Friction Stir Welding of Aluminum and Titanium alloys

NATO Advanced Research Workshop
Metallic Materials with High Structural Efficiency
Kyiv, Ukraine
September 8-12, 03

Kumar V. Jata, Ph.D.
Technical Advisor
Metals, Ceramics and NDE Division
Materials and Manufacturing Directorate
Air Force Research Laboratory
Kumar.jata@wpafb.af.mil
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 MAR 2004</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction Stir Welding of Aluminum and Titanium alloys</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Research Laboratory, USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also ADM001672., The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>NATO unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Friction Stir Welding and Processing

- Friction stir **welding** will offer structural assemblies with high efficiency (Performance)
 - Examples: Through **lowering of weight** by elimination of fasteners
 - (Large cargo aircraft have approximately 1,000,000 fasteners)
- Many calculations show that cost (Affordability) will be lower with FSW once initial equipment is purchased
- Friction stir **processing** offers a route to
 - Superplastic forming
 - Elimination of cast microstructure and casting defects
Why is USAF doing this work?

• Replace fusion welding for Reusable Launch Vehicles and Next Generation Launch Technology
 – Current fusion welding methods are inadequate
 – Property loss with each repair

• Aging aircraft applications
 – Corrosion at fasteners
 • $1B corrosion costs just for Air Force

• Future Aircraft
 – Unitized Structures
 – Components of UCAV
Background

• FSW was invented at TWI (Cambridge) in 1991 and patented in 1992. Now in use and under study worldwide.
• Process is well established for Al alloys in a wide range of thickness.
• Proof of concept demonstrated for steel and Ti but not in commercial use yet.
Key Process Variables

• Process Control
 – Z-axis force: the forging force normal to the plate
 – Tool rotation rate
 – Welding speed.
 – Lead angle: tool tilt relative to the plate (0°-3°)

• Process response
 – X-axis force: opposing tool motion
 – Y-axis force: perpendicular to tool motion in the plane of the plate
 – Torque (power)

• Other
 – Plate thickness (1mm-75 mm, depending on material).
 – Plate composition (flow properties).
 – Tool geometry (shoulder and pin).

Good welds may be made with large variation in any or all of these variables; however, the best* weld requires careful choice.

*What is this?
Typical FSW Tools

W-Re tool in collet-style tool holder. Used for welding steels and Ti alloys

Tools for conventional welding of al-alloys

3-piece self-reacting tool

Shoulder 25 mm ϕ

Pin 10 mm ϕ

CBN tool for welding steel sheet

Courtesy: Professor Tony Reynolds, University of South Carolina
FSW Terminology

Microstructure

No solidification structure or defects and max T may be considerably below the solidus.

Dynamically recrystallized zone (Jata & Semiatin: Scripta Materialia, 2001)
Superplastic formable (Reynolds: Materials Science & Engineering, 2003)
Typical Hardness Profiles after FSW

Schematic for Al alloys

Weld Centerline

Refined structure

OA

SHT

Overaged

O-temper, 5XXX alloys, stainless steels, ferritic steels.

Most precipitation hardened alloys.

Distance

Hardness

Jata/US Air Force
FSW Defects
(un-)Commonly Encountered

- Reduction in sheet thickness: simple loss of load bearing cross-section.
- Lack-of-Penetration, LOP/cold lap/kissing bond
- Advancing side wormhole or tunnel.
- Surface lack of fill.
Wormhole Defect Production

- Weld, ≈ 0.67m long in 2219, 9 mm thick plate.
- 1.7 mm/s welding speed.
- rpm varying continuously from 90-900.
- Advancing side defects observed at very high and very low advance per revolution (low and high RPM).

