PERFORMANCE MEASUREMENTS, FLOW VISUALIZATION, AND NUMERICAL SIMULATION OF A CROSSFLOW FAN

by

M. Scot Seaton

March 2003

Thesis Advisor: Garth V. Hobson
Second Reader: Raymond P. Shreeve

Approved for public release; distribution is unlimited
A 12-inch diameter, 1.5-inch span crossflow fan test apparatus was constructed and tested using the existing Turbine Test Rig (TTR) as a power source. Instrumentation was installed and a data acquisition program was developed to measure the performance of the crossflow fan. Performance measurements were taken over a speed range of 1,000 to 7,000 RPM. Results comparable to those measured by Vought Systems Division of LTV Aerospace in 1975 were obtained. At 6,000 RPM, a thrust-to-power ratio of one was determined; however, at 3,000 RPM twice the thrust-to-power ratio was measured. Flow visualization was conducted using dye-injection methods. Performance and flow visualization results were compared to predictions obtained from 2-D numerical simulation conducted using Flo++, a commercial PC-based computational fluid dynamics software package by Softflo. A possible design for a light civil V/STOL aircraft was suggested using a similar crossflow fan apparatus for both lift and propulsion.
THIS PAGE INTENTIONALLY LEFT BLANK
PERFORMANCE MEASUREMENTS, FLOW VISUALIZATION, AND NUMERICAL SIMULATION OF A CROSSFLOW FAN

M. Scot Seaton
Lieutenant, United States Navy
B.S., Purdue University, 1993

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author: M. Scot Seaton

Approved by: Garth V. Hobson
Thesis Advisor

Raymond P. Shreeve
Second Reader

Max F. Platzer
Chairman, Department of Aeronautics and Astronautics
ABSTRACT

A 12-inch diameter, 1.5-inch span crossflow fan test apparatus was constructed and tested using the existing Turbine Test Rig (TTR) as a power source. Instrumentation was installed and a data acquisition program was developed to measure the performance of the crossflow fan. Performance measurements were taken over a speed range of 1,000 to 7,000 RPM. Results comparable to those measured by Vought Systems Division of LTV Aerospace in 1975 were obtained. At 6,000 RPM, a thrust-to-power ratio of one was determined; however, at 3,000 RPM twice the thrust-to-power ratio was measured. Flow visualization was conducted using dye-injection methods. Performance and flow visualization results were compared to predictions obtained from 2-D numerical simulation conducted using Flo++, a commercial PC-based computational fluid dynamics software package by Softflo. A possible design for a light civil V/STOL aircraft was suggested using a similar crossflow fan apparatus for both lift and propulsion.
TABLE OF CONTENTS

I. INTRODUCTION ... 1
 A. OVERVIEW ... 1
 B. HISTORY ... 3

II. EXPERIMENTAL APPARATUS .. 9
 A. HARDWARE DESCRIPTION ... 9
 1. Turbine Test Rig (TTR) .. 9
 2. Crossflow Fan Test Assembly (CFTA) 12
 B. OPERATING CONTROLS AND INSTRUMENTATION 15
 1. Control Station .. 15
 2. Instrumentation .. 16
 C. FLOW VISUALIZATION .. 18
 D. DATA ACQUISITION SYSTEM ... 19
 1. Hardware .. 19
 2. Software .. 21
 E. OPERATIONAL PROCEDURES AND TEST PROGRAM 22
 1. Procedures ... 22
 2. Test Program ... 23
 F. DATA REDUCTION ... 24
 G. RESULTS AND DISCUSSION .. 28
 1. Introduction ... 28
 2. Performance Plots ... 29
 3. Flow Visualization ... 35

III. NUMERICAL SIMULATION ... 39
 A. FLO++ OVERVIEW .. 39
 B. GRID GENERATION ... 39
 C. FLOW SOLUTION ... 47
 D. RESULTS AND DISCUSSION .. 48

IV. FAN-IN-WING CONCEPT .. 55
 A. DESCRIPTION ... 55
 B. NUMERICAL SIMULATION .. 56
 C. SUGGESTED V/STOL CONFIGURATION 61

V. CONCLUSIONS AND RECOMMENDATIONS 65
 A. EXPERIMENTAL APPARATUS ... 65
 B. NUMERICAL SOLUTION ... 66
 C. FAN-IN-WING CONCEPT ... 67

LIST OF REFERENCES ... 69

APPENDIX A. DATA ACQUISITION PROGRAM 71
LIST OF FIGURES

Figure 1. Banki Turbine.. 3
Figure 2. Moller M400 Skycar.. 4
Figure 3. Gossett’s Conceptual Civil Light VTOL Aircraft................................. 5
Figure 4. Fanwing Conceptual Diagram... 6
Figure 5. Vought Systems Division Fan #6 General Layout................................ 7
Figure 6. Vought Systems Division Fan #6 Performance Data............................ 8
Figure 7. Schematic of Air Supply System.. 10
Figure 8. Schematic of Turbine Test Rig (a) and Crossflow Fan Test Assembly (b)... 11
Figure 9. Partially Assembled Fan... 14
Figure 10. Partially Assembled Crossflow Fan Test Assembly......................... 14
Figure 11. Control Station Operator’s Console.. 15
Figure 12. Combo Probe and Pressure Tap Placement.. 17
Figure 13. Dye Injection Ports on Inner Blank.. 18
Figure 14. Data Acquisition System Hardware... 19
Figure 15. Data Acquisition System User Control Panel.................................... 21
Figure 16. Operating Line... 31
Figure 17. Pressure Ratio vs. Corrected Speed... 31
Figure 18. Corrected Computed Mass Flow vs. Corrected Speed.................... 32
Figure 19. Corrected Computed Power vs. Corrected Speed............................ 32
Figure 20. Compression Efficiency vs. Corrected Speed................................... 33
Figure 21. Exit Velocity vs. Corrected Speed.. 33
Figure 22. Corrected Thrust Per Foot of Span vs. Corrected Speed.................. 34
Figure 23. Corrected Thrust vs. Corrected Computed Power (Per Foot of Span)... 34
Figure 24. Flow Visualization Trial (12 March Run #1).. 36
Figure 25. Closeups of (a) HP Cavity and (b) LP Cavity Circulation Patterns..... 37
Figure 26. Overlay of Streamline Patterns (After Ref. 6)..................................... 38
Figure 27. MATLAB-Generated Blade and Blade Passage Vertices................... 40
Figure 28. Blade Passage Grid... 40
Figure 29. Crossflow Fan Rotor Grid Detail... 41
Figure 30. Close-up of HP Cavity and Intake Detail Layers............................... 42
Figure 31. Complete Test Assembly Computational Grid.................................. 43
Figure 32. Grid Moving Surfaces Detail.. 44
Figure 33. Boundary Groups... 46
Figure 34. Modified Grid... 48
Figure 35. Contour Plot of Velocity Magnitude... 51
Figure 36. Contour Plot of Mach Number... 51
Figure 37. Contour Plot of Static Pressure.. 52
Figure 38. Contour Plot of Total Pressure... 52
Figure 39. Vector Plot of Velocity.. 53
Figure 40. Vector Plot of Velocity in the Exhaust Duct, Extension, and Detail Layer.. 53
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Vector Plot of Velocity in the Low-Pressure Cavity and Recirculation Area</td>
<td>54</td>
</tr>
<tr>
<td>42</td>
<td>Vector Plot of Velocity in the High-Pressure Cavity and Recirculation Region</td>
<td>54</td>
</tr>
<tr>
<td>43</td>
<td>Conceptual Fan-In-Wing Installation</td>
<td>55</td>
</tr>
<tr>
<td>44</td>
<td>Fan-In-Wing Boundaries</td>
<td>57</td>
</tr>
<tr>
<td>45</td>
<td>Pressure Contour Plot of the NACA 4424 Airfoil Without (a) and With (b) Fan-In-Wing Augmentation</td>
<td>59</td>
</tr>
<tr>
<td>46</td>
<td>Velocity Magnitude Plot of the NACA 4424 Airfoil Without (a) and With (b) Fan-In-Wing Augmentation</td>
<td>60</td>
</tr>
<tr>
<td>47</td>
<td>Three-View of Suggested V/STOL Aircraft Configuration Utilizing Fan-In-Wing Concept</td>
<td>63</td>
</tr>
<tr>
<td>A1</td>
<td>HPVEE Data Acquisition Program CFFdata.vee</td>
<td>71</td>
</tr>
<tr>
<td>C1</td>
<td>Fan-In-Wing C-Grid (10° AOA)</td>
<td>101</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.</td>
<td>Combo Probe / Pressure Tap Nomenclature</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.</td>
<td>Scanivalve Port Assignments</td>
<td>20</td>
</tr>
<tr>
<td>Table 3.</td>
<td>Thermocouple Scanning Multiplexer Channel Assignments</td>
<td>20</td>
</tr>
<tr>
<td>Table 4.</td>
<td>Summary of Test Program</td>
<td>23</td>
</tr>
<tr>
<td>Table D1.</td>
<td>Complete Data Listing</td>
<td>107</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I would like to express my sincere thanks to the following people:

Professor Garth Hobson, for sparking my interest in this project. Without his expert guidance I would not have finished; without his attitude it would not have been half as much fun.

Professor Ray Shreeve, for his dedication to his students and for being a true educator, not just a teacher.

Professor Max Platzer, for his interest in this project, but specifically for his forthright and uncompromising leadership of the Aero Department during a particularly difficult time.

Doug Seivwright, Rick Still, and John Gibson, for all their assistance and for making the Turbo Lab such a great place to work.

Anthony Gannon and Louis LeGrange, vir die assistensie in FLO++ en computational fluid dynamics. Dankie here, sonder julle sou ek dit nie kon gedoen het nie.

My family, for their boundless support in my military and academic career.

Juan, Wendy, and Gabby Gutierrez, for keeping me fed and relatively sane throughout my time at NPS.

Finally, I would like to thank Rebecca Lindell for her love, support, and patience. Although I’ve tested the latter of these in the last two years, it’s been worth it. Thanks for inspiring my return to academics and for being my best friend.
I. INTRODUCTION

A. OVERVIEW

Recently, NASA has placed emphasis on the need for a more robust civil transport system intended to alleviate congestion in ground and air traffic near major cities. This has resulted in the creation of several programs to provide funding for research into various aspects of this broad goal. One such program encourages the development of civil alternatives to private ground transport; the intent being to reduce ground traffic by replacing the private automobile with a similarly-sized and purposed vertical takeoff and landing (VTOL) vehicle. This would serve the triple purpose of reducing ground traffic without requiring traditional airfields while simplifying the takeoff and landing process. At first glance, helicopter-type designs may seem the obvious choice, but these aircraft are more complex than fixed-wing types and require capabilities far beyond those required to operate a private automobile - capabilities which the average civilian is not likely to possess. Additionally, the potential for serious bodily harm and property damage involved in the operation of numerous rotary-winged aircraft in relatively close proximity makes these types of aircraft extremely risky for the general population. Similarly, jet engines could create a serious fire, noise, and foreign object debris (FOD) hazard when used outside the controlled atmosphere of the traditional airfield. They also have the additional drawback of being prohibitively expensive to purchase and maintain in relation to the automobile's internal combustion engine. Therefore, VTOL designs that do not incorporate exposed or otherwise hazardous lifting and propulsive devices are preferable. The research conducted in preparation for this thesis was intended to evaluate one such device, the crossflow fan, to determine its suitability for such a purpose.

The Crossflow Fan Test Assembly (CFTA) was established at the Naval Postgraduate School Turbopropulsion Laboratory using the previously existing Turbine Test Rig. This assembly was initiated by Studevan [Ref. 1] in order to test the turbine of the Space Shuttle Main Engine High Pressure Fuel Turbopump (SSME HPFTP). This work was continued by Rutkowski [Ref. 2] and Greco [Ref. 3] and refined for laser-
Doppler-velocimetry measurements by Southward [Ref. 4]. The primary goal of research on the crossflow fan was to determine performance characteristics by measuring parameters along an operating line. Provision was made in the CFTA for optical access to the rotor, which allowed for flow visualization studies to be performed as part of the experimental testing.

Viscous flow through the crossflow fan was numerically modeled using the commercially-available FLO++ software package from Softflo. A significant effort was undertaken to represent the numerical model as accurately as possible by generating a two-dimensional grid from computer-aided design (CAD) drawings of the CFTA. The results of this simulation were compared to pressure and velocity measurements determined experimentally in the test cell. FLO++ was also used to model a theoretical "fan-in-wing" concept in order to determine its usefulness as a high-lift device in a VTOL aircraft.
B. HISTORY

Crossflow devices have been theorized and utilized for many years. One early concept that used a type of crossflow device was the Banki turbine, which was most often used as a hydraulic turbine generator. In this configuration, as shown in Figure 1, water passed radially through the turbine and thus encountered the rotor twice, which allowed a more efficient passage of kinetic energy from the moving water to the turbine. Use of the Banki turbine was predominantly limited to the field of hydraulic power generation, where low-pressure head was available at high flow rates.

![Figure 1. Banki Turbine (From Ref. 5)](image)

Crossflow fans intended to move air have also seen much use in commercial and industrial applications. Primarily, these fans are designed to move air in a linear fashion for heating and ventilation purposes such as “air curtains” which maintain heating and cooling boundaries by providing a steep velocity gradient between two temperature zones. Such fans are often seen in open-bay freezers and refrigerators at supermarkets and above the entrances and exits of air-conditioned offices and restaurants.
In 1975, Vought Systems Division (VSD) of LTV Aerospace Corporation studied the application of crossflow fan technology to aircraft propulsion in their Multi-Bypass Ratio Propulsion System Development program [Ref. 6]. This program sought to take advantage of the crossflow fan’s relatively compact size and form factor in developing a propulsion device that could easily be incorporated into conventional aircraft configurations with a minimum of added drag. Another advantage cited by VSD was the ability to accomplish thrust vectoring with ease since the fan was insensitive to the angular position of inlets, outlets, and cavities. VSD initially tested a 12-inch diameter, 1.5-inch span crossflow fan in various configurations between 6,000 and 13,000 RPM in order to establish baseline performance. Additionally, different housing or cavity configurations and exhaust duct shapes were tested, affording the opportunity to measure the performance of various crossflow fan configurations. This allowed some measure of optimization to be performed. A total of 46 different fan and housing configurations were tested, primarily including modifications to fan blade angles, resizing and reshaping of recirculation-inducing cavities, and variations in the total number of blades.

