Solid State Structural Studies of Some New Derivatives of HN(SO$_2$CF$_3$)$_2$ and HOTeF$_5$

Vandana Vij,
Air Force Research Laboratory/ PRSP
vandana.vij@edwards.af.mil
(661) 275-5656

14th European Symposium on Fluorine Chemistry, Poznan, Poland, July 11-16, 2004
Distribution A statement: Approved for public release; distribution unlimited
The "cisoid" form is less common. In the CCDC, only 6 structures show this conformation whereas the "transoid" form occurs in 15 remaining structures. The "cisoid" conformation results from stronger cation-anion interaction observed exclusively when anion is chelated to the metal center. The "transoid" form dominates in structures containing a "free" anion. NO structure known containing both "cisoid" AND "transoid" geometry.
Coworkers & Collaborators

Dr. Ashwani Vij and Dr. Jerry A. Boatz
Air Force Research Laboratory, PRSP, Bldg 8451, 10 E. Saturn Blvd. Edwards Air Force Base, CA 93524

Dr. Fook S. Tham
Department of Chemistry, University of California, Riverside CA 92521
Coordination & isomerism in \(N(SO_2CF_3)_2 \) (NTf)

The “cisoid” form is less common. In the CCDC, only 6 structures show this conformation whereas the “transoid” form occurs in 15 remaining structures.

- The “cisoid” conformation results from stronger cation-anion interaction.
- “Cisoid” observed exclusively when anion is chelated to the metal center.
- The “transoid” form dominates in structures containing a “free” anion.
- NO structure known containing both “cisoid” AND “transoid” geometry.

Synthesis of metal(I) derivatives

These salts are colorless and crystalline. Recrystallization from iso-propylalcohol gave anhydrous salts. Some of these salts turn amorphous with time.

\[
\begin{align*}
\text{HN(SO}_2\text{CF}_3)_2 & + \text{M}_2\text{CO}_3 \xrightarrow{\text{H}_2\text{O}} 2 \text{MN(SO}_2\text{CF}_3)_2 + \text{CO}_2 + \text{H}_2\text{O} \\
\text{HX} & + \text{Ag}_2\text{O} \xrightarrow{\text{C}_6\text{H}_6} 2 \text{AgX C}_6\text{H}_6 \\
\end{align*}
\]

\(X = \text{OTeF}_5\) or NTf

\(\nu\text{Te-O (cm}^{-1}\): IR (Ra) at \(~865\) (860)
\(\nu_{\text{as SO2 (cm}^{-1}\): IR (Ra) at \(~1320\)(~1328)

\(^1\text{H NMR}: \text{C}_6\text{H}_6\) peak at 7.6-7.7 ppm
Uncoordinated benzene: 7.3
\(^19\text{F NMR}: \sim78\) ppm (CF\(_3\))
Structure of CsN(SO$_2$CF$_3$)$_2$ salts

Monoclinic $C2/c$ [$\beta = 91.92(1)^\circ$]

\[a = 22.509(12), \quad b = 7.029(4), \quad c = 13.519(7) \text{ [Å]} \]

Volume (Å3) = 2137.5(19), \(Z = 8, \quad T = 298 K\)

\[R1 = 0.0399, \quad S = 1.024 \]

Tetragonal $I-4$

\[a = 16.903(1), \quad c = 7.8933(6) \text{ [Å]} \]

Volume (Å3) = 2255.2(3), \(Z = 6, \quad T = 298 K\)

\[R1 = 0.0307, \quad S = 1.20 \]
Coordination environment of Cs in CsN(SO$_2$CF$_3$)$_2$ salts

CsN(SO$_2$CF$_3$)$_2$
Octa-coordinated with a short Cs-N bond

CsN(SO$_2$CF$_3$)$_2$•H$_2$O
Nona-coordinated with a long Cs-N bond
Crystal packing in $\text{CsN(SO}_2\text{CF}_3)_2$ salts

$\text{CsN(SO}_2\text{CF}_3)_2$
Hydrophobic and hydrophilic Layering

$\text{CsN(SO}_2\text{CF}_3)_2\cdot\text{H}_2\text{O}$
“Swiss cheese” Tunnel/channel structure
Polymorphism in silver bis(trifluoromethylsulfonyl)imide

