The Effect of Jet Fuels on the Skin Irritation and Neuropeptide Release

Mandip S. Sachdeva

FLORIDA A&M UNIVERSITY
COLLEGE OF PHARMACY
201 FOOTE HILYER ADMINISTRATION BLDG.
TALLAHASSEE, FL 32307-3200

December 2003

FINAL REPORT FOR THE PERIOD FEBRUARY 2001 TO JULY 2003

Approved for public release; distribution is unlimited

Human Effectiveness Directorate
Warfighter Interface Division
2255 H Street
Wright-Patterson AFB OH 45433-7022
NOTICES

When US Government drawings, specifications or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Air Force Research Laboratory. Additional copies may be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Service
8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, Virginia 22060-6218

DISCLAIMER

This Technical Report is published as received and has not been edited by the Technical Editing Staff of the Air Force Research Laboratory.

TECHNICAL REVIEW AND APPROVAL

AFRL-HE-WP-TR-2003-0155

The animal use described in this study was conducted in accordance with the principles stated in the “Guide for the Care and Use of Laboratory Animals”, National Research Council, 1996, and the Animal Welfare Act of 1966, as amended.

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE DIRECTOR

//SIGNED//

MARK M. HOFFMAN
Deputy Chief, Biosciences and Protection Division
Air Force Research Laboratory
The Effect of Jet Fuels on the Skin Irritation and Neuropeptide Release

Mandip Sachdeva

Florida A&M University
College of Pharmacy
201 Foote Hilyer Administration Bldg.
Tallahassee, FL 32307-3200

Air Force Research Laboratory, Human Effectiveness Directorate
Biosciences and Protection Division
Counterproliferation Branch
Wright-Patterson AFB, OH 45433-5707

Approved for public release; distribution is unlimited

Excised Hairless rat skin (CD\(\text{\textregistered}\)/SD)Hr.Bi,Male rats) was used for permeation and absorption studies. The studies were conducted on Franz diffusion cells using 6% Brij in normal saline (37°C) as the receptor medium which was stirred with a magnetic bar at 600 rev./min. Nonane, dodecane, tetradecane, benzene and xylene (0.5ml) spiked with 2.5\(\mu\)Ci of respective radiolabled chemical was placed in the donor compartment. The receptor samples were analyzed by Liquid scintillation counting. The cumulative amount of chemical permeated was plotted against time. The slope of linear portion of the curve (mg/cm²/hr) was determined. For absorption studies, the skin after defined exposure period was taken out from the diffusion cell. The stratum corneum was removed by tape stripping with Transpore® tape. The underlying tissue was sectioned with Cryotome (Thermo-Shandon, 620 Electronic) into epidermis and dermis. The 14C and 3H samples were counted on a scintillation counter (1219 Reckbeta, LKB Wallac). The amount of chemical remaining in the skin was expressed in mg/g of the tissue.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>TECHNICAL REPORT</td>
<td>2</td>
</tr>
<tr>
<td>1. Skin penetration and absorption into different layers of skin of selected chemicals of JP-8 (Nonane, Dodecane, Tetradecane, Benzene and Xylene) using hairless rat skin</td>
<td>2</td>
</tr>
<tr>
<td>2. Effect short-term occlusive and prolonged unocclusive exposure of selected chemicals of jet fuel on the skin barrier function and skin irritation hairless rats</td>
<td>3</td>
</tr>
</tbody>
</table>
FINAL REPORT FOR USAF/AFMC GRANT

Project Title:
The effect of Jet Fuels on the Skin Irritation and Neuropeptide Release

Project Duration:
February 21, 2001 to July 31, 2003

Name of Institution:
Florida A&M University
College of Pharmacy and Pharmaceutical Sciences
Tallahassee, FL 32307

Florida A&M University Account #
37-1507-137

Author(s) of Report:
1. Mandip Sachdeva, Ph.D
 Tel: 850-561-2790
 Fax: 850-599-3347
 Email: mandip.sachdeva@famu.edu
2. Jayachandra Ramapuram, Ph.D.
 Tel: 850-412-7006
 Fax: 850-599-3347
 Email: jay.ramapuram@famu.edu

List of Manuscripts Published / Submitted:

Scientific Personnel Supported this Grant:
1. Mandip Sachdeva, Ph.D (PI)
2. Jayachandra Ramapuram, Ph.D. (Res. Assoc.)
3. Sokha Yim (Undergraduate student)
4. Kristin Ball (Undergraduate student)
1. Skin penetration and absorption into different layers of skin of selected chemicals of JP-8 (Nonane, Dodecane, Tetradecane, Benzene and Xylene) using hairless rat skin

