BACTrack: A Surveillance Technique for Detecting and Locating Bioagent Attacks

Ronald Hoffeld
M.I.T. Lincoln Laboratory
(781) 981-2785; hoffeld@ll.mit.edu

10 June 2003

This work was sponsored under Air Force contract F19628-00-C-0002. The views expressed are those of the Author and do not reflect official policy or position of the United States government.
BACTrack: A Surveillance Technique for Detecting and Locating Bioagent Attacks

Report Documentation Page

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 JUN 2003</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACTrack: A Surveillance Technique for Detecting and Locating Bioagent Attacks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420-9108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also ADM001576., The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT: unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT: unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE: unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
</table>

Form Approved

OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
An Example Scenario

Attack Phase – day 0
- Covert Anthrax attack on T station
- Victims are infected but show no signs of illness

Early Symptom Phase – day 2
- Some victims show non-specific symptoms
- Victims are widely distributed geographically

Treatment Phase – day 5
- More victims begin to show signs of illness
- The sickest victims report to ER and doctors offices

Localized population
- Timely
- Not detectable

Cannot detect
- Cannot localize

Not Localized
- Not Timely
- Detectable
BACTrack

Biological Attack Correlation Tracker

- **Sampled Population**
 - Participants log a history of location versus time
 - When a participant feels ill, they download their symptoms and track history to a central processing facility

- **BACTrack processing**
 - Tracks of people reporting current symptoms are played back in time
 - Attack detection based on finding area with high concentration of symptomatic participants
Unique Aspects of BACTrack

- **BACTrack performs epidemiology in reverse**
 - First postulate a common point of infection, then follow-up to discover nature of ailment
 - Yields simultaneous detection and localization

- **Utilizes non-specific symptom information**
 - Filters noisy symptom data through geographical correlation
 - Allows automated self-reporting

- **Location tracking can yield signal-to-noise gain**
Comparison Of Detection Techniques

Resolution of Attack Localization:
- City
- Zip Code/Census Tract
- Block
- Building

First Symptoms
- Bedridden
- Hospitalized

Time to Detect

- Environmental Point Sensors
 - High False Alarm
 - High Cost/Maintenance
 - Local Coverage
 - Selected Diseases

- Medical Diagnosis
 - Syndromic Surveillance

- National Coverage
 - Low Cost, Dual Use
 - Full Range of Disease

- National Coverage
Comparison Of Detection Techniques

- **Environ-mental Point Sensors**: High False Alarm, High Cost/Maintenance, Local Coverage, Selected Diseases
- **BACTrack**: National Coverage, Low Cost, Dual Use, Full Range of Disease
- **Medical Diagnosis**: First Symptoms
- **Syndromic Surveillance**: Bedridden
- **City**: Building, Block, Zip Code/Census Tract

Resolution of Attack Localization

Time to Detect
Key Questions

• Detection sensitivity and false alarm rate
 – Attack size
 – Size of instrumented population
 – Ambient background illness
 – Time to detect

• Concept of operations
 – Tracking methods
 – Surveillance algorithms
 – Response
BACTrack Performance

Location – Med Surveillance

Detection - Med Surv.

Number Infected

Probability of detection = 0.9
Probability of false alarm = 10^{-5}
Infection rate = 50%
Background illness = 2%
First symptoms uniformly distributed 1 to 6 days

Initial victim symptoms

Days After Attack

Percent Instrumented with BACTrack

Number Infected

500
1000
2500
5000
10000
Building Attack Case

Detection Map

- Scenario: Anthrax is introduced into HVAC system of supermarket at peak shopping hour
- Simulation statistics
 - 10% of population BACTrack instrumented
 - 2% background illness
 - BACTrack detection based on report from 63 victims

To play movie please see attached file: s1.AVI
Water-Borne Contamination Case

Evaluation 5 days after contamination
2.5 days after first symptom

Evaluation 7 days after contamination
4.5 days after first symptom

- Waterborne attack detectable < 3 days after first symptom
- Simulation demonstrates public health benefit
BACTrack User Implementation

- **Location History**
 - Location tracking/storage using cell-phone network (geo-location mandated by 2006)

- **Subscription Services**
 - BACTrack location available as a phone provider service
 - Interactive Location Based Service forecast to grow to $4B/year market by 2006

- **User Reporting**
 - User reports symptoms through automated cell-phone interface using password
 - Individual reports only releasable with password
 - Summary information available to health department and all users

- **User Benefits**
 - User receives public health information including attack alerts and natural disease outbreaks
Response Sequence

Increasing Confidence

<table>
<thead>
<tr>
<th>Obtain additional site information</th>
<th>First responders</th>
<th>Docs/Hospitals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Testing</td>
<td>Forensics</td>
<td>Public Health</td>
</tr>
<tr>
<td>Medical Alert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proxy Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Public Alert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **First responders**
 - Forensics
 - Check local events
 - Phone calls
 - Site visit
 - On-site bio-analysis
 - Lab tests
 - Deny site Access
 - Declare as crime scene
 - Search for perpetrators

- **Docs/Hospitals**
 - Public Health
 - Increase patient testing
 - Look for other medical indicators
 - Order CDC push-pack
 - Prepare treatment centers
 - Treat most likely victims
 - Treat public at large
Summary

• BACTrack offers a new way to detect and locate bioagent attacks

• The study has shown the utility of coupling location history with health information
 – Earlier detection and location relative to medical surveillance

• The cell-phone location based service market can offer a means to implement BACTrack and to distribute its costs