- **Trigonal** $P-3_1c$
 - $a = 7.510(6) \, \text{Å}$, $c = 8.119(7) \, \text{Å}$
 - $Z = 6$, $T = 298 \, \text{K}$

- **Orthorhombic** $Pbca$
 - $a = 7.510(6) \, \text{Å}$, $b = 15.729(12) \, \text{Å}$, $c = 8.119(7) \, \text{Å}$
 - $Z = 4$, $T = 298 \, \text{K}$

Steric control of tricoordination around Ag is known in $[\text{Ag(CpPh}_2\text{P)}_3]^+ \cdot [\text{BF}_4]^-$

However, binary tricoordinated silver salts are unknown.

Structure of $[\text{AgN}(\text{SO}_2\text{CF}_3)_2(\text{C}_6\text{H}_6)_2]$}

- Dimerization via S-O…Ag bonding (2.302 Å)
- Long range for unsymmetrical Ag-C bonds (2.345-2.841 Å)
- N(SO$_2$CF$_3$)$_2$ group is “transoid”
- H…F bond distances observed close to sum of van der Waal distance

Triclinic $P-1$

\[a = 7.6704(13)\text{Å}, \quad b = 8.4295(14)\text{Å}, \quad c = 8.8631(15)\text{Å}, \]
\[\alpha = 111.673(3)^\circ, \quad \beta = 108.479(3)^\circ, \quad \gamma = 97.798(3)^\circ \]
\[V \ (\text{Å}^3) = 483.89(14), \quad Z = 2, \quad T = 298(2) \text{ K}; \quad R1= 0.0432, \quad S = 1.114 \]
Structure of
\[\text{[AgN(SO}_2\text{CF}_3)_2(\text{C}_6\text{H}_6)]_2\cdot\text{H}_2\text{O}} \]

✓ N(SO$_2$CF$_3$)$_2$ group is both N- as well as O-bonded to silver

✓ Water bridges the eighth-membered Ag-O-S-N-Ag-O-S-N ring forming two fused six-membered rings.

✓ Unsymmetrical Ag-C bonds (2.431-2.666 Å)

✓ N(SO$_2$CF$_3$)$_2$ group is "cisoid"

✓ H…F bond distances observed close to sum of van der Waal distance

Monoclinic $P2_1/n$

$a = 10.372(1)$ Å, $b = 19.823(2)$ Å, $c = 12.406(1)$ Å, $\beta = 108.536(3)^\circ$, $V (\text{Å}^3) = 2148.5(5)$, $Z = 8$, $T = 173(1)$ K; $R1 = 0.0224$, $S = 1.04$
Crystal packing in $[\text{AgN(SO}_2\text{CF}_3)_2(\text{C}_6\text{H}_6)]_2\cdot\text{H}_2\text{O}$
Structure of $[\text{AgOTeF}_5(\text{C}_6\text{H}_6)_2]_2$

- Dimeric structure
- Unsymmetrical Ag-C bonds
- Unsymmetrical and very long Te-O bonds
- H…F bonds observed

Triclinic $P-1$

\[a = 7.6704(13)\text{Å}, \quad b = 8.4295(14)\text{Å}, \quad c = 8.8631(15)\text{Å}, \]
\[\alpha = 111.673(3)^\circ, \quad \beta = 108.479(3)^\circ, \quad \gamma = 97.798(3)^\circ \]

\[V = 483.89(14) \text{Å}^3, \quad Z = 2, \quad T = 298(2) \text{K}; \quad R1 = 0.0432, \quad S = 1.114 \]
Synthesis of trimethyltin(IV) derivatives: Silver salt metathesis or acidolysis

\[
(CH_3)_3SnCl + AgX-C_6H_6 \xrightarrow{-AgCl} (CH_3)_3SnX + C_6H_6
\]

\(X = OTeF_5\) or \(N(SO_2CF_3)_2\)

MS shows \([M-CH_3]^+\) peak

Trimethyltin(IV) teflate can be distilled at 50°C under vacuum (0.1 Torr)

\(\nu_{Te-O} (\text{cm}^{-1})\): IR (Ra) at 860 (856)

\(\nu_{Sn-C} (\text{cm}^{-1})\) IR (Ra): asym: 552 (554); sym 518 (518)

