INTEGRATION INTO CIVIL AIRSPACE
AIRWORTHINESS and SAFETY

Laurent Glasgall
MALE UAVs Architect

DGA/DSA/SPMT
WEAPON SYSTEMS DIRECTORATE
Tactical Missile Programs division
Integration into Civil Airspace Airworthiness and Safety

DGA/DSA/SPMT Weapon Systems Directorate Tactical Missile Programs Division France

Approved for public release, distribution unlimited

See also ADM001676, UAV 2002 Conference & Exhibition., The original document contains color images.
Integration into civil airspace

● Purpose:
 - to explore and propose French process and means for integrating UAV into civil airspace.

● Method based on:
 - first French experience with Hunter,
 - experiences, flights with interim systems (SDTI, SIDM) for testing procedures, improving method, acquiring experience, knowledge and confidence,
 - common civil-military analysis, modification, creation and/or implementation of air regulation text,
 - technical specification for future systems
Integration into civil airspace

- **Situation:**
 - French UAVs (Hunter, Crecerelle) fly in restricted military areas linked by temporary restricted airways,
 - flights are reglemented by followings texts:
 - Chicago convention (art 8),
 - OACI R-133-1 : distance between UAVs and other planes
 - RCA1 and RCAM1 : responsibility of pilot,
 - Specific DGAC regulation (25/08/86): UAVs classification, condition for using small UAVs in civilian air space
 - Specific DIRCAM regulation n°750 for using UAVs during militaries exercises in restricted areas.
Integration into civil airspace

- Problems and Challenge:
 - restricted areas are inadequate for testing, using futures MALE, HALE systems (great endurance, long range, high altitude flights, payloads) and for training operators,
 - we must define with civilian authorities, test and agree on specific rules for using UAVs into civil airspace,
 - we must be and/or become trustful in the system (safety, security, reliability, delay)
 - we must define (if necessary) specific payloads assuming security constraints, redundancy, “detect and avoid” and others safety functions
Integration into civil airspace

Background:

- 1999: DNA and DIRCAM created a joint staff for evaluating UAVs flight condition into airspace, it proposed specific rules for restricted areas only. Analysis for the civil airspace will be done.

- Flight tests Center (CEV) elaborate specific rules allowing the flight of new UAV systems within restricted areas (safety, test and qualification).

- Hunter experiments in CEAM
Integration into civil airspace

Experiments:

- Interim MALE system (SIDM) could be used
 - to define and test new ATC/ATM procedures with civil and military authorities,
 - to test integration within controlled airspace with other aircraft (pilot attitude, time of response, return home procedure, flight plan.....)
 - to be trustful in safety procedures, mechanism, pilot and ATC operator attitude, reliability, redundancy....,
Integration into civil airspace

Studies:

- Analysis Air traffic regulation text (RCA, RCAM…)
- Analysis Airspace Class characteristics, constraints, rules
- Analysis, “airprox”, accidents, incidents (IFR/VFR)

What are the responsibilities of UAV operators?

What kind of hazards scenario with UAV?

to propose

- operational certification and ATC procedures,
- legal text for operator responsibility, formation and training,
- safety equipment (technology, “detect and avoid function”, specification, qualification)
Requirements for airworthiness and safety for MALE

Tailoring review of JAR 23-25, OPS for MALE and HALE proves that
- only 40-45% of requirements are directly applicable to UAVs
- safety system objectives must be defined
- JAR implies great impacts on design and safety systems
- additional safety criteria for compliance must be defined on GCS, MMI, data link, flight termination system, software, operational and emergency procedures, ATC control
- “detect and avoid” functions are a key point for acceptance by civilian authorities
Requirements for airworthiness and safety

- Procurement services:
 - need to authorise the flight of their own UAV systems
 - need to demonstrate that these UAV will satisfy the same level of security than piloted air-planes
 - do not actually dispose of any legal text (as JAR of FAR texts) dedicated to UAV system to do so

- French position for MALE system:
 - Write a “book of requirements” : list of all items we will have to verify to authorise UAV flights
 - Completely reuse JAR and FAR rules with no modification according to security and safety proofs
 - Ease its acceptance by civilian authorities
Requirements for airworthiness and safety

Method:

- Take each requirement of JAR and FAR, DO178B…. rules
- Withdraw requirements not applicable to UAV MALE systems
- Allocate requirements upon a generic UAV MALE architecture
- Formally prove the same level of security (new MALE rules = existing JAR and FAR rules)
- Define safety specification for future MALE (design, equipment, safety equipment)

in accordance with civilian authorities