Tribology of Composite Au-MoS$_2$ Films at Varying Contact Stresses

1 June 2003

Prepared by

J. R. LINCE
Space Materials Laboratory
Laboratory Operations

Prepared for

SPACE AND MISSILE SYSTEMS CENTER
AIR FORCE SPACE COMMAND
2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

Engineering and Technology Group

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED
This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Contract No. F04701-00-C-0009 with the Space and Missile Systems Center, 2430 E. El Segundo Blvd., Los Angeles Air Force Base, CA 90245. It was reviewed and approved for The Aerospace Corporation by P. D. Fleischauer, Principal Director, Space Materials Laboratory. Michael Zambrana was the project officer for the Mission-Oriented Investigation and Experimentation (MOIE) program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report’s findings or conclusions. It is published only for the exchange and stimulation of ideas.

Michael Zambrana
SMC/AXE
Solid-lubricant coatings for sliding electrical contact applications like slip-ring assemblies have very different requirements from typical applications like ball bearings and cutting tools: they have significantly lower contact stresses and sliding speeds. We are optimizing the performance of sputter-deposited nanocomposite Au-MoS₂ films for such low contact stress applications. Higher contact stress pin-on-disk tests (Sm = 730 MPa) showed that low Au-MoS₂ films (i.e., 22 to 38 at% Au) outperformed those with higher Au content (i.e., ≥55 at% Au). In contrast, low contact stress disk-on-disk tests (Sm = 0.3 MPa) showed that higher Au-content films outperformed low Au-MoS₂ films. These results, along with Auger Nanoprobe post-test analysis, indicate that Au provides structural integrity for the films in the high-contact-stress tests, while optimizing the MoS₂ transfer rate in the low-contact-stress tests. The results are promising for sliding electrical contacts because high-Au films not only perform the best tribologically, but also exhibit the highest electrical conductivity.

14. ABSTRACT

15. SUBJECT TERMS

Solid Lubricants, Molybdenum Disulfide, Friction and Wear Testing, Slip Rings, Sliding Electrical Contacts, Nanocomposite Coatings, Auger Electron Spectroscopy, RF Sputter Deposition
Tribology of Composite Au-MoS$_2$ Films at Varying Contact Stresses

Jeff Lince
Tribology Section
Materials Science Department
Space Materials Laboratory
1 May 2003

jeffrey.r.lince@aero.org

*310-336-4464
Outline

• Background
• Description of Apparatus
 – Multitarget rf magnetron sputter deposition system: Au, MoS₂
 – CS(E)M Tribometer; Purged with purified N₂
 – Auger Nanoprobe
• Friction Testing
 – Testing at two contact stresses for 2000m
 – Pin-on-disk (only disk coated): 730 MPa (106 ksi) mean Hertzian stress
 – Disk-on-disk (only one disk coated): ~0.1 MPa (15 psi) mean Hertzian stress
• Analysis of Wear Track/ Transfer Films: Auger Nanoprobe
• Summary/ What’s Next

jeffrey.r.lince@aero.org
©2003, The Aerospace Corporation, All Rights Reserved
1-May-2003
Background

• Sputter-deposited MoS₂ films used in space and ground applications are generally moderately high contact stress
 – Actuators (solar array drives), deployment mechanisms, gimbal bearings
 – Cryogenic lubrication applications (Launch vehicle engines)
 – Used increasingly for cutting/forming tools, etc.

• Conductive, lubrious, adherent films could provide a boon for sliding electrical contacts in vacuum (and terrestrial?) environment
 – Slip Rings
 – Switches & Relays
 – Connectors

• Behavior of sputter-deposited MoS₂-based films at low contact stress not well-characterized: What parameters are important?
RF Sputter-Deposition System
CS(E)M Pin-on-Disk Tribometer
Experimental Details

- **Sputter-Deposition Thin Film Growth Parameters**
 - Upper and lower specimens are 440C steel
 - Cleaned before deposition/testing in Brulin 815GD/Heptane
 - Thin film growth chamber base pressure: **1 \times 10^{-9} Torr (1.33 \times 10^{-7} Pa)**
 - Simultaneous deposition of Au & MoS₂ using RF magnetrons
 - Au: 60-200W (0.7 - 2.0 W/cm²) - partially unbalanced
 - MoS₂: 100-200W (1.2 - 2.0 W/cm²)
 - Continuous stream of purified Ar (< 1 ppm H₂O, O₂, CO, etc.)
 - Chamber pumped continuously
 - During deposition, Ar pressure ≈ **3 \times 10^{-3} Torr (0.4 Pa)**
 - Substrate on rotating table during thin film deposition

- **Friction testing under 5 N load, 8 cm/s, 2000 m goal, in purified N₂**
 - High contact stress, 8mm ball on disk: **S_m = 730 MPa (106 ksi)**
 - Low contact stress, 0.8 diam flat on disk: **S_m = \sim 0.1 MPa (15 psi)**
 - Similar to contact stresses in slip ring/brush contacts

- **PHI 680 Nanoprobe with Ar ion gun: Pre-, Post-wear test analysis**
Auger Depth Profiles of Au-MoS$_2$ Films