More recently, Moller International pioneered the design of a type of aircraft called the volantor, which relied primarily on thrust-producing devices for lift vice lifting surfaces. Moller’s M400 Skycar was but one example of several models that were flight-tested and are in continuing development. This aircraft is shown in the figure below undergoing tethered hover tests.

Figure 2. Moller M400 Skycar (From Ref. 7)
The Skycar concept used four vectored-thrust ducted fans to provide both lift and thrust in all phases of flight. Eight Wankel engines were used to power the fans due to their characteristically high power-to-weight ratio.

Recognizing the inefficiency of using thrust-producing devices to create lift, Dean H. Gossett [Ref. 8] incorporated a crossflow fan as a lifting device in his proposal for a light civil VTOL aircraft. His concept utilized a Wankel-driven crossflow fan solely for lift in order to augment two Wankel-driven ducted fan assemblies that acted in a "lift and cruise" capacity. Gossett’s model, shown in Figure 3, was a wing-and-canard type air vehicle that relied more heavily on lifting surfaces in forward flight than the Moller Skycar. The crossflow fan could be shut down in forward flight in order to improve fuel consumption, and reengaged upon preparation for landing. It was felt that low reliance on lifting surfaces during the takeoff and landing phases of flight would eliminate some of the more dangerous aspects of controlling conventional fixed- and rotary-wing aircraft, and therefore help reduce complexity of operation to something nearly on par with the average automobile. The concept eliminated the extra weight of two ducted fan assemblies and associated engines.

The crossflow fan configuration evaluated by Gossett was one of the types tested in the Multi-Bypass Ratio System development project. Performance data for this application were taken from the project report [Ref. 6] and were used to develop the design shown below.

Figure 3. Gossett’s Conceptual Civil Light VTOL Aircraft (From Ref. 8)
A most recent development of the crossflow fan in a lift and propulsion application was the prototypical Fanwing short takeoff and landing (STOL) aircraft. This design used an exposed, large-diameter, low revolutions-per-minute (~1,300 RPM), full-span crossflow fan to direct high-speed airflow across the upper surface of a thick wing section, thereby generating lift even at zero forward airspeed. There were no casewalls and no pressure cavities, since the primary purpose of the fan was to energize and redirect airflow over the wing providing both thrust and lift. The concept is illustrated below in Figure 4.

Figure 4. Fanwing Conceptual Diagram (From Ref. 9)

Advantages of this arrangement included: significantly increased lift as compared to a static wing section of similar dimension and shape; very short-takeoff capability; high maneuverability and stability due to relative insensitivity of the fan to the direction of incoming airflow; and lack of a true stall point due to continuous fan-driven airflow over the wing. Wing sections were tested in wind tunnels and small-scale models were successfully flight-tested, which demonstrated the strong potential of the Fanwing. The advantages of the Fanwing lend themselves to application to the light civil VTOL aircraft market. However, vertical takeoff has not yet been demonstrated, and the presence of a partially exposed crossflow fan rotor may render this aircraft hazardous. Further information on the Fanwing can be obtained from Ref. 9.

The research presented in this thesis therefore seeks to investigate the potential of enclosed crossflow fans as propulsion and lift devices in the personal air vehicle market.
Since relatively little research has been performed on the crossflow fan in aircraft propulsion applications, the VSD study stands as the most thorough reference on the topic. Therefore, a VSD-tested design was selected to form the basis for the CFTA used in this ongoing research, which was complemented by a significant computational fluid dynamics (CFD) analysis of the unsteady flow through the device. As reported in Ref. 6, VSD Fan #6 demonstrated the best power efficiency. This fan design was therefore selected as the base crossflow fan model. The general configuration of VSD Fan #6 is shown in Figure 5. Performance data for this configuration is shown in Figure 6.
Figure 6. Vought Systems Division Fan #6 Performance Data (From Ref. 6)
II. EXPERIMENTAL APPARATUS

A. HARDWARE DESCRIPTION

1. Turbine Test Rig (TTR)

The previously-existing Turbine Test Rig (TTR) at the Naval Postgraduate School Turbopropulsion Lab was used as a power source for the Crossflow Fan Test Assembly (CFTA). The TTR was comprised of an air supply system and associated piping, test cell, data acquisition system, and the turbine from the Space Shuttle Main Engine High-Pressure Fuel Turbopump (SSME HPFTP).

A schematic of the air supply system is shown in Figure 7. The air supply system consisted of a 1,250-horsepower (HP) electric motor which drove an Allis-Chalmers 12-stage axial compressor at 12,000 RPM through a gearbox. The compressor was capable of providing 10,000 cubic feet per minute of air at a maximum pressure of 30 psig. The compressed air was cooled to approximately 560°F in a water/air heat exchanger, relieved of moisture in a moisture trap, and measured for flow rate via an orifice plate prior to being supplied through piping to the test cell plenum chamber. A separate reciprocal compressor and reservoir provided shop air for various uses such as supplying the oil mister lubrication systems and calibration of pressure instrumentation.

Air from the test cell plenum chamber was fed into the turbine of the SSME HPFTP via flow straighteners and piping. The HPFTP assembly remained as reported in Ref. 4 with the exception of a longer aluminum splined drive shaft, which transferred power from the TTR to the CFTA. The existing bearing housing, associated bearing temperature and vibration monitoring systems, and the installed once-per-revolution measurement system remained unmodified. A schematic of the drive turbine is shown in Figure 8(a).
Figure 7. Schematic of Air Supply System
Figure 8. Schematic of Turbine Test Rig (a) and Crossflow Fan Test Assembly (b)
2. **Crossflow Fan Test Assembly (CFTA)**

A schematic of the Crossflow Fan Test Assembly is shown in Figure 8(b). The CFTA was based on VSD Multi-Bypass Ratio System test assembly #6. The assembly consisted of a 12-inch diameter, 1.5-inch span, 30-bladed crossflow fan rotor; two intake/cavity components; an exhaust duct wall; a drive shaft, arbor, and associated bearing housing. The front face plate had identically-dimensioned aluminum and Plexiglas inserts, the latter to be used as a viewing window for flow visualization. The primary construction material was 7065-T6 aluminum, although the bearing housing was constructed of SAE 4130 cold-rolled steel with a hot-rolled bearing spacer, and the drive shaft was of SAE 4340-300M cold-rolled annealed steel.

The fan rotor was assembled from machined disc, 30 identical rotor blade sections, and a front retaining ring. Each blade was pinned in place using dowels and secured with Hysol epoxy E-120HP. Prior to assembly, the blades were weighed and arranged in ascending order according to weight in order to minimize subsequent rotor balance efforts. The rotor disc was designed to be recessed into the back plate, seating flush with the back wall of the assembly. A labyrinth seal on the tip of the rotor disc was used to minimize mass flow between the rotor and test assembly back plate cavity. Figure 9 depicts the fan in a partially assembled state.

The rotor disc was secured to the drive shaft with machined screws. Fafnir bearings were fitted between the drive shaft and the bearing housing, separated by a bearing spacer. Oil misters pressurized by 40 psia shop air lubricated the bearings at a rate of approximately one drop of oil per minute. Provision was made for vibration monitoring on the CFTA bearing set; however, no bearing temperatures were recorded.

The test assembly front plate provided for the replacement of the aluminum blanking plate with a Plexiglas viewing window. Both the blanking plate and the viewing window contained inner blanks that could be rotated to provide for alternate positioning of pressure/temperature probes and/or dye injectors. A labyrinth seal was utilized between the rotor retaining ring and the blanking plate/viewing window to
minimize leakage in the radial direction. The intake/cavity components and exhaust duct wall were secured in place between the CFTA front and back plates using machine bolts. This arrangement will allow for relatively ease of replacement of the intake, exhaust, and cavities without the need for a complete redesign and remanufacture of the CFTA.

The test cell itself was equipped with a test stand to which all components of the SSME HPFTP and CFTA were secured. The steel surface of the stand allowed precise location and alignment of the bearing housings and CFTA. All components were bolted to the test stand using machine bolts. The CFTA could be monitored from the control station through a ballistic-tolerant glass window. Additional monitoring capability was provided by a TV monitor connected to a remote video camera, which recorded the view through the Plexiglas viewing window of the CFTA. Figure 10 is a view of the partially assembled CFTA.
Figure 9. Partially Assembled Fan

Figure 10. Partially Assembled Crossflow Fan Test Assembly
B. OPERATING CONTROLS AND INSTRUMENTATION

1. Control Station

The TTR and CFTA were manually operated from the control station. The remotely-operated butterfly valves referred to in the air supply system description were controlled electrically from the operator’s console, shown in Figure 11.

Two thermocouples measured the TTR bearing temperatures. Both temperatures were displayed on the operator’s console for continuous monitoring of bearing performance. One accelerometer monitored the TTR vibrations and another monitored vibration levels in the CFTA. This information was recorded in a logbook during test runs.

Figure 11. Control Station Operator’s Console
2. Instrumentation

Instrumentation for data collection consisted of five United Sensor Devices model USD-C-161 1/8-inch combination thermocouple/pressure probes (hereafter referred to as “combo probes”), 12 static pressure taps, and the TTR total pressure, total temperature, and once-per-revolution (OPR) measurement systems as described by Southward [Ref. 4]. Additional equipment included the previously mentioned video camera and various digital still cameras for recording flow visualization results.

Two combo probes were installed at roughly the 10 o’clock and 2 o’clock (viewed from front) positions in the test assembly intake section, aligned with the anticipated flow direction, as shown in Figure 12 as T1 and T2. Three combo probes (T3, T4, and T5 in Figure 12) were installed in the exhaust duct section in a configuration intended to detect pressure or temperature profiles along the centerline of the exhaust duct. The combo probes were mounted through the front plate to such a depth that the pitot opening of each probe was at the midpoint axially between the front and back plate.

The 12 1/32-inch diameter static pressure taps (P_A through P_L in Figure 12) were drilled as closely as possible to the normal of the intake, cavity, or exhaust duct walls. Associated tubing was routed so as to remain free of the airflow, with the exception of the upper High Pressure Cavity tap (P_G) which was routed along the intake sidewall to minimize interference with fan inflow.

All pressure taps were drilled at the midpoint of their respective assembly component as measured in the axial direction. Instrument nomenclature is provided in Table 1.
<table>
<thead>
<tr>
<th>Probe/Tap</th>
<th>Type</th>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Combo</td>
<td>P_{in} CFF / T_{in} CFF (10 o’clock)</td>
</tr>
<tr>
<td>T2</td>
<td>Combo</td>
<td>P_{in} CFF / T_{in} CFF (2 o’clock)</td>
</tr>
<tr>
<td>T3</td>
<td>Combo</td>
<td>P_{out} CFF / T_{out} CFF (Top)</td>
</tr>
<tr>
<td>T4</td>
<td>Combo</td>
<td>P_{out} CFF / T_{out} CFF (Mid)</td>
</tr>
<tr>
<td>T5</td>
<td>Combo</td>
<td>P_{out} CFF / T_{out} CFF (Bot)</td>
</tr>
<tr>
<td>A</td>
<td>Static</td>
<td>P_A</td>
</tr>
<tr>
<td>B</td>
<td>Static</td>
<td>P_B</td>
</tr>
<tr>
<td>C</td>
<td>Static</td>
<td>P_C</td>
</tr>
<tr>
<td>D</td>
<td>Static</td>
<td>P_D</td>
</tr>
<tr>
<td>E</td>
<td>Static</td>
<td>P_E</td>
</tr>
<tr>
<td>F</td>
<td>Static</td>
<td>P_F</td>
</tr>
<tr>
<td>G</td>
<td>Static</td>
<td>P_G</td>
</tr>
<tr>
<td>H</td>
<td>Static</td>
<td>P_H</td>
</tr>
<tr>
<td>I</td>
<td>Static</td>
<td>P_I</td>
</tr>
<tr>
<td>J</td>
<td>Static</td>
<td>P_J</td>
</tr>
<tr>
<td>K</td>
<td>Static</td>
<td>P_K</td>
</tr>
<tr>
<td>L</td>
<td>Static</td>
<td>P_L</td>
</tr>
</tbody>
</table>

Table 1. Combo Probe / Pressure Tap Nomenclature

Figure 12. Combo Probe and Pressure Tap Placement
C. FLOW VISUALIZATION

Flow patterns in the areas viewable through the Plexiglas viewing window were visualized using dye injection methods. The viewing window contained a movable inner blank with an instrumentation port meant for future use. Figure 13 shows the arrangement of the dye injection ports. One dye injection port was drilled through the center of the plug which sealed the instrumentation port at exactly two inches radius from the center of the fan. For the final data run, two more holes were drilled through the inner blank on either side of the instrumentation port for expanded flow visualization capability.

Dye injectors consisted of large-bore syringes and/or squeeze bottles connected to the injection ports via surgical tubing. These injectors were manually operated from the test cell. A mixture of distilled water and commercially available food coloring served as the dye. The same video recorder used to monitor the fan from the control station was used to record the flow visualization results. Several digital cameras were also available to record still pictures of the results.

Figure 13. Dye Injection Ports on Inner Blank
D. DATA ACQUISITION SYSTEM

1. Hardware

The data acquisition system remained essentially unchanged from that described in Ref. 10. A schematic of the system is shown in Figure 14.

Figure 14. Data Acquisition System Hardware (After Ref. 10)

Major changes included the addition of four thermocouple lines and the deletion of the dynamometer load cell strain gauge signal lines used in Ref. 3. Thermocouple and pressure lines were reassigned as necessary. Control of the thermocouple multiplexer, Scanivalve 48-port transducer, and counter / totalizer was accomplished as outlined in Ref. 10.