\(\nu_{as SO_2} (\text{cm}^{-1})\): IR (Ra) at 1342 (1327)

\(\nu_{Sn-C} (\text{cm}^{-1})\) IR (Ra): asym: 558 (556); sym 520 (513)

\(\nu_{Te-O} (\text{cm}^{-1})\) \(F_2TeOCl\): IR (Ra) at 551 (554); \(\nu_{Te-O} (\text{cm}^{-1})\) \(F_2TeOTBA\): IR (Ra) at 867 (866)

\[
(CH_3)_4Sn + HX \xrightarrow{-CH_4} (CH_3)_3SnX
\]

\(X = OTeF_5\) or \(N(SO_2CF_3)_2\)
Synthesis and properties of methyltin(IV) derivatives

- Tetramethyltin can be used in large excess to avoid disproportionation
- Reaction by-products can be easily removed under vacuum
- Trialkyltin(IV) derivatives are colorless viscous oils
- Highly sensitive to moisture
- Form complexes with donor solvents.
- Potentially stronger catalysts in organic synthesis compared to TMSOTf (^{119}Sn Chemical shift +162 ppm from TMT)
Correlating spectroscopy and crystallography

Correlation of $^{2}J(^{119}\text{Sn}-^{1}\text{H})$ and C-Sn-C angle (determined from x-ray crystallography) gives the following non-linear relationship:

$$T \ (\text{C-Sn-C})^\circ = 0.0161 \ |^{2}J(^{119}\text{Sn}-^{1}\text{H})|^2 - 1.32 \ |^{2}J(^{119}\text{Sn}-^{1}\text{H})| + 133.4$$

Correlation of $^{1}J(^{119}\text{Sn}-^{13}\text{C})$ and C-Sn-C angle (determined from x-ray crystallography gives the following linear relation:

$$11.47T - 875 \ = \ |^{1}J(^{119}\text{Sn}-^{13}\text{C})|$$
<table>
<thead>
<tr>
<th>Solvent</th>
<th>δ(C) (ppm)</th>
<th>δ((^{119\text{Sn}})-C) (°)</th>
<th>δ((^{13\text{C}}) (°)</th>
<th>δ((^{119\text{Sn}})-Sn-(^{13\text{C}})) (°)</th>
<th>δ((^{119\text{Sn}})-Sn-(^{1\text{H}})) (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{CH}_2)_2\text{SnOTeF}_5) neat</td>
<td>69.6 (66.7)</td>
<td>119.5</td>
<td>0.10</td>
<td>506.4 (486.0)</td>
<td>121.4</td>
</tr>
<tr>
<td>((\text{CH}_2)_2\text{SnOTeF}_5) acetone</td>
<td>69.5 (66.6)</td>
<td>119.4</td>
<td>1.05</td>
<td>511.6 (490.0)</td>
<td>121.6</td>
</tr>
<tr>
<td>((\text{CH}_2)_2\text{SnSO}_2\text{F}_3) neat</td>
<td>62.3 (59.9)</td>
<td>112.6</td>
<td>1.4</td>
<td>404.1 (287.7)</td>
<td>112.2</td>
</tr>
<tr>
<td>((\text{CH}_2)_2\text{SnSO}_2\text{CF}_3) neat</td>
<td>64.2 (61.6)</td>
<td>115.9</td>
<td>2.1</td>
<td>412.6 (394.1)</td>
<td>113.0</td>
</tr>
<tr>
<td>([(\text{CH}_2)_2\text{Sn(OH)}_2\text{][SO}_2\text{CF}_3\text{]}) CN</td>
<td>69.0 (67.4)</td>
<td>119.0</td>
<td>0.7</td>
<td>512.2 (499.0)</td>
<td>121.6</td>
</tr>
<tr>
<td>((\text{CH}_2)_2\text{Sn(OH)}_2\text{][SO}_2\text{CF}_3\text{]}) CN</td>
<td>69.7 (66.7)</td>
<td>119.6</td>
<td>0.10</td>
<td>491.8 (470.0)</td>
<td>120.0</td>
</tr>
<tr>
<td>((\text{CH}_2)_2\text{Sn(OH)}_2\text{][SO}_2\text{CF}_3\text{]}) DMSO</td>
<td>69.8 (66.7)</td>
<td>119.7</td>
<td>0.92</td>
<td>512.9 (497.2)</td>
<td>121.8</td>
</tr>
</tbody>
</table>