Jata/US Air Force
FSW is being applied to A/C

Large Cargo A/C floor
Corrosion needs to be proven

Jata/US Air Force
Low residual stresses in FSW

X-Rays
CT Coupons

Residual stress, MPa (longitudinal component)

Distance from center line of weld, mm

Al-Li-Cu alloy: C458-T8
as-FSW
Low residual stresses in FSW

![Graph showing residual stresses in FSW for Al-Li-Cu alloy C458-T8 as-FSW to top and back side of weld.](image-url)
Fatigue crack growth in Al-Li alloy C458

Al-Li-Cu alloy C458-T8
As friction stir welded

Fatigue crack growth in Al-Li alloy C458-T8 as friction stir welded.
Fatigue in the weld; Nugget vs. HAZ

C458-T8 (TL)
R=0.3; dry air
EC(T)

ΔK, MPa-m^{1/2}

da/dN, m/cycle

weld nugget
Heat Affected Zone
Effect of specimen geometry on FCG?
Ti alloys
Joining Considerations for Ti

- Joining of Ti alloys is complicated by their high reactivity and low thermal diffusivity
- Embrittlement resulting from the absorption of interstitial elements (O, N, and H)
- Formation of porosity in fusion welds
- Strong dependence of microstructure and properties on processing history
Joining Considerations for Ti

- Solid-state process eliminates problems associated with melting and resolidification.
- Uses cylindrical tool with cylindrical pin extending from shoulder.
- Tool is rotated to desired RPM and plunged into joint.
- After short dwell time, tool is traversed along joint.
- At end of joint, tool is lifted and rotation is stopped.
Experimental Procedures

- ~ 1/4” (~6mm) Ti-6Al-4V plate in mill annealed condition
- FSW at 4 ipm (100 mm/min) using inert gas shroud
- Optical microscopy: Etch with 3% HF & 10% H₂O₂ in water.
- Microhardness testing: 1 kg load & 15 seconds dwell time.
- Bend testing and transverse tensile testing at room temperature
FSW of Ti-6Al-4V
Top View of the FSW Butt Joint
Optical Macrograph

Transverse cross-section of FSW on Ti-6Al-4V
Optical Microscopy

Ti-6Al-4V Base Metal:
mill annealed condition
Microhardness Indentations

Jata/US Air Force
Microhardness Test Results

Microstructural Analysis by SEM
BEI images of FSW in Ti64

HAZ

Stir Zone

-60 µm
40 µm
240 µm
440 µm
3000 µm

500 µm

20 µm
Stir Zone (Nugget) Microstructure

Base metal

Nugget
Transformed β volume fraction versus position

![Graph showing transformed β volume fraction versus position with data points and line graph. The x-axis represents position from HAZ/Nugget Boundary (µm) ranging from -500 to 3500, and the y-axis represents Volume Fraction (%) ranging from 0 to 100. The graph includes a line for Volume Fraction and a dashed line for True Vol Fract at T. Jata/US Air Force]
Vertical section in Ti-Al-V Phase Diagram

Stir Zone
HAZ

Temperature, °C

Weight Percent V
Results - Bend Test

ε > 12%

Jata/US Air Force
Ti64: Tensile Test Specimens
Tensile Properties: Ti-6Al-4V

<table>
<thead>
<tr>
<th>Property</th>
<th>Base Metal</th>
<th>FSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Strength: (MPa)</td>
<td>895</td>
<td>912</td>
</tr>
<tr>
<td>Tensile Strength: (MPa)</td>
<td>957</td>
<td>1012</td>
</tr>
<tr>
<td>% Elongation:</td>
<td>12.7</td>
<td>12.7(0.9)</td>
</tr>
<tr>
<td>Failure Location:</td>
<td>NA</td>
<td>BASE</td>
</tr>
</tbody>
</table>
Summary

• BM was equiaxed α with gb β
• % prior β in HAZ increased with decreasing distance from stir zone
• Stir zone contains acicular α in fine prior β grain size
• Weld tensile tests exhibit excellent joint efficiency and ductility
• FSW of Ti alloys is feasible
Research Areas

• Research Gaps
 – Need an Al alloy that is friction stir weldable and has all the good mechanical properties !!!!
 – How do you make the HAZ of ppt hardened Al alloy less corrosion susceptible?
 – A Model that will predict FSW properties for all Al alloys without extensive testing
 – Need a good FSW tool for Ti alloys