38% Au/ 62% MoS$_2$

Au/MoS$_2$ with 38% Au

76% Au/ 24% MoS$_2$

Au/MoS$_2$ with 75% Au
Friction of Au/MoS$_2$ Films
Tested at High S_m
Friction of Au/MoS$_2$ Films
Tested at High S_m
Friction of Au/MoS$_2$ Films
Tested at Low S_m
Auger Analysis in Wear Track of Au/MoS$_2$ Film (38% Au) after High S_m Test

- Thin MoS$_2$ layer provides lubrication
- Underlying Au/MoS$_2$ film provides support (wear resistance)
- Detection of MoS$_2$ on surface of film is typical of Au/MoS$_2$ films prior to failure
Wear Tracks on Au/MoS$_2$ Films
after High S_m Tests

38% Au
- Mostly MoS$_2$ in track
- Small substrate peak seen only in track center
- Au detected only outside track

76% Au
- Little MoS$_2$ in track
- Substrate peak seen throughout track
- Au detected only outside track
Auger Analysis in Wear Track of Au/MoS$_2$ Films after Low S_m Test

38% Au

Coated disks:
Auger shows significant MoS$_2$ remains in the contact region; little Au detected

Uncoated disks:
Auger shows that surfaces of transfer films on uncoated disks are mostly MoS$_2$
Discussion

- At high contact stress, sputter-deposited MoS$_2$-based films work best in conditions that:
 - Allow lubricating layer and transfer film that are *thin* and *uniform*
 - Subsurface (unworn) part of film is fracture-tough
- E.g., previous Aerospace studies varying gaseous test ambient
 - Oxygen improves transfer film formation
 - Water causes thick, uneven transfer film formation
- High contact stress; allows MoS$_2$ to shear
 - Low metal: dense, hard, fracture tough, environmentally stable films
 - High metal: soft films, high wear
 - No metal: high wear
- Low contact stress; does not allow MoS$_2$ to shear as readily
 - High metal: limits transfer of lubricant
 - Low or No metal: excessive lubricant transfer (wear)/ patchiness
Summary

- Testing at high contact stress ($S_m = 730$ MPa or 106 ksi) up to 2000 m
 - Low friction (0.01 to 0.02) throughout test for films with 22%-38% Au
 - Low friction (0.02), but limited endurance for film with 55% Au
 - Low endurance for films with 76%-82% Au, pure Au, and pure MoS$_2$

- Testing at low contact stress ($S_m \approx 0.1$ MPa or 15 psi) up to 2000 m
 - Lowest friction (0.03) for films with 55% and 76% Au
 - Higher (and increasing) friction (0.07 to 0.2) for films with 22%-38% Au
 - Rapid failure for film with 82% Au, pure Au, and pure MoS$_2$

- Post-test Auger nanoprobe: Interface lubricated by thin MoS$_2$ film

- Best low-S_m performance for high Au content → Best electrical conductivity

- Next studies: Nanohardness, Conductivity, Thickness of lubricating layer, Slip ring tests
LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security programs, specializing in advanced military space systems. The Corporation's Laboratory Operations supports the effective and timely development and operation of national security systems through scientific research and the application of advanced technology. Vital to the success of the Corporation is the technical staff's wide-ranging expertise and its ability to stay abreast of new technological developments and program support issues associated with rapidly evolving space systems. Contributing capabilities are provided by these individual organizations:

Electronics and Photonics Laboratory: Microelectronics, VLSI reliability, failure analysis, solid-state device physics, compound semiconductors, radiation effects, infrared and CCD detector devices, data storage and display technologies; lasers and electro-optics, solid-state laser design, micro-optics, optical communications, and fiber-optic sensors; atomic frequency standards, applied laser spectroscopy, laser chemistry, atmospheric propagation and beam control, LIDAR/LADAR remote sensing; solar cell and array testing and evaluation, battery electrochemistry, battery testing and evaluation.

Space Materials Laboratory: Evaluation and characterizations of new materials and processing techniques: metals, alloys, ceramics, polymers, thin films, and composites; development of advanced deposition processes; nondestructive evaluation, component failure analysis and reliability; structural mechanics, fracture mechanics, and stress corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures; launch vehicle fluid mechanics, heat transfer and flight dynamics; aerothermodynamics; chemical and electric propulsion; environmental chemistry; combustion processes; space environment effects on materials, hardening and vulnerability assessment; contamination, thermal and structural control; lubrication and surface phenomena. Microelectromechanical systems (MEMS) for space applications; laser micromachining; laser-surface physical and chemical interactions; micropropulsion; micro- and nanosatellite mission analysis; intelligent microinstruments for monitoring space and launch system environments.

Space Science Applications Laboratory: Magnetospheric, auroral and cosmic-ray physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and ionospheric physics, density and composition of the upper atmosphere, remote sensing using atmospheric radiation; solar physics, infrared astronomy, infrared signature analysis; infrared surveillance, imaging and remote sensing; multispectral and hyperspectral sensor development; data analysis and algorithm development; applications of multispectral and hyperspectral imagery to defense, civil space, commercial, and environmental missions; effects of solar activity, magnetic storms and nuclear explosions on the Earth's atmosphere, ionosphere and magnetosphere; effects of electromagnetic and particulate radiations on space systems; space instrumentation, design, fabrication and test; environmental chemistry, trace detection; atmospheric chemical reactions, atmospheric optics, light scattering, state-specific chemical reactions, and radiative signatures of missile plumes.