* NMR spectroscopic data were recorded at 300 K.
*\(^a\)\) Calc from relation: \(\theta = 0.0161 \left(\frac{1}{J(\^{119}\text{Sn}-\^{11\text{H}})}\right)^2 - 1.32 \left(\frac{1}{J(\^{119}\text{Sn}-\^{1\text{H}})}\right) + 133.4.
*\(^b\)\) Calc from relation: \(\left|\frac{1}{J(\^{119}\text{Sn}-\text{\^{13C}})}\right| = 11.4 \theta - 875.
*\(^c\) Acetone = (CD)_2CO, DMSO = (CD)_3SO.
*\(^d\) Calculated from center of unresolved \(^{119}\text{Sn}, \text{\^{117}\text{Sn}}\) satellites (\(\delta_{\text{iso}}\) x 1.023).
Multinuclear NMR parameters
...continued

Table 2. 19F, 119Sn and 125Te NMR Spectroscopic Data of (CH$_3$)$_2$SnX [X = OTeF$_5$ and N(SO$_2$F/CF$_3$)$_2$]

<table>
<thead>
<tr>
<th>Solute</th>
<th>Solventb</th>
<th>$\delta^{(19)}$(F), ppm</th>
<th>$\lambda^{(19)}$(F)$\leftrightarrow^{(19)}$Sn</th>
<th>$\delta^{(119)}$(Sn)</th>
<th>$\delta^{(125)}$(Te)</th>
<th>$\delta^{(13)}$(CF$_3$)</th>
<th>$\lambda^{(125)}$(Te)$\leftrightarrow^{(13)}$(F), Hz</th>
<th>$\lambda^{(13)}$(C)$\leftrightarrow^{(13)}$(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH$_3$)$_2$SnOTeF$_5$</td>
<td>neat</td>
<td>-32.9</td>
<td>-41.9</td>
<td>182.5</td>
<td>270.8</td>
<td>569.5</td>
<td>3112</td>
<td>3540</td>
</tr>
<tr>
<td></td>
<td>CH$_3$Cl$_2$</td>
<td>-30.3</td>
<td>-38.5</td>
<td>183.0</td>
<td>272.4</td>
<td>564.6</td>
<td>3188</td>
<td>3550</td>
</tr>
<tr>
<td></td>
<td>acetone</td>
<td>-29.1</td>
<td>-40.6</td>
<td>180.0</td>
<td>96.0</td>
<td>574.9</td>
<td>3020</td>
<td>3558</td>
</tr>
<tr>
<td></td>
<td>CH$_3$CN</td>
<td>-29.2</td>
<td>-40.8</td>
<td>179.0</td>
<td>84.2</td>
<td>575.0</td>
<td>3032</td>
<td>3556</td>
</tr>
<tr>
<td></td>
<td>DMSO</td>
<td>-16.2</td>
<td>-33.8</td>
<td>170.0</td>
<td>40.0</td>
<td>598.7</td>
<td>2712</td>
<td>3666</td>
</tr>
<tr>
<td>(CH$_3$)$_2$SnN(SO$_2$F)$_2$</td>
<td>neat</td>
<td>55.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH$_3$Cl$_2$</td>
<td>55.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMSO</td>
<td>52.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$)$_2$SnN(SO$_2$CF$_3$)$_2$</td>
<td>neat</td>
<td>-78.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH$_3$Cl$_2$</td>
<td>-78.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH$_3$CN</td>
<td>-78.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMSO</td>
<td>-78.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[(CH$_3$)$_2$Sn(H$_2$O)$_3$][N(SO$_2$CF$_3$)$_2$]</td>
<td>CH$_3$CN</td>
<td>-79.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMSO</td>
<td>-79.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a NMR spectroscopic data were recorded at 300 K

b Acetone = (CD)$_3$CO, DMSO = (CD)$_3$SO

119Sn NMR shows a peak at 300.7 ppm in HOTeF$_5$

19F NMR for TEAOTeF$_5$ = -25.4 ppm

B(OTeF$_5$)$_3$ = -46.2 (Strauss et al., 1986)
^{119}Sn chemical shifts and anion basicity

