., The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
<td>UU</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td>UU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Overview
Auto-ACAS Provides the “Avoidance” for See and Avoid

• A Common Architecture for UAVs & Piloted Aircraft

• Industry Advancement
 – Address UAV Equivalency for See & Avoid in U.S. Airspace
 – Imbedded Flight Rules for Avoidance Onus
 – Enable UAV Swarming (Multiple UAVs in Close Proximity)
 – Prevent Midair Mishaps in Piloted Aircraft (JAS-39 Gripen)

• Architecture
 – Algorithm
 • Collision Prediction
 • Best Escape Determination
 – Sensor Integration
 • Cooperative – Datalink/Transponder
 • Non-Cooperative – Optical/IR
 • Fusion
Goals & Objectives

• Goals
 – Allow Safe Operation of Multiple UAVs and Manned Aircraft in Close Proximity
 – Military Application with Commercial Sector Potential
 – Define a Design Process/System Architecture
 • Broad Application
 • Ease Adaptation to Any Platform
 – Independent from TCAS
 • Initiates with feet/seconds of separation not miles/minutes
 • Higher level of redundancy than TCAS

• Objectives
 – Develop and Demonstrate a “Nuisance Free” System
 – Demonstrate Collision Avoidance
Auto-ACAS Design

• **Algorithm for Avoidance Decision**
 – Predicts Recovery Flight Path
 – Evaluates Other Neighboring Aircraft Flight Paths
 – Determines Minimum Approach of “Best Escape” Maneuver

• **Auto-Pilot Executing Avoidance Maneuver**
 – Aggressive Maneuver Relative to Aircraft Limits
 • Roll to Best Escape Bank Angle
 • Pull to 5g/AOA-limits
 – Disengage As Soon As Flight Paths De-Conflict

• **Technology Heritage**
 – Automatic Ground Collision Avoidance (Auto-GCAS)
 – Sensor Fusion/System Wide Integrity Management
 – Aircraft Response Model
 – Auto-Pilot Architecture
 – Lower Technical Risk
Auto-ACAS
Algorithm Architecture

- Aircraft Response Model
- Track Files & Conflict Determination
- Collision Estimation
- Predicted Trajectory
- 3-D Intersection Profile
- Time-to-Escape
- Flight Control Autopilot

- Navigation Solution
- Neighboring Aircraft Location/Intent
- Cooperative & Non-Cooperative Sensors

Aircraft State

Dryden Flight Research Center

AutoACAS
Auto-ACAS Operation

Overtaking Opponent

Scissors Maneuver
Heritage
Auto-GCAS History

Nuisance Potential

- Flight Test
 - Began in 1984
 - Over 2200 Auto-Recoveries in Flight
 - Over 700 DTS Based Auto-Recoveries
 - 30+ Evaluation Pilots
 - Most Likely Prevented Loss of the AFTI Aircraft
Project Description
Program Plan

• **Phase 1** (May 00 to Mar 01)
 – Concept Study

• **Phase 2** (3Qtr FY01 to 4Qtr FY03)
 – Focus on Vehicle Control not Sensors
 • Data Link is Primary Sensor
 – Develop & Flight Demonstrate Technology
 • 2 Piloted Fighter Aircraft
 • Flight Demonstration of Minimum Clearance Penetration Prevention
 • Buildup for Unmanned Testing
 • Demonstrate UAV Avoidance of Manned Aircraft
 – Identify Sensor & System Requirements

• **Follow-On Phase : Full Integration**
 – UAV/ROA Flight Test
 – See-and-Avoid Sensor Integration
 – Auto Ground Collision Avoidance Integration