Excised Hairless rat skin (CD® (SD)Hr.Bi, Male rats) was used for permeation and absorption studies. The studies were conducted on Franz diffusion cells using 6% Brij in normal saline (37°C) as the receptor medium which was stirred with a magnetic bar at 600 rev. / min. Nonane, dodecane, tetradecane, benzene and xylene (0.5ml) spiked with 2.5 μCi of respective radiolabeled chemical was placed in the donor compartment. The receptor samples were analyzed by Liquid scintillation counting. The cumulative amount of chemical permeated was plotted against time. The slope of linear portion of the curve (mg/cm²/hr) was determined. For absorptions studies, the skin after defined exposure period was taken out from the diffusion cell. The stratum corneum was removed by tape stripping with Transpore® tape. The underlying tissue was sectioned with Cryotome (Thermo-Shandon, 620 Electronic) into epidermis and dermis. The ¹⁴C and ³H samples were counted on a scintillation counter (1219 Reckbeta, LKB Wallac). The amount of chemical remaining in the skin was expressed in mg / g of the tissue.
Results:

- Parabolic relationship between the chain length of the aliphatic chemical and its permeation rate was observed. Tetradecane showed very low permeation, probably due to its high log octanol-water Kp (>7.0) (Fig. 1)
- The permeation rate of aromatic chemicals decreased with increase in the molecular weight (xyl=106.17, benz=78.12) or log Kp (xyl=3.12, benz=2.13) (Fig. 2)
- The skin retention pattern of the aliphatic chemicals in SC indicates the depot formation according to their lipophilicity. The retention increased with increase in the Kp of chemicals (Fig. 3).
- However, in epidermis and dermis, which are relatively hydrophilic regions, the retention decreased with increase in Kp, (excepting dodecane)
- The retention pattern of different chemicals (in epidermis and dermis) was dodecane > nonane > tetradecane, similar to the results of their permeation rates.
- The retention of aromatic chemicals increased with increase in the lipophilicity in all the skin layers (Fig. 4).
- An inverse correlation between the skin retention of chemicals and their permeation rates was observed.

2. **Effect short-term occlusive and prolonged unocclusive exposure of selected chemicals of jet fuel on the skin barrier function and skin irritation in hairless rats.**

Hairless rats (CD® (SD)Hr.Bi, Male) were used for occlusive and unacclusive exposure studies. The temperature of the room was maintained at 23±1°C and the humidity was maintained at 35-45% RH. The control and treatment areas (~3 cm²) were marked on the dorsal surface of the rat. For occlusion studies, nonane, dodecane tetradecane, benzene and xylene (230 µL each) were placed in the Hill top chamber® (surface area 1.04 cm²) and affixed over the center of the marked treatment sites for 1 hr. The control site was affixed with a Hill top chamber® without any solution. Measurements of transepidermal water loss (TEWL) and skin capacitance (moisture content) were taken for all the treatment and control sites before application and at intervals up to 7 days after removal of the patches. For unocclusive conditions, the chemicals were applied at 15µl every 2 hours for 5 days. TEWL and skin moisture content at the treatment and control sites was measured using Tewameter TM 210 (Courage +Khazaka, Kóln, Germany) and Corneometer CM 825® (Courage +Khazaka, Kóln, Germany), respectively. The skin irritation (erythema and eczema) was evaluated by visual scoring by a modified method of Draize and coworkers.

Results:

The effect of occlusive application of various chemicals on the skin irritation and barrier function is shown in Figs. 5-7. The skin irritation data correlated well with TEWL data. Dodecane, which was absorbed in highest levels in various layers of skin, caused minimum effect on skin barrier function and irritation under occlusive conditions. The flux of nonane was lowest of all chemicals studied and showed higher TEWL values and skin irritation than xylene and benzene. The effect of unocclusive application of various chemicals on the skin irritation and barrier function is shown in Figs. 8-10. All the chemicals showed significantly higher irritation scores, TEWL and moisture content under unocclusive conditions. Short-term occlusion of skin (1 hour, 230ml/cm²) with various chemicals showed a very high effect on skin barrier function and
irritation than unocclusive condition for prolonged exposures (14 ml/cm^2, every 2 hours for 5 days). The skin barrier function (as indicated by high TEWL) and erythema scores did not return to base line even at the end of 7 days study with short-term occlusive condition.