- $d\ (^{119}\text{Sn})$ values lower (more downfield) than +200 ppm show a highly deshielded tin nuclei. Sometimes stronger acids results in relatively higher (upfield) chemical shifts due to close contacts even in solution state:

<table>
<thead>
<tr>
<th>Compound (Me$_3$SnX)</th>
<th>$d\ (^{119}\text{Sn})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = ClO$_4$ (unidentate)</td>
<td>245</td>
</tr>
<tr>
<td>X = SO$_3$CF$_3$ (bidentate)</td>
<td>162</td>
</tr>
</tbody>
</table>

For trimethyltin(IV) derivates in dichloromethane solution the relative anion basicity can be ordered as:

OTeF$_5$ < N(SO$_2$F)$_2$ ~ N(SO$_2$CF$_3$)$_2$ < ClO$_4$ < SO$_2$CF$_3$
Coordination complex formation with donor solvents

\[\text{H}_3\text{C}-\text{Sn}-\text{X} + \text{D} \]

\[\text{D} = (\text{CH}_3)_2\text{CO}, \text{CH}_3\text{CN} \]

\[\text{D} = (\text{CH}_3)_2\text{SO} \]

\[\text{X} = \text{OTeF}_5 \text{ or } \text{N(SO}_2\text{X)}_2 \]

Covalent

- \(\text{OTeF}_5 / \text{N(SO}_2\text{X)}_2 \)
- Long Te-O bond

IR \(\nu(\text{Te-O}) \) increases
IR \(\nu(\text{SO}_2) \) decreases

\(d(19\text{F}) \text{ Te-F}_\text{ax} \) is deshielded
\(d(19\text{F}) \text{ S-(C)F} \) is shielded

Ionic

- \(\text{OTeF}_5^- / \text{N(SO}_2\text{X)}_2^- \)
- Short Te-O bond

14th European Symposium on Fluorine Chemistry, July 11-16, Poznań, Poland
Distribution A Statement: Approved for public release; distribution unlimited
Formation of the hydrated trimethylstannyl cation

The hydrolysis of trimethyltin teflate results in the decomposition of the OTeF$_5$ group.

The hydrated salt can be isolated with N(SO$_2$CF$_3$)$_2$ anion but **NOT** for OTeF$_5$ anion.

The compound isolated after hydrolysis is [Me$_3$Sn(OH)$_2$]$_2$SiF$_6$.
Hydrated trimethyltin(IV) cation

Unit cell dimensions (Å)
Monoclinic (P2₁/c)

\[\begin{align*}
 a &= 7.3072(1) \, \text{Å}, \\
 b &= 13.4649(2) \, \text{Å}, \\
 c &= 16.821(2) \, \text{Å}, \\
 \beta &= 98.705(1) \, ^\circ
\end{align*} \]

Volume (Å³) = 1636.0(3) Å³,

\[Z = 4 \]

\[T = 213(2) \]

\[R_1 = 0.0367 \]

\[wR_2 = 0.0736 \]

\[S = 1.233 \]

Sn-C = 2.11 Å

< O(1)-Sn(1)-O(2) = 175.9(1)°

< C-Sn(1)-C (av) = 120(2)°

2.306(3) Å

2.335(3) Å
Hydrogen bonding in hydrated trimethyltin(IV) cations

\[S(\text{vdWSn} + \text{vdWO}) = 2.17 + 1.52 = 3.69 \text{ Å} \]
Sn-C versus Sn-Cl bond cleavage

XN(SO$_2$CF$_3$)$_2$ (X = H, Cl) shows a preferential Sn-Cl bond cleavage

\[
\begin{align*}
(CH_3)_3SnCl + HN(SO_2CF_3)_2 & \rightarrow (CH_3)_3SnN(SO_2CF_3)_2 + HCl \\
(CH_3)_3SnCl + ClN(SO_2CF_3)_2 & \rightarrow (CH_3)_3SnN(SO_2CF_3)_2 + Cl_2
\end{align*}
\]

XOTeF$_5$ (X = H, Cl) shows a preferential Sn-C bond cleavage

\[
\begin{align*}
(CH_3)_3SnCl + HOTeF_5 & \rightarrow (CH_3)_2SnClOTeF_5 + CH_4 \\
(CH_3)_3SnCl + ClOTeF_5 & \rightarrow (CH_3)_2SnClOTeF_5 + CH_3Cl
\end{align*}
\]