Table 2 lists the Scanivalve port assignments for the pressure lines. Table 3 lists thermocouple multiplexer channel assignments for thermocouple lines
<table>
<thead>
<tr>
<th>Port #</th>
<th>Type</th>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Static</td>
<td>P_{ATMOS}</td>
</tr>
<tr>
<td>2</td>
<td>Static</td>
<td>P_{CAL}</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>$P_{in,TTR}$ (5 o’clock)</td>
</tr>
<tr>
<td>4</td>
<td>Total</td>
<td>$P_{out,TTR}$</td>
</tr>
<tr>
<td>5</td>
<td>Total</td>
<td>$P_{in,TTR}$ (8 o’clock)</td>
</tr>
<tr>
<td>6</td>
<td>Total</td>
<td>$P_{in,CFF}$ (2 o’clock)</td>
</tr>
<tr>
<td>7</td>
<td>Total</td>
<td>$P_{in,CFF}$ (10 o’clock)</td>
</tr>
<tr>
<td>8</td>
<td>Total</td>
<td>$P_{out,CFF}$ (Top)</td>
</tr>
<tr>
<td>9</td>
<td>Total</td>
<td>$P_{out,CFF}$ (Mid)</td>
</tr>
<tr>
<td>10</td>
<td>Total</td>
<td>$P_{out,CFF}$ (Bot)</td>
</tr>
<tr>
<td>11</td>
<td>Static</td>
<td>P_A</td>
</tr>
<tr>
<td>12</td>
<td>Static</td>
<td>P_B</td>
</tr>
<tr>
<td>13</td>
<td>Static</td>
<td>P_C</td>
</tr>
<tr>
<td>14</td>
<td>Static</td>
<td>P_D</td>
</tr>
<tr>
<td>15</td>
<td>Static</td>
<td>P_E</td>
</tr>
<tr>
<td>16</td>
<td>Static</td>
<td>P_F</td>
</tr>
<tr>
<td>17</td>
<td>Static</td>
<td>P_G</td>
</tr>
<tr>
<td>18</td>
<td>Static</td>
<td>P_H</td>
</tr>
<tr>
<td>19</td>
<td>Static</td>
<td>P_I</td>
</tr>
<tr>
<td>20</td>
<td>Static</td>
<td>P_J</td>
</tr>
<tr>
<td>21</td>
<td>Static</td>
<td>P_K</td>
</tr>
<tr>
<td>22</td>
<td>Static</td>
<td>P_L</td>
</tr>
<tr>
<td>32</td>
<td>Static</td>
<td>P_m</td>
</tr>
<tr>
<td>33</td>
<td>Static</td>
<td>$P_{out,(Flange)}$</td>
</tr>
<tr>
<td>34</td>
<td>Static</td>
<td>$P_{out,(Flange)}$</td>
</tr>
<tr>
<td>35</td>
<td>Static</td>
<td>$P_{out,(Vena)}$</td>
</tr>
</tbody>
</table>

Table 2. Scanivalve Port Assignments

<table>
<thead>
<tr>
<th>Multiplexer Channel</th>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$T_{in,CFF}$ (2 o’clock)</td>
</tr>
<tr>
<td>8</td>
<td>$T_{in,CFF}$ (10 o’clock)</td>
</tr>
<tr>
<td>9</td>
<td>$T_{in,TTR}$ (8 o’clock)</td>
</tr>
<tr>
<td>10</td>
<td>$T_{in,TTR}$ (5 o’clock)</td>
</tr>
<tr>
<td>11</td>
<td>$T_{out,TTR}$</td>
</tr>
<tr>
<td>12</td>
<td>$T_{in,Orifice}$</td>
</tr>
<tr>
<td>13</td>
<td>$T_{out,CFF}$ (Bot)</td>
</tr>
<tr>
<td>14</td>
<td>$T_{out,CFF}$ (Mid)</td>
</tr>
<tr>
<td>15</td>
<td>$T_{out,CFF}$ (Top)</td>
</tr>
</tbody>
</table>

Table 3. Thermocouple Scanning Multiplexer Channel Assignments
2. Software

Elements of the data acquisition and instrumentation control program [Ref. 10] were incorporated into the HPVEE-based program used in this research. Appropriate changes were made to Scanivalve ports and thermocouple multiplexer channels. A routine was created to write raw and reduced data to a single tab-delimited file as opposed to the previous scheme’s multiple output files. The new export file was designed to be imported into Microsoft Excel for further data manipulation, with a minimum of effort. Finally, the user control panel was redesigned to provide immediate display of both raw and reduced data upon cycling through all the instruments. Figure 15 shows the user control panel. Further HPVEE schematics for this data acquisition program can be found in Appendix A.

Figure 15. Data Acquisition System User Control Panel
E. OPERATIONAL PROCEDURES AND TEST PROGRAM

1. Procedures

The Allis-Chalmers compressor was started by a technician and brought up to speed slowly, normally over a period of one to two hours. Flow control was achieved using two remotely-operated butterfly-type valves. One valve was located upstream of the orifice plate and was used to control mass flow to the SSME HPFTP, thereby controlling power output to the CFTA and thus RPM. The other valve was located downstream of the orifice plate and was used as an atmospheric dump. It was necessary to close this valve completely in order to obtain reliable mass flow measurements for power calculations. After the compressor startup period, the crossflow fan was started by opening the test cell butterfly valve slowly while simultaneously closing the dump valve downstream of the TTR. With the TTR valve open approximately 20% and the first dump valve fully closed, the CFTA attained about 2,000 RPM. At this condition mass flow rate measurements through the TTR were accurate. Orifice plate mass flow rate measurements were performed in accordance with Vavra's technical note describing the method [Ref. 11].

A typical test began once speed reached 2,000 RPM. After allowing approximately one minute for the system to stabilize, the HPVEE program was activated. This initiated the Scanivalve pressure port scanning cycle, the thermocouple multiplexer, and a routine which calculated the average fan speed over the pressure scanning cycle. Once the cycle was complete, raw data were automatically reduced and recorded as a new line on a text file. A combination of raw and reduced data was then displayed on the user control panel.

Once data had been recorded at a particular RPM, speed was increased in 500- or 1,000-RPM increments by manipulating the dump valve and the turbine inlet valve. Typically, 500-RPM increments were used when increasing speed above 3,000 RPM, and 1,000-RPM increments were used when decreasing speed. The CFTA was tested up to a
maximum of 7,022 RPM during the course of this research. Flow visualization was performed at 5,000 RPM after data had been recorded.

Once all desired measurements and flow visualizations were made, shutdown was accomplished by opening both the valves and closing the TTR valve. The CFTA typically came to a full stop within 30 seconds.

2. Test Program

Table 4 summarizes the program of data-collection runs. The CFTA was run on seven separate dates. The first two were uninstrumented runs for the purpose of verifying bearing temperature and vibration levels as well as crossflow fan integrity. The third run was an instrumented run for the purpose of debugging and refining the data acquisition system. The fourth through seventh runs produced the data reported here. The final two dates involved multiple startup/shutdown procedures in order to make configuration changes.

<table>
<thead>
<tr>
<th>Date</th>
<th>Start Time</th>
<th>Stop Time</th>
<th>Maximum RPM Reached</th>
<th>Number of Measurement Sets</th>
<th>Flow Visualization Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Jan 03</td>
<td>1000</td>
<td>1138</td>
<td>5503</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7 Feb 03</td>
<td>1005</td>
<td>1130</td>
<td>6517</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19 Feb 03</td>
<td>1040</td>
<td>1127</td>
<td>5015</td>
<td>9</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>1136</td>
<td>1200</td>
<td>5036</td>
<td>7</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>1211</td>
<td>1228</td>
<td>5006</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td>12 Mar 03</td>
<td>1023</td>
<td>1058</td>
<td>5020</td>
<td>4</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>1130</td>
<td>1209</td>
<td>7022</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Summary of Test Program
F. DATA REDUCTION

Primary data reduction was performed in the HPVEE data acquisition program. Additional data reduction was performed using Microsoft Excel spreadsheets.

As previously stated, mass flow through the TTR was calculated in accordance with Ref. 11. Work produced by the TTR was then given by

\[W_{TTR} = \dot{m}_{TTR} C_p (T_{out,TTR} - T_{in,TTR(\text{avg})}) \]

(1)

where \(W_{TTR} \) was in Btu/s, \(\dot{m}_{TTR} \) was in lbm/s, \(C_p = 0.24 \text{ Btu/lbm}^{-\circ \text{R}} \), and \(T_{in,TTR(\text{avg})} \) was the average of the two TTR inlet total temperatures. Mechanical efficiency of the bearing and shaft systems was not estimated and it was therefore assumed that \(W_{TTR} = -W_{CFF} \), where \(W_{CFF} \) was the work input to the crossflow fan. Mass flow through the crossflow fan was calculated as follows:

\[\dot{m}_{CFF} = \frac{W_{CFF}}{C_p (T_{out,CFF(\text{avg})} - T_{in,CFF(\text{avg})})} \]

(2)

where \(T_{out,CFF(\text{avg})} \) was the average of the three crossflow fan exhaust duct total temperatures and \(T_{in,CFF(\text{avg})} \) was the average of the two crossflow fan inlet total temperatures. Total-to-total pressure and temperature ratios were similarly calculated using pressure averages, such that:

\[\pi_{CFF} = \frac{P_{out,CFF(\text{avg})}}{P_{in,CFF(\text{avg})}} \quad \text{and} \quad \tau_{CFF} = \frac{T_{out,CFF(\text{avg})}}{T_{in,CFF(\text{avg})}} \]

(3)

Compression efficiency through the crossflow fan was calculated from the values found in (3) above, in the following manner:
$$\eta_{CFF} = \frac{\tau_{CFF}^{\gamma-1}}{\tau_{CFF} - 1}$$

(4)

with $\gamma=1.4$. Crossflow fan performance values were corrected to standard atmospheric conditions, such that

$$\dot{m}_{corr} = \dot{m} \frac{\sqrt{\theta}}{\delta}, \quad N_{corr} = \frac{N}{\sqrt{\theta}}, \quad HP_{corr} = \frac{HP}{\delta \sqrt{\theta}}$$

(5)

where N is fan speed in RPM, $\theta = \frac{T_{in,CFF(avg)}}{T_{ref}}$, and $\delta = \frac{P_{in,CFF(avg)}}{P_{ref}}$. T_{ref} and P_{ref} were standard atmospheric temperature (518.7 °R) and pressure (29.92 inHg), respectively.

Microsoft Excel was used to produce plots of the results and to perform further data reduction, which became necessary as a result of error in the TTR mass flow and temperature measurements. Mass flow through the crossflow fan was calculated independently of the work produced by the TTR, by separating the exhaust duct area into three zones, in each of which the flow was assumed to be uniform. Each zone was roughly centered around one of the three exhaust duct combo probes, with zone 1 surrounding the top probe, zone 2 around the middle probe, and zone 3 around the bottom probe. Mass flow in each zone was calculated as a function of total pressure and temperature measurements from that zone’s probe in accordance with Ref. 12:

$$\dot{m}_i = X_i (1 - X_i \gamma^{-1}) \frac{1}{RT_i} \frac{P_i (70.929)}{\sqrt{2C_p g c T_i A_i}}$$

(6)

where \dot{m}_i is the mass flow through zone i, P_i and T_i are the total pressure and temperature measured at the top probe, and A_i is the area of zone i. A conversion factor of 70.929 lbf/ft2-inHg was applied to maintain unit consistency. X_i is called the dimensionless velocity in zone i and is defined as follows:
where \(V_t \) is the “total velocity” obtained from the definition of total enthalpy.

\[
h_i = h + \frac{V^2}{2g_e} \quad \text{or} \quad C_p T_i = C_p T + \frac{V^2}{2g_e},
\]

as \(T \to 0 \) giving \(V_t = \sqrt{2C_p g_e T_i} \). In this case \(V_t \) is unknown, but it can be shown that

\[
\frac{P_i}{P_{i+1}} = (1 - X_i)^{\frac{y}{y-1}}
\]

(7)

with \(P_i = P_A \), the static pressure in the exhaust duct. Solving this expression for \(X_i \) gives the remaining term needed to find the mass flow in zone \(i \).

Mass flow through the three zones was calculated using the following values:

\[
A_1 = A_3 = 0.018229155 \text{ ft}^2
\]
\[
A_2 = 0.01041666 \text{ ft}^2
\]
\[
R = 53.3 \text{ lbf-ft/lbm-°R}
\]
\[
C_p = 186.72 \text{ lbf-ft/lbm-°R}
\]

It was then a simple task to calculate the total mass flow through the exhaust duct by summing the three zonal mass flows as shown in Eq. 7:

\[
\dot{m}_{tot} = \dot{m}_1 + \dot{m}_2 + \dot{m}_3 = \sum_{i=1}^{3} \dot{m}_i
\]

(8)

Mass flow-averaged total pressures and temperatures in the exhaust duct were then calculated using
Work used by the crossflow fan was calculated using:

\[W_{CFF} = \dot{m}_\text{tot} \cdot C_p \cdot (\bar{T}_i - T_{\text{in.CFF(avg)}}) \]

(10)

Parameters subsequently derived from these TTR-independent quantities are hereafter referred to as “computed” parameters.

Exit Mach number was calculated using

\[M_{\text{exit}} = \sqrt{\frac{2}{\gamma-1}} \left[\left(\frac{P_i}{P_A} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right] \]

(11)

Exit static temperature was calculated using

\[T_{\text{exit}} = \frac{\bar{T}_i}{1 + \frac{\gamma-1}{2} M_{\text{exit}}^2} \]

(12)

Exit velocity was calculated using

\[u_{\text{exit}} = M_{\text{exit}} \left(\sqrt{\gamma g_c R T_{\text{exit}}} \right) \]

(13)

Finally, corrected thrust was calculated using

\[F_{\text{corr}} = \frac{\dot{m}_\text{tot}}{g_c \delta} (u_{\text{exit}} - u_0) \]

(14)

with \(u_0 = 0 \).
G. RESULTS AND DISCUSSION

1. Introduction

The reduced data available from the HPVEE data acquisition program were exported to a Microsoft Excel spreadsheet for post-processing. Performance data plotted included total-to-total pressure ratio versus corrected mass flow (Figure 16, showing an "open throttle" operating line), total-to-total pressure ratio versus corrected speed (Figure 17), corrected mass flow versus corrected speed (Figure 18), corrected power versus corrected speed (Figure 19), and efficiency versus corrected speed (Figure 20). For comparison to the VSD study performance information, exit velocities (Figure 21) were calculated in English engineering units but were also presented in SI units for later comparison with CFD results. The exit velocities were used to calculate thrust. These values were calculated for the present fan and scaled linearly to predict a 12-inch span fan for comparison with published results (Figures 22 and 23).