According to Sladky and Kropshofer (JCS Chem. Commun., 1973, 600), reaction of (CH$_3$)$_3$SnCl with HOTeF$_5$ gives trimethyltin(IV) teflate exclusively!
Structure of $(\text{CH}_3)_2\text{Sn(Cl)}\text{OTeF}_5$

Unit cell dimensions (Å)
- Monoclinic $P2_1/n$
 - $a = 5.8204(8)$, $b = 10.782(1)$
 - $c = 15.493(2)$
 - $\beta = 99.59(1)^\circ$
- Volume $(\text{Å}^3) = 971.7(2)$
 - $Z = 4$
 - $T = 218(2) \text{ K}$
 - $R_1 = 0.0282$
 - $wR_2 = 0.0712$
 - $S = 1.088$

Te-O (Å) (X=OTeF$_5^-$) : B(X)$_3 = 1.874(6)$; [TBA][H(X)$_2$] = 1.800(4)av; [Au(X$_3$)]$_2$ = 1.91(2)

ν(TeO) = 856 cm$^{-1}$ in IR and Ra; ν(SnO) = 427 (IR)/424 (Ra) cm$^{-1}$; ν(SnCl) = 313 (Ra) cm$^{-1}$
The C-Sn-C angle calculated using $^2J^{(119}\text{Sn}-^1\text{H})$ (67.9 Hz) and $^1J^{(119}\text{Sn}-^{13}\text{C})$ (472 Hz) coupling constants for $(\text{CH}_3)_2\text{SnCl}(\text{OTeF}_5)$ dissolved in CD$_2$Cl$_2$ is approximately ~118°. The $\delta^{(119}\text{Sn})$ value of ~142.7 ppm indicates that tin is present in a five-coordinate environment. The fifth coordination site can be occupied by a bridging chlorine, fluorine or oxygen from a neighboring Me$_2$SnCl(OTeF$_5$) molecule.

^{119}Sn NMR show the presence of another broad peak at ~127 ppm, which is due to an equilibrium. In VT NMR studies using toluene-d_8 as a solvent, this peak disappears at -80 °C.
Coordination environment around tin

One Sn-F contact is also found in the crystal lattice 3.140(4) Å, which is much shorter than the sum of van der Waal radii of tin and fluorine.

\[S(\text{vdWSn} + \text{vdWF}) = 2.17 + 1.47 = 3.64 \text{ Å} \]

Sn-Cl contact = 3.201(1) Å
Much shorter than the sum of van der Waal radii of tin and chlorine.
A longer Sn-Cl contact is also present at 3.904(2) Å.

\[S(\text{vdWSn} + \text{vdWCl}) = 2.17 + 1.75 = 3.92 \text{ Å} \]
Hydrolysis of the Sn-Cl bond in \((\text{CH}_3)_2\text{Sn(Cl)OTeF}_5\)
Structure of the dimethyloxotin(IV) teflate

Unit cell dimensions (Å)

Orthorhombic
Space Group: \(Pnnm \)
\[
a = 12.574(6), \quad b = 12.667(6), \quad c = 11.682(5)
\]
Volume (Å\(^3\)) = 1860.6(1)
\[
Z = 2
\]
\[
T = 243 ~ K
\]
\[
R1 = 0.0376
\]
\[
wR2 = 0.1021
\]
\[
S = 1.04
\]
\[
S_{(vdWSn + vdWO)} = 2.17 + 1.52 = 3.69 \text{ Å}
\]
Reaction of the hydrated silver salt with \((\text{CH}_3)_2\text{SnCl}_2\)

\[
(\text{CH}_3)_2\text{SnCl}_2 + \text{AgN(SO}_2\text{CF}_3)_2\cdot\text{C}_6\text{H}_6\cdot\text{H}_2\text{O} \rightarrow (\text{CH}_3)_2\text{Sn(Cl)N(SO}_2\text{CF}_3)_2 + \text{C}_6\text{H}_6 + \text{H}_2\text{O}
\]
Formation of $\text{Me}_2\text{Sn(OH)N(SO}_2\text{CF}_3)_2$
Solvolysis of Me₄Sn in excess acid:

Synthesis of dimethyltin(IV) teflate

✓ Dimethyltin(IV) teflate is formed when tetramethyltin is reacted with excess teflic acid

\[
(\text{CH}_3)_4\text{Sn} + \text{xs HOTeF}_5 \xrightarrow{\text{60 } ^\circ\text{C, 40h}} (\text{CH}_3)_2\text{Sn(OTeF}_5)_2 - 2 \text{CH}_4
\]

MS shows [M-CH₃]⁺ peak

✓ Upon sublimation ~75 °C/0.01T a polymeric species is formed, probably due to the loss of O(TeF₅)₂

\[
(\text{CH}_3)_2\text{Sn(OTeF}_5)_2 \xrightarrow{\text{75 } ^\circ\text{C, 0.01T}} (\text{CH}_3)_2\text{SnO} \quad \text{OTeF}_5 \quad \text{n}
\]

\[
\nu(\text{TeO}) = 877 \text{ cm}^{-1}; \nu(\text{SnO}) = 434 (\text{IR}) \text{ cm}^{-1}; \nu_{\text{as}} (\text{SnC}) = 591 \text{ cm}^{-1}, \nu_{\text{s}} (\text{SnC}) = 531 \text{ cm}^{-1}
\]
Structure of dimethylditinooxeteflate

Unit cell dimensions (Å)

Monoclinic $P2_1/n$

Rotational TWIN

$a = 7.510(6)$, $b = 15.729(12)$,
$c = 8.119(7)$

$\beta = 115.1(1) ^\circ$

Volume (Å³) = 876.7(12)

$Z = 4$

$T = 233(2)$ K

$R_1 = 0.1028$

$S = 1.84$

BASF = 0.256

C1-Sn-O1 = 110.2(5)°; C2-Sn-O1 = 103.3(6)°,
<equi. X-Sn-X (av)= 120°; O2-Sn-O2* = 169.9(5)°
Crystal packing showing tin and tellurium polyhedra

\[S_{(vdwSn + vdwF)} = 2.17 + 1.47 = 3.64 \text{ Å} \]

Sn-F distance in the crystal packing

\[= 3.107(16) \text{ Å} \]

The structure shows polymeric Sn-O chains bridged by a fluorine atom of the OTeF$_5$ group.

\[<\text{Sn-O2-Sn*} = 167.2^\circ \]

\[(\text{Sn*} = \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z) \]
Conclusions

- Silver salts containing the teflate and NTf form stable arene complexes. NTf conformation varies!

- 119Sn NMR chemical shifts can reflect the “electrophilic strength” and relative anion basicity for a Me$_3$Sn (IV) compound.

- During the solvolysis of trimethyltin chloride in HOTeF$_5$, there is a preferential cleavage of the Sn-C bond versus Sn-Cl bond

- Trimethyltin(IV) teflates/F-imides are highly electrophilic in nature and form 1:1 or 1:2 complexes with donor solvents

- Chlorodimethyltin(IV) teflate hydrolyzes to form a Sn-O ladder compound and sublimation of dimethyltin(II) bis(teflate) results in the formation of an oxo-bridged species.

- Use of hydrated silver salt to prepare methyltin derivatives results in the hydrolysis of trimethyltin derivative to form hydrated tin cation.

- Chlorodimethyltin NTf hydrolyzes to form the µ-(hydroxo) species, where NTf is in a trans orientation
Conclusions

- Trimethyltin(IV) derivates can easily be prepared by the reaction of acids with excess tetramethyltin.
- Trimethyltin(IV) derivatives are highly electrophilic and coordinate with solvents giving trigonal bipyramidal geometry.
- In case of water and DMSO, ionic salts are formed with two donor molecules occupying the axial position.
- During the solvolysis of trimethyltinchloride in HOTeF₅, there is a preferential cleavage of the Sn-C bond versus Sn-Cl bond.
- Chlorodimethyltin(IV) teflate hydrolysizes to form a Sn-O ladder compound.
- The sublimation of dimethyltin(II) bis(teflate) results in the formation of an oxo-bridged species.
Acknowledgments