Initially the mass flow rate through the crossflow fan was deduced from equation (2); however, the data obtained were not consistent. In some cases, different mass flow rates were calculated at the same fan speed. An example of this is the 7 Feb Run #1 (Not Computed) series shown in Figure 18. Analysis of reduced and raw data led to the belief that either the TTR total temperature measurements or the orifice plate mass flow contained some error. The temperature measurements were the most suspect due to the fact that there was only a single combo probe on the outlet side of the TTR. This arrangement did not allow an average temperature at the outlet to be recorded. Therefore, the mass flow rate was calculated as in equations (6) through (8).

The result of the additional data reduction was that a “computed” crossflow fan mass flow rate and power were obtained without reliance on measurements from the TTR. The total temperature and total pressure at the exit to the crossflow fan were also mass flow-averaged, as described in equation (9) The resulting performance plots showed a marked improvement in consistency.
2. **Performance Plots**

All performance plots were made using computed values described above, corrected for standard conditions as described in the Data Reduction section. Data from all runs were plotted as separate series on the same plot for each type of plot. Trendlines were used to demonstrate the consistent nature of the data.

Figure 16 is a fan operating line, or crossflow fan pressure ratio versus corrected mass flow rate. Despite the wide range of test dates, the data showed excellent consistency and smoothness. Since an operating line plot from the VSD fan #6 was not available, no direct comparison could be made. A second-order trendline was used.

Figure 17 is a plot of total-to-total pressure ratio versus corrected speed. Again, the data showed excellent consistency and smoothness. The data compared favorably to the VSD fan #6 performance information available in Figure 6. This fan demonstrated a pressure ratio of 1.33 at approximately 7,000 RPM, as compared to the VSD fan’s 1.28 measured at approximately 7,300 RPM. A second-order trendline was used.

Figure 18 is a plot of corrected mass flow rate versus corrected speed. The data showed the same degree of consistency and smoothness found in the plots described above. Mass flow compared favorably with the VSD study, with this fan achieving a mass flow rate of 2.5 lbm/s at approximately 7,000 RPM vice the VSD fan’s 2.25 lbm/s at 7,300 RPM. A linear trendline was used.

Figure 19 is a plot of corrected mass-averaged computed power versus corrected speed. Data consistency and smoothness was of the same degree as the previous plots. Power consumption peaked at approximately 59 HP at approximately 7,000 RPM. No comparison to the VSD fan #6 was made since this information was not presented for a 1.5-inch span fan in the VSD study. A third-order trendline was used.

Figure 20 is a plot of crossflow fan efficiency versus corrected speed. The data in this plot were not as consistent for a given speed. Since efficiency was calculated as a function of the fan total-to-total pressure and temperature ratios, there was no dependence on TTR mass flow or temperature measurements and these can be discounted as factors. It is likely that the variance shown was the result of the sensitivity of the efficiency
calculation to slight changes in the crossflow fan total-to-total pressure or temperature ratios. A third-order trendline was used.

Efficiency did not compare as favorably with the VSD fan #6 information. Figure 6 shows a peak efficiency for the VSD fan of 0.7 at 7,300 RPM, while Figure 20 shows a peak efficiency of approximately 0.65 at ~4,000 RPM. A trendline plotted for the 12 March Run #2, which reached the highest RPM tested, indicated a distinct downward trend above 5,000 RPM and showed an efficiency of approximately .625 at ~7,000 RPM. The reason for the discrepancy between VSD fan #6 and the test assembly efficiency is unknown. It may be traceable to a difference in the methods used to take pressure and temperature measurements. The manner in which these measurements were taken in the VSD study is not specified in Ref. 6. Use of mass-averaged total-to-total pressure and temperature ratios in the expression for efficiency was investigated, but resulted only in negligible change to the plot.

Figure 21 is a plot of exit velocity versus corrected speed. Peak exit velocity was recorded at 718.2 ft/s (218.9 m/s) at 6,990 corrected RPM This information was not available for the VSD fan. Exit velocity was also reported in meters per second for later comparison to figures derived from the numerical simulation. A linear trendline was used.

Figure 22 is a plot of corrected thrust per foot of span versus corrected speed. For this plot, corrected thrust was scaled by a factor of eight. This was done to facilitate comparison to the VSD fan, for which this information was available only for the 12-inch span fan. A maximum thrust per foot of span of 447 lbf was achieved at 6,990 corrected RPM. A second-order trendline was used.

Figure 23 is a plot of corrected thrust per foot of span versus corrected power per foot of span. Both axes of this plot were scaled by a factor of eight for comparison to the VSD fan. Per foot of span, maximum corrected thrust was recorded at 447 lbf, while drawing 473 HP. A second-order trendline was used.
Figure 16. Operating Line

Figure 17. Pressure Ratio vs. Corrected Speed
Figure 18. Corrected Computed Mass Flow vs. Corrected Speed

Figure 19. Corrected Computed Power vs. Corrected Speed
Figure 20. Compression Efficiency vs. Corrected Speed

Figure 21. Exit Velocity vs. Corrected Speed
Figure 22. Corrected Thrust Per Foot of Span vs. Corrected Speed

Figure 23. Corrected Thrust vs. Corrected Computed Power (Per Foot of Span)
3. Flow Visualization

Flow visualization results were recorded on digital still and video media. This allowed a qualitative comparison to be made with the flow patterns reported in the VSD study as well as current computational fluid dynamics efforts. All flow visualization measurements were performed at a rotational speed of 5,000 RPM.

Figure 24 presents the overall flow pattern using three dyes injected in the left, center, and right ports of the Plexiglas inner blank. The image shows the distinct central streamlines in the rotor and the circulation in the high-pressure cavity. To a lesser degree, the circulation in and through the low-pressure cavity is also evident. Figure 25 depicts close-ups of the high-pressure cavity recirculation pattern (a) and the recirculation pattern near the low pressure cavity (b).

Figure 26 is an overlay of a typical flow pattern obtained from the VSD study onto the image from Figure 24. The streamline patterns are noticeably similar. Also, the centers of the high-pressure and low-pressure cavity-induced recirculations are in the same locations as those in the VSD study.

Although not directly related to the flow visualization efforts, the effectiveness of the labyrinth seals between the crossflow fan and the Plexiglas viewing window should be noted. No leakage of dye through this seal was evident. This was not the case in the mating surfaces between the Plexiglas inner blank and the viewing window, nor between the inner blank and the instrumentation port. A substantial amount of dye leaked between these seals and led to some obscuration of the flow visualization.
Figure 24. Flow Visualization Trial (12 March Run #1)
Figure 25. Closeups of (a)HP Cavity and (b)LP Cavity Circulation Patterns
Figure 26. Overlay of Streamline Patterns (After Ref. 6)
III. NUMERICAL SIMULATION

A. FLO++ OVERVIEW

The software used for numerical simulation of the CFTA was FLO++, by Softflo of South Africa. FLO++ is a Windows-based computational fluid dynamics (CFD) software package capable of handling a wide range of fluid-flow and heat transfer problems. It combines an easy-to-use graphic user interface (GUI) with a powerful grid generator, preprocessor and postprocessor (PFLO), and solver (FLO) in one package. Both the solver, pre- and postprocessor executables can be recompiled based on the size and complexity of the problem in order to provide minimum memory usage. The postprocessor was used to visualize the solution in steady and unsteady mode in either contour (scalar) or velocity vector form.

FLO++ is capable of handling incompressible or compressible, laminar or turbulent flows. A high-Reynolds number k-ε model is used to model turbulent flows. FLO++ is also capable of handling steady or unsteady solutions. It uses a modified SIMPLE algorithm for solving steady cases, or a time-marching upwind-differencing modified PISO algorithm to solve unsteady cases. Sliding meshes are used to model moving or rotating machinery.

B. GRID GENERATION

Grid generation was performed using MATLAB and FLO++. A 15-bladed fan was initially modeled in order to limit the total number of cells in the grid. A MATLAB script file was used to generate a text file of vertex coordinates corresponding to the upper and lower surfaces of a blade section and the inner and outer radii of the fan. The MATLAB script file and vertex coordinate text file are included in Appendix B. Figure 27 shows the vertices plotted with MATLAB.
After the creation of the vertex coordinate file, the FLO++ preprocessor PFLO was opened and a new script file was created, starting with commands that read the vertex coordinates directly from the previously created text file. Once these vertices had been created in PFLO, they were splined together appropriately and copied in the spanwise direction to provide a basis for the definition of a block. Once the block was defined, cell dimensions and distributions were assigned on all three directions, and the block command was executed, which physically created the cells. Two thin layers of cells on the outside and inside radii of the fan were added to smooth the interface between the fan cells and interior and exterior cells. In this manner the grid describing the passage between two blades was modeled. This cell group is depicted in Figure 28.
The blade passage cell group was then copied with 24-degree increments added successively in a cylindrical coordinate system. The resulting structure represented a complete rotor grid. All cells of the rotor grid were assigned to a single cell group for later definition as a sliding set. Figure 29 shows close-ups of the rotor grid detail.

![Figure 29. Crossflow Fan Rotor Grid Detail](image)
Remaining components of the CFTA numerical model were constructed in a similar manner, with vertex coordinates chosen directly from the CAD drawings used to machine the physical components. These consisted of the intake, low pressure (LP) cavity, exhaust duct and extension, high pressure (HP) cavity, and inner fan mesh. The cells in each cell group were dimensioned and distributed appropriately to provide acceptable detail with a minimum of skewness of the individual cells.

Some components in the CFTA had regions of relatively small radius of curvature, which required refined modelling. However, increasing the number of cells in these areas was not necessarily an option since it often had an impact on the shape and skewness of the cells in the group. Fine detail was therefore achieved using “detail layers” – thin subgroups of cells in a component cell group covering the areas of small radius of curvature. Figure 30 shows the level of detail achieved through the use of these cell layers.

Figure 30. Close-up of HP Cavity and Intake Detail Layers
After many trials and refinements, the grid shown in Figure 31 was adopted. This grid demonstrated a high level of detail and proved error-free in the preprocessing stage. The grid contained a thin clearance layer cell group, which allowed the assignment of a single boundary between the outer radius of the moving inner fan and the rest of the external components. This helped to simplify the setup for the solution stage. Figure 32 shows a close-up of the grid to highlight the interface between the moving and non-moving surfaces. A total of 36,130 vertices and 16,630 cells were used.

Some adjoining cell groups were not of the same cell dimension or distribution. In these cases, the ESFINID command was used to define the manner in which the two dissimilar meshes were coupled. This command invoked the FLO++ arbitrary mesh coupling to produce a seamless interface between meshes of differing cell dimension or distribution.

Figure 31. Complete Test Assembly Computational Grid
Once the grid was fully constructed and the mesh coupling completed, boundary cells were chosen and defined. Initially the assembly inlet and outlet were defined as PRESSURE type boundaries, with atmospheric pressure specified. The outer and inner surfaces of the fan rotor, inner surface of the fan clearance layer, and the outer surface of the inner fan mesh were defined as ATTACHED type boundaries, which facilitated their later use as sliding sets. The front and back faces of the entire assembly model (corresponding to the areas covered by the front and back plates of the physical assembly) were defined as SYMMETRY type boundary conditions. This was done to minimize demand on the solver by reducing the test assembly to a pseudo-2D problem instead of a full 3D problem. All other boundaries were assigned as WALL type by
default. Figure 33 shows the assigned boundaries, with the exception of the SYMMETRY boundaries.

Once boundaries were assigned, the sliding sets were defined using the SSDEF command with which the boundaries of type ATTACHED were instructed to slide against each other. The fan rotor cell group rotated in the negative θ-direction based on a cylindrical coordinate system defined with the z-axis aligned with the axis of rotation of the CFTA. Additionally, material properties such as density, viscosity, and reference pressure and temperature were specified. Density was defined as either constant at 1.205 kg/m3 for incompressible solutions or as dictated by the ideal gas law for compressible solutions. Viscosity was defined as constant at 1.8×10^{-5} N-s/m2. Reference pressure and temperature were fixed at 1×10^5 Pa and 300 K respectively.

The presence of moving meshes necessitated an unsteady solution. This was selected using the UNSTEADY command. Also specified in this command line was information regarding the time step, maximum Courant number, and modifiers to the PISO (Pressure Implicit Split Operator) algorithm. The time step could be specified as FIXED or ADJUSTABLE. If ADJUSTABLE was chosen the time step would adjust during each iteration to maintain the specified maximum Courant number. Also, a minimum number of corrector loops used in the PISO algorithm could be specified.

The remainder of the commands in the script file were dedicated to solver commands and instructions regarding how to save the results. The PFLO command script file is included as Appendix B.
Figure 33. Boundary Groups
C. FLOW SOLUTION

Once the PFLO command input file was complete, the solver FLO was initiated. Initially, a compressible solution at 5,000 RPM was attempted. The maximum Courant number was set at 1 in order to preserve time-accuracy of the solution. This was considered important in visualizing how the flow developed inside the crossflow fan. However, this had a significant effect on the time step, which was adjusted by FLO each iteration in order to remain below the specified maximum time step. Time steps on the order of 10^{-7} seconds or smaller were frequently encountered, making the solution time unreasonably long. A fan speed of 5,000 RPM corresponded to one rotation in .012 seconds. It was considered desirable to obtain a solution of at least one fan revolution to ensure proper function of the grid. With a time step of 10^{-7} seconds, this would have required 120,000 iterations of solver. Given that each iteration took approximately 20 seconds to process, the solution time would have been approximately 667 hours, or 27 days.

Additionally problematic was the fact that the solver had a tendency to become unstable, even well into the solution time. This instability manifested itself as unrealistic velocities in the intake and / or inflow at the exhaust duct, both of which eventually became unbounded. Therefore, several modifications to the original grid were made in the hope of alleviating these problems.

The unbounded intake velocity consistently occurred at the corner nearest the high-pressure cavity. It was thought that highly skew cell geometry in close proximity to the intake pressure boundary was at fault. Consequently, the grid was reshaped to improve the geometry of the intake grid. The intake was extended and the boundary was reshaped into an arc of 24 inches radius as measured from the center of the fan. This had a favorable effect on the shape and dimension of the cells in the intake. The wall boundaries of the initial grid were extended to intersect the 24-inch arc. It was felt that the wall extensions would have little effect at such a large radius relative to the radius of the fan. The modified grid contained 36,124 vertices, while the number of cells remained unchanged. The modified grid is shown in Figure 34.
In an attempt to correct the inflow that occurred at the exhaust duct boundary, a slight pressure gradient was applied between the intake and exhaust duct pressure boundaries. The intake boundary remained at 1×10^5 Pa, while the exit velocity was reduced by 5,000 Pa. It was felt that the slight pressure gradient would create flow in the proper direction from the outset of the solution, thus assisting the solver in the early stages of the solution.

Finally, the solution definition was changed to an incompressible one. This made a reduction in fan speed necessary, since the rotor tip speed of approximately 80 m/s made speeds approaching compressibility a possibility elsewhere in the fan. The fan speed was therefore reduced to 3,000 RPM and density was set to "constant".

D. RESULTS AND DISCUSSION

The solver processed for a total of 24,200 iterations at a fan speed of 3,000 RPM. This corresponded to a solution time of 2.13×10^{-2} seconds, or 1.065 revolutions of the
fan. After approximately 18,000 iterations, the solver was stopped and the input file was modified to eliminate the pressure differential between the intake and exhaust boundaries. It was felt that the pressure differential was not necessary after flow had been established through the fan. The solution was restarted from the 16,400th iteration, and exhibited some oscillation caused by the instantaneous change in boundary conditions which appeared to damp out prior to reaching 20,000 iterations. The flow resumed its previous pattern prior to reaching 24,200 iterations.

The results of the 24,200th iteration were examined. Contour plots of velocity magnitude, Mach number, static pressure, and total pressure were created using the post-processing functions in PFLO. Vector plots of velocity magnitude were also created. These images are shown in Figures 35 through 42.

Figure 35 is a contour plot of velocity magnitude. Examination of the high- and low-velocity areas of the plot reveals similar flow patterns to those found in the experimental phase of this research, as well as those found by VSD in their pressure gradient analysis. It must be acknowledged that although this problem was solved as an incompressible solution, the maximum velocity depicted on this plot is at a level sufficient for compressible effects to exist. However, these areas of high velocity or possible compressible flow are extremely small and may be limited to computationally insignificant pockets near the surfaces of the fan blades.

Figure 36 is a contour plot of Mach number. This plot demonstrates similar results to the previous plot. From inspection of the Mach number plot, it can be seen that the exit Mach number is in the range of .29 to .32. This is supported by experimental data, which suggests an exit Mach number of approximately .27 at 3,000 RPM. Frictional effects of the front and back plates of the test assembly may explain the lower Mach number in the experimental data.

Figure 37 is a contour plot of static pressure. Inspection of this plot further verifies the locations of the high- and low-pressure circulation regions within the crossflow fan. The reason for the choice of names of the two cavities is also clear. Although the lowest recorded pressure does not actually occur inside the low-pressure cavity, this cavity creates the circulation area in which the lowest pressure is seen. The
high-pressure cavity shows a pressure lower than reference pressure in this image; however, the pressure in this cavity is definitely higher than anywhere within the circulation region caused by the low-pressure cavity.

Figure 38. is a contour plot of total pressure. It must be acknowledged that the total-to-total pressure ratio in this image is less than the experimentally obtained values. Figure 17 shows a pressure ratio of approximately 1.055 at a fan speed of 3,000 corrected RPM. Figure 38 shows an approximate pressure ratio of up to 1.017. The reason for this discrepancy may lie with use of specified inlet and exit pressure boundaries. Additionally, the numerically derived total pressures may still show effects from the restart at the 16,400th iteration. Although this information was not available due to some of the results files being overwritten after the restart, a plot of total pressure derived from roughly the 18,000th iteration, prior to the restart of the solver, showed a pressure ratio approaching 1.05.

Several different velocity magnitude vector plots were examined. Figure 39 is a plot of the entire test assembly. The large difference in velocity magnitudes and the large number of vectors in the plot makes flow patterns somewhat difficult to discern. Therefore, separate plots were created showing only certain cell groups of interest. These are given as Figures 40 through 42. Comparison with experimentally derived flow velocities and flow patterns further testifies to the validity of the numerical solution.
Figure 35. Contour Plot of Velocity Magnitude

Figure 36. Contour Plot of Mach Number
Figure 37. Contour Plot of Static Pressure

Figure 38. Contour Plot of Total Pressure
Figure 39. Vector Plot of Velocity

Figure 40. Vector Plot of Velocity in the Exhaust Duct, Extension, and Detail Layer
Figure 41. Vector Plot of Velocity in the Low-Pressure Cavity and Recirculation Area

Figure 42. Vector Plot of Velocity in the High-Pressure Cavity and Recirculation Region
IV. FAN-IN-WING CONCEPT

A. DESCRIPTION

Analysis of the experimental and numerical simulation results led to the conceptualization of a crossflow fan-based lift / propulsion device. This concept consisted of a crossflow fan of the type and configuration studied in the experimental and numerical simulation phases of this research, installed within a wing section. The intake of the fan was located in such a manner as to coincide with the location of the low-pressure peak of the airfoil in forward flight, or with the location of the separation bubble at high angles of attack. This theoretically increased the lift produced by the wing by further reducing the pressure in the low-pressure region on the upper surface of the wing section. Additionally, it was theorized that the location of the intake would inhibit flow separation at high angles of attack. The crossflow fan exhaust exited the wing section from the trailing edge, providing both thrust and higher lift due to supercirculation effects. Figure 43 shows one possible installation of the “fan-in-wing” concept. It is important to emphasize that this particular installation may not represent an optimum configuration.

Figure 43. Conceptual Fan-In-Wing Installation
B. NUMERICAL SIMULATION

In order to investigate the usefulness of the fan-in-wing configuration as applied to a V/STOL aircraft, a relatively simple numerical simulation was performed using FLO++. A NACA 4244 airfoil was selected for use in this simulation, solely for its thickness. It was felt that a crossflow fan of the same dimensions as that used in the experimental phase could easily be incorporated into the 4244 airfoil of appropriate chord.

The airfoil coordinates were obtained from Ref. 13 and were used to create airfoil splines in the PFLO input command file. A very basic C-grid was created around the airfoil, utilizing 5094 vertices and 2400 cells. More information on this C-grid may be found in Appendix C.

The intake of the crossflow fan was modeled by defining four of the cells on the surface of the wing section as OUTLET boundaries. FREE mass flow was selected, but the mass flow fraction was here defined as the experimentally derived divided by the mass flow through the C-grid’s inlet boundary. This was calculated as \(\frac{\dot{m}_{\text{CF}}}{A_{\text{inlet}}V_\infty} \).

The exhaust of the crossflow fan was modeled by defining the terminal cell on the upper surface of the wing section as type INLET. Velocity here was specified using an experimentally derived exit velocity oriented in the chordwise direction. Figure 44 depicts the boundaries in this problem.

This solution was modeled as an incompressible flow, with steady boundary conditions. Convergence was reached extremely quickly, within approximately 30 seconds. Contour plots of pressure and velocity magnitude were created for a single regime of flight. Comparisons were made between the unaugmented wing section and the fan-in-wing augmented wing section.

Flight conditions of 10° angle of attack (AOA) and 100 knots airspeed were stipulated in order to simulate level flight. Mass flow and exit velocity quantities were derived from experimental data for a rotational speed of 5,000 RPM.
Figure 45 is a comparison of static pressure between the unaugmented and fan-in-wing augmented case. It is obvious from inspection of the figure that there was a significant change in the pressure distribution over the upper surface of the wing. Both the low- and high-pressure regions on the upper and lower surface expanded. This resulted in a significant change in the lift developed by the wing.

Figure 46 is a comparison of velocity magnitude between the unaugmented and fan-in-wing augmented case. In the unaugmented case the wake profile exhibited a characteristic shape, and due to the high AOA, flow separation was present. In the augmented case, the wake profile velocities were much higher, indicating a reduction of
drag. Additionally, the air expelled from the trailing edge entrained the flow over the upper surface of the wing, which in turn reduced the effect of the separation bubble.

It is important to acknowledge that this was only a simple analysis of the possibilities of this type of crossflow fan configuration. A more detailed analysis is required. However, the results of this numerical simulation demonstrate that significant benefits may be obtained by drawing air through the leading edge and expelling it through the trailing edge, and that the crossflow fan may be an ideal device to accomplish this. Future efforts in this respect should center around incorporating the crossflow fan grid as previously reported into the NACA 4424 airfoil grid in this section.
Figure 45 Pressure Contour Plot of the NACA 4424 Airfoil Without (a) and With (b) Fan-In-Wing Augmentation
Figure 46 Velocity Magnitude Plot of the NACA 4424 Airfoil Without (a) and With (b) Fan-In-Wing Augmentation
C. SUGGESTED V/STOL CONFIGURATION

Gossett used a 20.6-inch span fan driven at 6,500 RPM by a 600-HP Wankel engine to produce 690 lbf thrust to augment the ducted propellers in his conceptual light VTOL aircraft. The design called for a crossflow fan assembly located along the centerline with the axis of the fan parallel to the longitudinal axis of the vehicle. A longer span fan was not considered in Gossett’s design due to weight, engine size, and specifically, power limitations. Gossett extrapolated information for Fan #6 in the VSD study to arrive at his power requirements, leading him to conclude that the best thrust-to-power ratio of 1.15 would be achieved at 6,500 RPM. However, the VSD study did not test this fan below approximately 6,000 RPM. Inspection of Figures 22 and 23 reveals that a thrust to horsepower ratio (per foot of span) of 2 may be obtained by operating the fan at approximately 3,250 RPM.

In order to develop a useful amount of thrust in a light civil VTOL aircraft design, operation at this relatively low RPM called for a much longer span. For example, a 10-foot span fan will be required in order to produce 1,200 lbf thrust when powered by the 600-HP engine described in Ref. 8. A span this large was not useable in Gossett’s design due to fuselage and wing section size limitations. However, the fan-in-wing concept takes advantage of the dimensions of the wing and may allow designers to take advantage of the higher thrust-to-power ratio of the lower-RPM fan.

A suggested aircraft configuration is given in Figure 47. This general configuration could be adapted and scaled to suit a number of applications. The basic design centers around the use of four fan-in-wing sections, which connect a separate fuselage to a twin boom-type tail assembly. The design is not unlike that of the Rockwell OV-10 Bronco observation aircraft. Two additional lifting surfaces strengthen the structure.

The fan-in-wing sections, shown in blue in Figure 47, rotate 90° around the crossflow fan axis to provide thrust for vertical takeoff. The lifting surfaces are staggered so that thrust from the forward fan-in-wing sections will not impinge on the center
structural member or the aft fan-in-wing section. A high-mounted horizontal stabilizer prevents impingement of the net thrust from both fan-in-wing sections.

Thrust in the VTOL mode would be provided by the crossflow fans in the fan-in-wing sections, rotated initially 90° downwards. Forward flight would be accomplished by slowly rotating the fan-in-wing sections upwards toward 0° relative to the longitudinal axis of the aircraft. As forward airspeed builds, lift would be generated by the airfoil starting at a high AOA. Stall characteristics of the wing would be reduced by the elimination of the separation bubble due to the crossflow fan intake.

Thrust vectoring in a hover could be accomplished by flaps on the upper and lower sides of the trailing edge. These flaps would move in concert with each other to provide longitudinal control. Thrust vectoring flaps could also move in opposition to each other, forming a linear “nozzle”. This would allow throttling of the crossflow fan for optimum performance. Lateral control in a hover could be accomplished by a system of vanes located in the exhaust duct. Yaw control could easily be accomplished by allowing left- and right-side fan-in-wing sections to rotate independently. Other controls would be as in current fixed-wing aircraft.

Use of two engines would allow the fore and aft fan-in-wing sections to be powered separately. This would provide emergency operation in forward-flight mode in case of a single engine failure. The aircraft could be landed at any suitable airport. In the case of dual engine failure, the aircraft would have the ability to glide as with other fixed-wing aircraft.
Figure 47 Three-View of Suggested V/STOL Aircraft Configuration Utilizing Fan-In-Wing Concept

63
V. CONCLUSIONS AND RECOMMENDATIONS

A. EXPERIMENTAL APPARATUS

The Crossflow Fan Test Assembly (CFTA) was constructed and successfully operated. Comparison of results with the Vought Systems Division (VSD) experimental data confirmed the validity of the design of the fan used in the present research. Repeatability of the results was demonstrated in the course of seven different performance runs. The resulting data were extremely compact and exhibited little variance despite the different ambient conditions on the various dates on which data were taken. In addition to validation of the VSD study, data were provided for the 1,000-5,000 RPM range. This was critical in that it revealed a higher thrust-to-power ratio than that observed in the higher RPM range tested by VSD. A wide range of raw and reduced data were taken for this important speed range. Flow visualization results also supported the conclusions drawn from the experimental data. Similar streamlines and flow patterns to those predicted in the VSD study were noted in the present results.