Dr. Karl Christe (AFRL/USC)
Dr. Michael Berman (AFOSR)
Dr. Don Woodbury (DARPA)
Dr. Ronald Channell (AFRL)
Mr. Michael Huggins (AFRL)

FUNDING
AFOSR AFRL
BACKUP
Coordination environment of Cs in CsN(SO$_2$CF$_3$)$_2$ salts

CsN(SO$_2$CF$_3$)$_2$

Octa-coordinated with a short Cs-N bond

CsN(SO$_2$CF$_3$)$_2$•H$_2$O

Nona-coordinated with a long Cs-N bond

CsN(SO$_2$CF$_3$)$_2$ is reported to be ten-coordinated

DesMarteau, Pennington et al., Solid State Sciences, 2002, 4, 1535-1545
Crystal packing in $[\text{AgN(SO}_2\text{CF}_3)_2\text{(C}_6\text{H}_6)_2]$
Bond distances and angles

Me$_2$SnClOTeF$_5$

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn(1)-C(2)</td>
<td>2.104(4)</td>
</tr>
<tr>
<td>Sn(1)-C(1)</td>
<td>2.115(4)</td>
</tr>
<tr>
<td>Sn(1)-C(3)</td>
<td>2.120(4)</td>
</tr>
<tr>
<td>Sn(1)-O(1)</td>
<td>2.306(3)</td>
</tr>
<tr>
<td>Sn(1)-O(2)</td>
<td>2.335(3)</td>
</tr>
<tr>
<td>S(1)-O(3)</td>
<td>1.427(2)</td>
</tr>
<tr>
<td>S(1)-O(4)</td>
<td>1.428(3)</td>
</tr>
<tr>
<td>S(1)-N(1)</td>
<td>1.573(3)</td>
</tr>
<tr>
<td>S(1)-C(4)</td>
<td>1.825(5)</td>
</tr>
<tr>
<td>S(2)-O(6)</td>
<td>1.421(3)</td>
</tr>
<tr>
<td>S(2)-O(5)</td>
<td>1.433(3)</td>
</tr>
<tr>
<td>S(2)-N(1)</td>
<td>1.589(3)</td>
</tr>
<tr>
<td>S(2)-C(5)</td>
<td>1.844(4)</td>
</tr>
<tr>
<td>C(2)-Sn(1)-C(1)</td>
<td>1.178(2)</td>
</tr>
<tr>
<td>C(2)-Sn(1)-C(3)</td>
<td>1.201(2)</td>
</tr>
<tr>
<td>C(1)-Sn(1)-C(3)</td>
<td>1.122(2)</td>
</tr>
<tr>
<td>C(2)-Sn(1)-O(1)</td>
<td>1.8983(15)</td>
</tr>
<tr>
<td>C(1)-Sn(1)-O(1)</td>
<td>1.923(2)</td>
</tr>
<tr>
<td>C(3)-Sn(1)-O(1)</td>
<td>1.8719(13)</td>
</tr>
<tr>
<td>S(1)-N(1)-S(2)</td>
<td>1.253(2)</td>
</tr>
<tr>
<td>O(1)-Sn(1)-O(2)</td>
<td>1.7594(11)</td>
</tr>
<tr>
<td>O(3)-S(1)-O(4)</td>
<td>1.185(2)</td>
</tr>
<tr>
<td>O(4)-S(1)-N(1)</td>
<td>1.076(2)</td>
</tr>
<tr>
<td>O(3)-S(1)-C(4)</td>
<td>1.040(2)</td>
</tr>
<tr>
<td>O(4)-S(1)-C(4)</td>
<td>1.054(2)</td>
</tr>
<tr>
<td>O(6)-S(2)-O(5)</td>
<td>1.182(2)</td>
</tr>
<tr>
<td>O(6)-S(2)-N(1)</td>
<td>1.109(2)</td>
</tr>
<tr>
<td>O(5)-S(2)-N(1)</td>
<td>1.153(2)</td>
</tr>
<tr>
<td>O(6)-S(2)-C(5)</td>
<td>1.104.7(2)</td>
</tr>
<tr>
<td>O(5)-S(2)-C(5)</td>
<td>1.105.0(2)</td>
</tr>
<tr>
<td>S(1)-N(1)-S(2)</td>
<td>1.125.3(2)</td>
</tr>
</tbody>
</table>