The data acquisition system proved extremely effective and allowed the collection of both raw and reduced data in minimum time. However, further data reduction became necessary due to noticeable variations in TTR mass flow for a given speed. This was accomplished with Excel, but could easily be incorporated into the HPVEE program to eliminate post-processing altogether. Additionally, the HPVEE program should be rewritten to remove references to TTR measurements, as these became irrelevant through the use of dimensionless velocity and mass-averaging to calculate crossflow fan parameters independently.

A greater number of combination probes should be used in the crossflow fan inlet. This would allow a more accurate average of total temperature and pressure to be determined. Additionally, it would allow the inlet flow parameters to be mass-averaged.

The inner plate of the front blanking plate should be instrumented with a directional combination probe. This could be mounted through the instrumentation port already incorporated in the plate. The inner plate should be equipped with an actuator in
order to allow rotation of the plate for multiple measurements of pressure within the fan during a single run.

Seals should be considered for use between the Plexiglas-to-Plexiglas and Plexiglas-to-Aluminum interfaces on the viewing window to minimize air flow and dye loss through these areas. Labyrinth seals may perform this function, but may require permanent changes to the Plexiglas. Subsequent changes to the test assembly cavity shapes or arrangements would likely require fabrication of a new viewing window and blanking plate.

Experiments with the CFTA should continue in an effort to determine optimum configurations for various lift and propulsion applications. The most immediate need is to develop a throttling device for the crossflow fan exhaust duct. This will allow a true compressor map to be obtained for the crossflow fan, and will help suggest the optimum operating conditions for any particular regime of flight. Subsequently, efforts should center around determining optimum fan dimensions, number of blades, solidity, blade shape, and blade angle. Finally, different cavity, intake, and exhaust configurations should be tested.

B. NUMERICAL SOLUTION

A 15-bladed crossflow fan computational grid was created and mated with a grid modeled after the cavities, intake, and exhaust used in the CFTA. An incompressible solution was achieved at a fan speed of 3,000 RPM in a reasonable computational time. The results were similar to those obtained through experimental and flow visualization efforts.

An incompressible solution using a 30-bladed fan should be pursued immediately. A video card with more memory would be useful in this endeavor, as would the use of faster computers which will soon become available. Following this, a compressible solution should be attempted. This would facilitate an increase in fan speed up to 5,000 RPM or perhaps greater. A 3D solution will eventually be called for. A 3,000 RPM incompressible approach to this problem is recommended to spare computational time.
Testing of alternate intake, cavity, or exhaust duct shapes in an incompressible, 3,000-RPM solution will not require a great deal of effort. Since the computational grid was created in a modular fashion in the PFLO input file, it will not be difficult to make changes to the existing cavity shapes or locations without significantly affecting the remainder of the grid. Changes to the blade shape and number will require more effort, but could be accomplished in a similar manner.

C. FAN-IN-WING CONCEPT

Numerical simulation of a theoretical wing section augmented with a crossflow fan was performed. The results suggested a significant increase in lift may be obtained using a crossflow fan in a wing section as a lift / propulsion device. One possible configuration that implements this concept was introduced.

Refinement of the numerical solution should proceed by incorporation of a rotating crossflow fan grid inside the existing wing section; fabrication of a scale augmented wing section for testing in a low-speed wind tunnel; and construction of a flying model. The numerical simulation could be accomplished in a short period of time by modification of the numerical simulation used in Section III. A wing section for wind tunnel testing should be constructed, complete with a rotating crossflow fan. This would allow validation of the fan-in-wing concept as well as optimization of the intake, cavity, and exhaust duct configuration. A small-scale flying model would be more difficult and expensive to produce, but it is possible and would be the next logical step in attempting to prove the worth of the crossflow fan in a lift / propulsion application.
LIST OF REFERENCES

12. Shreeve, R. P., Class Notes, AA3451 Propulsion, Naval Postgraduate School, Monterey, California, 2001
University of Illinois at Urbana-Champaign, “Airfoil Coordinates Database”, [http://www.aae.uiuc.edu/m-selig/ads/coord_database.html], 2003
Figure A1. HPVEE Data Acquisition Program CFFdata.vee
APPENDIX B CROSSFLOW FAN GRID GENERATION CODE

B1. MATLAB BLADE PASSAGE VERTEX GENERATION CODE

% Program to draw the CFF airfoil profile and calculate the machine coordinates
% of a 1/4" ball cutter tool
%
clear all
close all
%
% Camber line first
%
% theta_c=linspace(80,165.22,100); % Center point of camber arc
xc0=4.4770;
yc0=1.4294;
rc0=1.4515;
%
xc=xc0-rc0*cos(theta_c*pi/180);
yc=yc0-rc0*sin(theta_c*pi/180);
figure(1)
plot(xc,yc,'b.')</%
%
% Now the pressure side
%
theta_p=linspace(85.65,159.58,100); % Center point of pressure arc
xp0=4.3454;
yp0=1.6305;
rp0=1.6102;
%
xp=xp0-rp0*cos(theta_p*pi/180);
yp=yp0-rp0*sin(theta_p*pi/180);
hold on
plot(xp,yp,'r.')</%
%
% Then the suction side
%
theta_s=linspace(74.54,170.48,100); % Center point of suction arc
xs0=4.5771;
ys0=1.2730;
rs0=1.3458;
%
xs=xs0-rs0*cos(theta_s*pi/180);
ys=ys0-rs0*sin(theta_s*pi/180);
plot(xs,ys,'g.')</%
%
% So far so good! Now the leading edge
%
theta_l=linspace(85.65,180+74.54,20); % Center point of leading edge arc
xle0=4.225;
yle0=0.000;
 rle0=0.025;
%
xle=xle0+rle0*cos(thetale*pi/180);
yle=yle0+rle0*sin(thetale*pi/180);
plot(xle,yle,'m.')
%
% Not quite there yet so lets try the trailing edge
%
 thetate=linspace(159.58,-(180-170.68),20);
% Center point of leading edge arc
xte0=5.88037;
yte0=1.05919;
rte0=0.025;
%
xte=xte0+rte0*cos(thetate*pi/180);
yte=yte0+rte0*sin(thetate*pi/180);
plot(xte,yte,'c.')
%
% Concatenate the arrays into one for the complete airfoil
%
x=zeros(237,1);
y=zeros(237,1);
for i=1:3
 x(i)=xte(17+i);
y(i)=yte(17+i);
end
for i=4:103
 x(i)=xs(104-i);
y(i)=ys(104-i);
end
for i=104:120
 x(i)=xle(123-i);
y(i)=yle(123-i);
end
for i=121:219
 x(i)=xp(i-120);
y(i)=yp(i-120);
end
for i=220:237
 x(i)=xte(i-219);
y(i)=yte(i-219);
end
plot(x,y)
%
% Plot the dowels on the camber line
%
 thetai=linspace(0.2*pi);
plot(4.9161+0.030*cos(thetai),0.0459+0.030*sin(thetai))
%
 thetai=linspace(0.2*pi);
plot(5.8990+0.0030*cos(thetai),0.4508+0.030*sin(thetai))
%
figure(2)
plot(x,y)
%
% Draw the passage between the blades
%
fid = fopen('vreadb1.txt','w t');
for i = 1:111
 xpass(i) = x(i);
 ypass(i) = y(i);
 Vreadb1(i,:)=i xpass(i) ypass(i);
 fprintf(fid,' %5.4f %5.4f %5.4f
',Vreadb1(i,1), Vreadb1(i,2), Vreadb1(i,3));
end
Vreada=[Vreadb1(:,2), Vreadb1(:,3)]
close(fid)
fid = fopen('vreadb2.txt','w t');
for i = 111:237
 xpass(i+1) = x(i)*cos(pi*24/180)+y(i)*sin(pi*24/180);
 ypass(i+1) =-x(i)*sin(pi*24/180)+y(i)*cos(pi*24/180);
 Vreadb2(i+1,:)=i+1 xpass(i+1) ypass(i+1));
 fprintf(fid,' %5.4f %5.4f %5.4f
',Vreadb2(i+1,1), Vreadb2(i+1,2), Vreadb2(i+1,3));
end
for j=111:237
 Vreadb(j-110,:)=Vreadb2(j+1,2), Vreadb2(j+1,3));
end
close(fid)
figure(3)
plot(xpass,ypass,','r.'
axis([3 7 -2 2])
%
% Plot the rotor endwall
%
thetai=linspace(pi*24/180,0);
hold on
plot(4.2*cos(thetai),-4.2*sin(thetai),,'b.'
%
offset = atan(y(1)/x(1));
thetai=linspace(pi*24/180,0);
plot(6*cos(thetai-offset),-6*sin(thetai-offset),,'g.'
%
Vread1=[xpass' ypass'];
Vreadc=[4.2*cos(thetai)',-4.2*sin(thetai)'];
Vreadc=flipud(Vreadc)
Vreadd=[6*cos(thetai-offset)',-6*sin(thetai-offset)'];

Vr=[Vreada;Vreadc;Vreadb;Vreadd];
for i=1:length(Vr)
 Vread(i,:)=i Vr(i,:));
end
B2. GRID GENERATION FLO++ INPUT CODE

reset
// *** crossflowfan : Flo++ input file
// *** Insert your Flo++ code here
reset
csys 0
#define span 1.5
#define spnbklk 1
#define chordblk 30
#define cbr 1.2
#define cseblk 20
#define cscr 1.2
#define clnc 6.13

// *** Mesh generation **
///Build fan passage splines\\\\\\\\\\\\\\\\\\
//vread c:\\vread15mod.txt 0 ALL
vread c:\\vread15mod.txt 0 ALL
vp
vset news vlist 338 339
vmerge vset 0.0001
vset news vlist 111 112
vmerge vset 0.0001
vset news vlist 211 212

vmax

spline 1 vran vmax - 436 vmax - 325 1
#define bp1 vmax - 378
splmodify 1 modify bp1 -bp1
spline 2 vran vmax - 325 vmax - 225 1
#define bp2 vmax - 277
splmodify 2 modify bp2 -bp2
spline 3 vran vmax - 225 vmax - 99 1
#define bp3 vmax - 162
splmodify 3 modify bp3 -bp3
#define bp4 vmax - 49
splmodify 4 modify bp4 -bp4
sp

vset all
vcopy 2 vmax vset span 0 0
vp

spline 5 vran vmax - 436 vmax - 325 1
#define bp5 vmax - 378
splmodify 5 modify bp5 -bp5
spline 6 vran vmax - 325 vmax - 225
#define bp6 vmax - 277
splmodify 6 modify bp6 -bp6
spline 7 vran vmax - 225 vmax - 99 1
#define bp7 vmax - 162
splmodify 7 modify bp7 -bp7
#def bp8 vmax - 49
splmodify 8 modify bp8 -bp8
sp
vmax

///Build fan passage block///////////
cgro 1
block 1 vmax - 873 vmax - 762 vmax - 662 vmax - 536 vmax - 436 vmax - 325 vmax - 225 vmax - 99
blplot
blfactors 1 chordblk csblk spnblk 1
blcd 1 1 chordblk / 2 cbr chordblk / 2 1 / cbr
blcd 1 2 chordblk / 2 cbr chordblk / 2 1 / cbr
blcd 1 3 chordblk / 2 cbr chordblk / 2 1 / cbr
blcd 1 4 chordblk / 2 cbr chordblk / 2 1 / cbr
blcd 1 5 csblk / 2 cscr csblk / 2 1 / cscr
blcd 1 6 csblk / 2 cscr csblk / 2 1 / cscr
blcd 1 7 csblk / 2 cscr csblk / 2 1 / cscr
blcd 1 8 csblk / 2 cscr csblk / 2 1 / cscr
blex 1
view 1 0 0
cp
local 2 cyli 0 0 0 0 0 90 0 0
csys 2
mcrea 4.15 4.2 2 66 78.3752 10 0 span spnblk 1 cscr 1
mcrea 4.15 4.2 2 78.3752 90 10 0 span spnblk 1 1 / cscr 1

cp
mcrea 6 6.1 3 76.2039 88.0825 10 0 span spnblk 1.5 cscr 1
mcrea 6 6.1 3 88.0825 100.2038 10 0 span spnblk 1.5 1 / cscr 1

cp
save 12
resu 12
// Louis
// Here I have decided to vmerge and compress when finish
// with cell group 1
spldelete all
bldelete all
cset news cgro 1
vset news cset
vset unsel
vdel vset
vset all
cp
vcdist all
// VCDIST tell us that we should not merge closer than aprox 0.002181
vmerge all 0.002
vcomp all
vcdist all
.cp

/////Copy fan passage and build complete fan///////
cset news cgro 1
local 2 cyli 0 0 0 0 90 0 0
csys 2
cgro 2
// Louis: Copy in 1 action
mcopy 15 vmax 0 24 0 active
vcdist all
vmerge all 0.0001
vcomp all
vcdist all
cset all
cgro 0
cgmodify all

save 13

resu 13

/////Build fan clearance layer/////////////////////
csys 2
cgro 2
mcrea 6.1 clnc 3 0 360 360 0 span spnblk 1 1 1

/////Build Intake///
/////Intake First Block//

csys 3

spldelete all
v vmax + 1 0 4.8676 3.726
v vmax + 1 0 4.8852 3.7369
v vmax + 1 0 4.9001 3.7228
v vmax + 1 0 4.9211 3.7142
v vmax + 1 0 4.9415 3.7136
v vmax + 1 0 4.9571 3.7183

csys 2

v vmax + 1 6.1967 125 0
v vmax + 1 6.1967 120 0
v vmax + 1 6.1967 115 0
v vmax + 1 6.1967 110 0
v vmax + 1 6.1967 105 0
v vmax + 1 6.1967 100 0
v vmax + 1 6.1967 95 0
v vmax + 1 6.1967 90 0
v vmax + 1 6.1967 85 0
v vmax + 1 6.1967 80 0
v vmax + 1 6.1967 75 0
v vmax + 1 6.1967 70 0
v vmax + 1 6.1967 65 0
v vmax + 1 6.1967 60 0
v vmax + 1 6.1967 55 0
v vmax + 1 6.1967 50 0
v vmax + 1 6.1967 45 0
v vmax + 1 6.1967 40 0
v vmax + 1 6.1967 35 0
v vmax + 1 6.1967 30 0
v vmax + 1 6.1967 25 0

csys 3

v vmax + 1 0 2.4157 -5.6827
v vmax + 1 0 2.4057 -5.6731
v vmax + 1 0 2.3921 -5.6666
v vmax + 1 0 2.3789 -5.6648
v vmax + 1 0 2.3645 -5.6673
v vmax + 1 0 2.3603 -5.6574

csys 2

v vmax + 1 clnc 25 0
v vmax + 1 clnc 30 0
v vmax + 1 clnc 35 0
v vmax + 1 clnc 40 0
v vmax + 1 clnc 45 0
v vmax + 1 clnc 50 0
v vmax + 1 clnc 55 0
v vmax + 1 clnc 60 0
v vmax + 1 clnc 65 0
v vmax + 1 clnc 70 0
v vmax + 1 clnc 75 0
v vmax + 1 clnc 80 0
v vmax + 1 clnc 85 0
v vmax + 1 clnc 90 0
v vmax + 1 clnc 95 0
v vmax + 1 clnc 100 0
v vmax + 1 clnc 105 0
v vmax + 1 clnc 110 0
v vmax + 1 clnc 115 0
v vmax + 1 clnc 120 0
v vmax + 1 clnc 125 0

vmax
vp

spldelete all
#def bp1 vmax - 52
spline 1 vlist vmax - 53 -bp1 vmax - 51 vmax - 50 vmax - 49 vmax - 48
spline 2 vran vmax - 48 vmax - 26 1
#def bp3 vmax - 22
spline 3 vlist vmax - 26 vmax - 25 vmax - 24 vmax - 23 -bp3 vmax - 21
spline 4 vlist vmax - 21 vmax - 20 vmax - 19 vmax - 18 vmax - 17 vmax - 16 vmax - 15 vmax - 14 vmax - 13 vmax - 12 vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7 vmax - 6 vmax - 5 vmax - 4 vmax - 3 vmax - 2 vmax - 1 vmax vmax - 53
sp
csys 3
vcopy 2 54 vran vmax - 53 vmax 1 span 0 0
vp
#def bp5 vmax - 52
spline 5 vlist vmax - 53 -bp5 vmax - 51 vmax - 50 vmax - 49 vmax - 48
spline 6 vran vmax - 48 vmax - 26 1
#def bp7 vmax - 22
spline 7 vlist vmax - 26 vmax - 25 vmax - 24 vmax - 23 -bp7 vmax - 21
spline 8 vlist vmax - 21 vmax - 20 vmax - 19 vmax - 18 vmax - 17 vmax - 16 vmax - 15 vmax - 14 vmax - 13 vmax - 12 vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7 vmax - 6 vmax - 5 vmax - 4 vmax - 3 vmax - 2 vmax - 1 vmax vmax - 53
sp
vmax
bldelete all
block 9 vmax - 48 vmax - 26 vmax - 21 vmax - 53 vmax - 102 vmax - 80 vmax - 75 vmax - 107
blfactors 9 50 5 spnbblk 3
blex

\\\\\//\text{Intake Second Block\\\\\//}
\\\\vset none
csys 3
v vmax + 1 0 4.9571 3.7183
v vmax + 1 0 5.0204 3.7809
v vmax + 1 0 5.0811 3.8448
v vmax + 1 0 5.1426 3.9136
v vmax + 1 0 5.2094 3.9943
v vmax + 1 0 5.4164 4.2939
v vmax + 1 0 5.6144 4.6854
v vmax + 1 0 5.7769 5.1999
v vmax + 1 0 5.8362 5.7068
v vmax + 1 0 5.7902 6.2869
v vmax + 1 0 5.6351 6.9151
v vmax + 1 0 5.2369 7.9234
v vmax + 1 0 3.35 11.56
v vmax + 1 0 -3.007 23.8109\\\\//v vmax + 1 0 9.16 6.56 //Adjusted point from z=11.56
//v vmax + 1 0 11.16 2 //Added to adjust grid
//v vmax + 1 0 11.16 -6.56 //Added for smoothness
csys 2
v vmax + 1 24 180 0
v vmax + 1 24 170 0
v vmax + 1 24 160 0
v vmax + 1 24 150 0
v vmax + 1 24 140 0
v vmax + 1 24 130 0
v vmax + 1 24 120 0
v vmax + 1 24 110 0
v vmax + 1 24 100 0

80
v vmax + 1 24 90 0
v vmax + 1 24 80 0
v vmax + 1 24 70 0
v vmax + 1 24 60 0

//v vmax + 1 24 160 0////
csys 3
v vmax + 1 0 19.3968 -14.1337////
v vmax + 1 0 9.16 -11.05
v vmax + 1 0 7.07 -10.42
v vmax + 1 0 4.26 -8.21
v vmax + 1 0 2.78 -6.41
v vmax + 1 0 2.53 -6.00 //added for continuity
v vmax + 1 0 2.4157 -5.6827

csys 2
v vmax + 1 6.1967 125 0
v vmax + 1 6.1967 120 0
v vmax + 1 6.1967 115 0
v vmax + 1 6.1967 110 0
v vmax + 1 6.1967 105 0
v vmax + 1 6.1967 100 0
v vmax + 1 6.1967 95 0
v vmax + 1 6.1967 90 0
v vmax + 1 6.1967 85 0
v vmax + 1 6.1967 80 0
v vmax + 1 6.1967 75 0
v vmax + 1 6.1967 70 0
v vmax + 1 6.1967 65 0
v vmax + 1 6.1967 60 0
v vmax + 1 6.1967 55 0
v vmax + 1 6.1967 50 0
v vmax + 1 6.1967 45 0
v vmax + 1 6.1967 40 0
v vmax + 1 6.1967 35 0
v vmax + 1 6.1967 30 0
v vmax + 1 6.1967 25 0
vp
vmax

spldelete all
spline 1 vran vmax - 54 vmax - 41 1
spline 2 vran vmax - 41 vmax - 27 1
spline 3 vran vmax - 27 vmax - 21 1
spline 4 vlist vmax - 21 vmax vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8 vmax - 9 vmax - 10
spline 4 vlist vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax - 16 vmax - 17 vmax - 18 vmax - 19 vmax - 20 vmax - 54
sp
csys 3
vcopy 2 55 vran vmax - 54 vmax 1 span 0 0
vp
spline 5 vran vmax - 54 vmax - 41 1
spline 6 vran vmax - 41 vmax - 27 1
spline 7 vran vmax - 27 vmax - 21 1
spline 8 vlist vmax - 21 vmax vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8 vmax - 9 vmap - 10
spline 8 vlist vmax - 11 vmax - 12 vmap - 13 vmax - 14 vmax - 15 vmax - 16 vmax - 17 vmax - 18 vmax - 19 vmax - 20 vmap - 54
sp
vmap
bldelete all
block 10 vmap - 54 vmap - 41 vmap - 27 vmap - 21 vmap - 109 vmap - 96 vmap - 82 vmap - 76
bifactors 10 20 50 spnblk 4
blcd 10 1 20 1.1
blcd 10 4 20 1.1
blcd 10 2 20 1 / 1.1
blcd 10 3 20 1 / 1.1
blex 10
cset news cgro 4
sp
cset cgro 3
#def cm1 12310
///////Build inner fan mesh\\\n 82
block 2 vmax - 23 vmax - 22 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 1 vmax
blplot
bifactors 2 10 spnblk 30 1
blcd 2 1 10 1 / 1.4
blcd 2 2 10 1.4
blcd 2 3 10 1.4
blcd 2 4 10 1.4
blex 2
cset cgro 1
view 1 0 0
vset news cset
vp
cset news cgro 1

#def vm2 vmax - vm1
mcopy 4 vm2 0 90 0 active
cset news cgro 1
cp

/////Build inner fan mesh center block\\\n
v max + 1 0 2.3603 -5.6574
v max + 1 0 2.3645 -5.6673
v max + 1 0 2.3516 -5.6744
v max + 1 0 2.3407 -5.6866
v max + 1 0 2.3344 -5.7035
v max + 1 0 2.3351 -5.7205
vp
csys 2
v max + 1 6.1787 20 0
v max + 1 6.1787 15 0
v max + 1 6.1787 10 0
v max + 1 6.1787 5 0
v vmax + 1 6.1787 0 0
v vmax + 1 6.1787 -5 0
v vmax + 1 6.1787 -10 0
v vmax + 1 6.1787 -15 0
v vmax + 1 6.1787 -20 0
v vmax + 1 6.1787 -25 0
v vmax + 1 6.1787 -30 0
v vmax + 1 6.1787 -35 0
v vmax + 1 6.1787 -40 0
v vmax + 1 6.1787 -45 0
v vmax + 1 6.1787 -50 0

vp
csys 3
v vmax + 1 0 -4.8676 -3.8054
v vmax + 1 0 -4.8818 -3.7668
v vmax + 1 0 -4.8459 -3.7542

vp
csys 2
v vmax + 1 clnc -50 0
v vmax + 1 clnc -45 0
v vmax + 1 clnc -40 0
v vmax + 1 clnc -35 0
v vmax + 1 clnc -30 0
v vmax + 1 clnc -25 0
v vmax + 1 clnc -20 0
v vmax + 1 clnc -15 0
v vmax + 1 clnc -10 0
v vmax + 1 clnc -5 0
v vmax + 1 clnc 0 0
v vmax + 1 clnc 5 0
v vmax + 1 clnc 10 0
v vmax + 1 clnc 15 0
v vmax + 1 clnc 20 0

vp

vmax
spldelete all
#def bp1 vmax - 37
spline 1 vlist vmax - 38 -bp1 vmax - 36 vmax - 35 vmax - 34 vmax - 33
spline 2 vran vmax - 33 vmax - 17 1
#def bp3 vmax - 16
spline 3 vlist vmax - 17 -bp3 vmax - 15
spline 4 vlist vmax - 15 vmax - 14 vmax - 13 vmax - 12 vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7
vmax - 6 vmax - 5 vmax - 4 vmax - 3 vmax - 2 vmax - 1 vmax vmax - 38
sp
vcopy 2 39 vset 0 0 span

vp
#def bp5 vmax - 37
spline 5 vlist vmax - 38 -bp5 vmax - 36 vmax - 35 vmax - 34 vmax - 33
spline 6 vran vmax - 33 vmax - 17 1
#def bp7 vmax - 16
spline 7 vlist vmax - 17 -bp7 vmax - 15
spline 8 vlist vmax - 15 vmax - 14 vmax - 13 vmax - 12 vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7
vmax - 6 vmax - 5 vmax - 4 vmax - 3 vmax - 2 vmax - 1 vmax vmax - 38
84
sp

vmax
bdelete all
block 11 vmax - 38 vmax - 33 vmax - 17 vmax - 15 vmax - 77 vmax - 72 vmax - 56 vmax - 54
blplot
blfactors 11 5 30 spnblk 5
blex 11

/////LP Second Block/////////////////////

vset news none

csys 3
 v vmax + 1 0 2.3351 -5.7205
 v vmax + 1 0 2.3576 -5.8582
 v vmax + 1 0 2.3791 -6.0989
 v vmax + 1 0 2.3753 -6.3741
 v vmax + 1 0 2.3418 -6.649
 v vmax + 1 0 2.2034 -7.0359
 v vmax + 1 0 1.8774 -7.4162
 v vmax + 1 0 1.4134 -7.7727
 v vmax + 1 0 .4909 -7.9588
 v vmax + 1 0 -.2726 -7.9034
 v vmax + 1 0 -1.2811 -7.5651
 v vmax + 1 0 -2.0786 -7.1576
 v vmax + 1 0 -2.8812 -6.5783
 v vmax + 1 0 -3.5716 -5.8094
 v vmax + 1 0 -4.21 -4.9431
 v vmax + 1 0 -4.6805 -4.188
 v vmax + 1 0 -4.8676 -3.8054
 v vmax + 1 0 -4.8676 -3.8054

csys 2
 v vmax + 1 6.1787 20 0
 v vmax + 1 6.1787 15 0
 v vmax + 1 6.1787 10 0
 v vmax + 1 6.1787 5 0
 v vmax + 1 6.1787 0 0
 v vmax + 1 6.1787 -5 0
 v vmax + 1 6.1787 -10 0
 v vmax + 1 6.1787 -15 0
 v vmax + 1 6.1787 -20 0
 v vmax + 1 6.1787 -25 0
 v vmax + 1 6.1787 -30 0
 v vmax + 1 6.1787 -35 0
 v vmax + 1 6.1787 -40 0
 v vmax + 1 6.1787 -45 0
 v vmax + 1 6.1787 -50 0

csys 3
 v vmax + 1 0 2.3351 -5.7205
vmax
vp
spl delete all
spl 1 vran vmax - 33 vmax - 17 1
spl 2 vlist vmax - 16 vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8 vmax - 9 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax
sp

csys 2

vcopy 2 34 vset 0 0 span
vp
vmax
spl 3 vran vmax - 33 vmax - 17 1
spl 4 vlist vmax - 16 vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8 vmax - 9 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax
sp

bl delete all
bl 12 vmax - 33 vmax - 17 vmax - 16 vmax vmax - 67 vmax - 51 vmax - 50 vmax - 34
bl factors 12 30 10 spnblk 6
blcd 12 1 30 1 / 1.01
blcd 12 4 30 1 / 1.01
blex 12
cset news cgro 6
cp

////////Build Exhaust Wall///////////
////////First Block///////////
save 22

resu 22
vset none
cset news
cgro 4
vset none
#def vmo vmax

csys 3
v vmax + 1 0 -4.8459 -3.7542
v vmax + 1 0 -4.8818 -3.7668
v vmax + 1 0 -4.8863 -3.7626
v vmax + 1 0 -4.9088 -3.7547
v vmax + 1 0 -4.9347 -3.7653
v vmax + 1 0 -4.9454 -3.7909
vp
csys 2
v vmax + 1 6.2312 305 0
v vmax + 1 6.2312 300 0
v vmax + 1 6.2312 295 0
v vmax + 1 6.2312 290 0
v vmax + 1 6.2312 285 0
v vmax + 1 6.2312 280 0
v vmax + 1 6.2312 275 0
v vmax + 1 6.2312 270 0
v vmax + 1 6.2312 265 0
v vmax + 1 6.2312 260 0
v vmax + 1 6.2312 255 0
v vmax + 1 6.2312 250 0
v vmax + 1 6.2312 245 0
v vmax + 1 6.2312 240 0
v vmax + 1 6.2312 235 0
v vmax + 1 6.2312 230 0
v vmax + 1 6.2312 225 0
v vmax + 1 6.2312 220 0
v vmax + 1 6.2312 215 0
v vmax + 1 6.2312 210 0
v vmax + 1 6.2312 205 0
v vmax + 1 6.2312 200 0
v vmax + 1 6.2312 195 0
v vmax + 1 6.2312 190 0
csys 3
v vmax + 1 0 -1.0097 6.1489
v vmax + 1 0 0.0089 6.1376
v vmax + 1 0 0.0089 6.13
csys 2
v vmax + 1 6.13 305 0
v vmax + 1 6.13 300 0
v vmax + 1 6.13 295 0
v vmax + 1 6.13 290 0
v vmax + 1 6.13 285 0
v vmax + 1 6.13 280 0
v vmax + 1 6.13 275 0
v vmax + 1 6.13 270 0
v vmax + 1 6.13 265 0
v vmax + 1 6.13 260 0
v vmax + 1 6.13 255 0
v vmax + 1 6.13 250 0
v vmax + 1 6.13 245 0
v vmax + 1 6.13 240 0
v vmax + 1 6.13 235 0
v vmax + 1 6.13 230 0
v vmax + 1 6.13 225 0
v vmax + 1 6.13 220 0
v vmax + 1 6.13 215 0
v vmax + 1 6.13 210 0
v vmax + 1 6.13 205 0
v vmax + 1 6.13 200 0
v vmax + 1 6.13 195 0
v vmax + 1 6.13 190 0

// Louis added these in order to
// get a better interface between groups 2 and 7
v vmax + 1 6.13 187 0
v vmax + 1 6.13 185 0
v vmax + 1 6.13 183 0
v vmax + 1 6.13 181.5 0
#define dvm vmax - vmo
save 18
resu 18

87
vp

spldelete all
#def bp1 vmax - 59
spline 1 vlist vmax - 60 -bp1 vmax - 58 vmax - 57 vmax - 56 vmax - 55
#def bp2 vmax - 30
spline 2 vran vmax - 55 vmax - 29
splm 2 modi vmax - 30 vmax - 30 * -1
spline 3 vlist vmax - 29 vmax - 28
save 19

resu 19
sp

// Louis: I ran out of line length
// Only 256 characters allowed in one line
// so I added the vertices like below
spline 4 vlist vmax - 28 vmax * -1 vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8
spline 4 vlist vmax - 9 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax - 16 vmax - 17
sp

vcopy 2 dvm vset 0 0 span

#def bp5 vmax - 59
spline 5 vlist vmax - 60 -bp5 vmax - 58 vmax - 57 vmax - 56 vmax - 55
#def bp6 vmax - 30
spline 6 vlist vmax - 55 vmax - 54 vmax - 53 vmax - 52 vmax - 51 vmax - 50 vmax - 49 vmax - 48 vmax - 47
spline 7 vlist vmax - 29 vmax - 28
spline 8 vlist vmax - 28 vmax * -1 vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8
sp

bldelete all
block 13 vmax - 29 vmax - 28 vmax - 60 vmax - 55 vmax - 90 vmax - 89 vmax - 121 vmax - 116

blfactors 13 5 70 spnblk 7
blex 13
cset news cglist 7 2
VIEW 1.0000e+000 0.0000e+000 0.0000e+000
VUP 0.0000e+000 1.0000e+000 0.0000e+000
FOCAL COORD 2.5000e-001 -6.5494e-001 6.0758e+000
SCALE VALUE 4.0470e-001
cp
save 23

resu 23

88
autosc on
focal center
\\\\\Exhaust Duct Second Block\\\\\\
vset none
csys 3
v vmax +1 0 -4.9454 -3.7909
v vmax +1 0 -7.2027 -3.7909/bp
v vmax +1 0 -9.46 -3.7909
v p
csys 0
local 4 cyli 0 -0.57 -2.72 0 90 0 0 0
csys 4
v vmax +1 8.89 -90 0
v vmax +1 8.89 -95 0
v vmax +1 8.89 -100 0
v vmax +1 8.89 -105 0
v vmax +1 8.89 -110 0
v vmax +1 8.89 -115 0
v vmax +1 8.89 -120 0
v vmax +1 8.89 -125 0
v vmax +1 8.89 -130 0
v vmax +1 8.89 -135 0
v vmax +1 8.89 -140 0
v vmax +1 8.89 -145 0
v vmax +1 8.89 -150 0
v vmax +1 8.89 -155 0
v vmax +1 8.89 -160 0
v vmax +1 8.89 -165 0
v vmax +1 8.89 -170 0
csys 3
v vmax +1 0 -1.0097 6.1489
v vmax +1 0 -1.0097 6.1489
v p
csys 2
v vmax +1 6.2312 305 0
v vmax +1 6.2312 300 0
v vmax +1 6.2312 295 0
v vmax +1 6.2312 290 0
v vmax +1 6.2312 285 0
v vmax +1 6.2312 280 0
v vmax +1 6.2312 275 0
v vmax +1 6.2312 270 0
v vmax +1 6.2312 265 0
v vmax +1 6.2312 260 0
v vmax +1 6.2312 255 0
v vmax +1 6.2312 250 0
v vmax +1 6.2312 245 0
v vmax +1 6.2312 240 0
v vmax +1 6.2312 235 0
v vmax +1 6.2312 230 0
v vmax +1 6.2312 225 0
v vmax +1 6.2312 220 0
v vmax + 1 6.2312 215 0
v vmax + 1 6.2312 210 0
v vmax + 1 6.2312 205 0
v vmax + 1 6.2312 200 0
v vmax + 1 6.2312 195 0
v vmax + 1 6.2312 190 0
vmax

spldelete all
spline 1 vran vmax - 45 vmax - 43 1
spline 2 vran vmax - 43 vmax - 25 1
spline 3 vlist vmax - 24 vmax vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8
spline 3 vlist vmax - 9 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax - 16 vmax -
 17 vmax - 18 vmax - 19 vmax - 20 vmax - 21 vmax - 22 vmax - 23 vmax - 24 vmax - 25
sp
vmax

save 44

resu 44
vcopy 2 46 vset 0 0 span
vmax

spline 4 vran vmax - 45 vmax - 43 1
spline 5 vran vmax - 43 vmax - 25 1
spline 6 vlist vmax - 24 vmax vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8
spline 6 vlist vmax - 9 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax - 16 vmax -
 17 vmax - 18 vmax - 19 vmax - 20 vmax - 21 vmax - 22 vmax - 23 vmax - 24 vmax - 25
sp

blddelete all
block 14 vmax - 25 vmax - 24 vmax - 45 vmax - 43 vmax - 71 vmax - 70 vmax - 91 vmax - 89

blfactors 14 10 30 spblk 8
bled 14 5 30 1 / 1.01025
bled 14 6 30 1 / 1.01025
bled 14 7 30 1
bled 14 8 30 1
blex 14

cset news cgro 8
cp
vmax

/////Build Exhaust Wall Extension\\\n

v vmax + 1 0 -4.9454 -3.7909
v vmax + 1 0 -7.2027 -3.7909/bp?

90
v vmax + 1 0 -9.46 -3.7909
v vmax + 1 0 -4.9454 -8.825
v vmax + 1 0 -7.2027 -8.825
v vmax + 1 0 -9.46 -8.825
vp
spldelete all
#def bp1 vmax - 4
spline 1 vlist vmax - 3 -bp1 vmax - 5
spline 2 vlist vmax - 5 vmax - 2
#def bp3 vmax - 1
spline 3 vlist vmax - 2 -bp3 vmax
spline 4 vlist vmax vmax - 3
sp
vcopy 2 6 vset span 0 0
vp
#def bp5 vmax - 4
spline 5 vlist vmax - 3 -bp5 vmax - 5
spline 6 vlist vmax - 5 vmax - 2
#def bp7 vmax - 1
spline 7 vlist vmax - 2 -bp7 vmax
spline 8 vlist vmax vmax - 3
sp
vmax
bldelete all
block 6 vmax - 3 vmax - 5 vmax - 2 vmax vmax - 9 vmax - 11 vmax - 8 vmax - 6
blfactors 6 10 10 spnbik 9
blex 6

/////Build HP Cavity///
/////HPC First Block///////////

//csys 0
//csys 3
//vset none
//vset news
v vmax + 1 0 4.8676 3.726
v vmax + 1 0 4.8852 3.7369
v vmax + 1 0 4.8757 3.7578
v vmax + 1 0 4.8741 3.7775
v vmax + 1 0 4.8790 3.7954
v vmax + 1 0 4.8871 3.8086
v vmax + 1 0 4.9406 3.8754

csys 2
v vmax + 1 0 6.2792 175 0
v vmax + 1 0 6.2792 170 0
v vmax + 1 0 6.2792 165 0
v vmax + 1 0 6.2792 160 0
v vmax + 1 0 6.2792 155 0
v vmax + 1 6.2792 150 0 //breakpoint
v vmax + 1 6.2792 145 0
v vmax + 1 6.2792 140 0
v vmax + 1 6.2792 135 0
v vmax + 1 6.2792 130 0

csys 3

v vmax + 1 0 -.0605 6.2789
v vmax + 1 10 .0075 6.2675
v vmax + 1 0 .0329 6.262
v vmax + 1 0 .053 6.249
v vmax + 1 0 .0655 6.2324
v vmax + 1 0 .0729 6.2016
v vmax + 1 0 .0676 6.1767
v vmax + 1 0 .0516 6.1543
v vmax + 1 0 .0324 6.1423
v vmax + 1 0 .0089 6.1376
v vmax + 1 0 .0089 6.13

v vmax + 1 clnc 175 0
v vmax + 1 clnc 170 0
v vmax + 1 clnc 165 0
v vmax + 1 clnc 160 0
v vmax + 1 clnc 155 0
v vmax + 1 clnc 150 0 //breakpoint
v vmax + 1 clnc 145 0
v vmax + 1 clnc 140 0
v vmax + 1 clnc 135 0
v vmax + 1 clnc 130 0
v vmax + 1 clnc 127.5 0

vmax
spldelete all
#def bp1 vmax - 37
spline 1 vlist vmax - 38 - bp1 vmax - 36 vmax - 35 vmax - 34 vmax - 33 vmax - 32
#def bp3 vmax - 12
spline 3 vlist vmax - 21 vmax - 20 vmax - 19 vmax - 18 vmax - 17 vmax - 16 vmax - 15 vmax - 14 vmax - 13 -bp3 vmax - 11
spline 4 vlist vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7 vmax - 6 vmax - 5 vmax - 4 vmax - 3 vmax - 2 vmax - 1 vmax vmax - 38
sp
csys 3
vcopy 2 39 vset span 0 0
vp
#def bp5 vmax - 37
spline 5 vlist vmax - 38 - bp5 vmax - 36 vmax - 35 vmax - 34 vmax - 33 vmax - 32

92
#def bp7 vmax - 12
spline 7 vlist vmax - 21 vmax - 20 vmax - 19 vmax - 18 vmax - 17 vmax - 16 vmax - 15 vmax - 14 vmax - 13 -bp7 vmax - 11
spline 8 vlist vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7 vmax - 6 vmax - 5 vmax - 4 vmax - 3 vmax - 2 vmax - 1 vmax vmax - 38
sp
vmax

bldelete all
block 7 vmax - 21 vmax - 32 vmax - 38 vmax - 11 vmax - 60 vmax - 71 vmax - 77 vmax - 50
blfactors 7 20 10 spnblk 10
blex 7
cset news cgro 10
cp

///HPC Second Block////////////////////////////////////
vset none
csys 3

 v vmax + 1 0 4.9406 3.8754
 v vmax + 1 0 5.29 4.5
 v vmax + 1 0 5.59 5.68
 v vmax + 1 0 5.29 6.99
 v vmax + 1 0 5.05 7.4156
 v vmax + 1 0 4.2003 8.3185
 v vmax + 1 0 3.3509 8.9136//breakpoint ?????
 v vmax + 1 0 2.9006 9.1322
 v vmax + 1 0 2.502 9.2577
 v vmax + 1 0 1.77 9.35
 v vmax + 1 0 .8759 9.221
 v vmax + 1 0 8.84
 v vmax + 1 0 .58 8.16
 v vmax + 1 0 -.79 7.39
 v vmax + 1 0 -.6908 7.0132
 v vmax + 1 0 -.5907 6.7994
 v vmax + 1 0 -.3601 6.4987
 v vmax + 1 0 -.2105 6.3704
 v vmax + 1 0 .0605 6.2789
 v vmax + 1 0 .0605 6.2789
vp

csys 2

 v vmax + 1 6.2792 175 0
 v vmax + 1 6.2792 170 0
 v vmax + 1 6.2792 165 0
 v vmax + 1 6.2792 160 0
 v vmax + 1 6.2792 155 0
 v vmax + 1 6.2792 150 0//breakpoint
 v vmax + 1 6.2792 145 0
 v vmax + 1 6.2792 140 0
 v vmax + 1 6.2792 135 0
v vmax + 1 6.2792 130 0

csys 3

v vmax + 1 0 4.9406 3.8754
vp
vmax

sp delete all
spline 1 vran vmax - 30 vmax - 12 1
spline 2 vran vmax - 11 vmax 1
sp

vcopy 2 31 vset span 0 0
vp

spline 3 vran vmax - 30 vmax - 12 1
spline 4 vran vmax - 11 vmax 1
sp

bl delete all
block 8 vmax - 12 vmax - 30 vmax - 11 vmax - 43 vmax - 61 vmax - 31 vmax - 42
blfactors 8 30 10 spnblk 11
blex 8
cset news cgro 11
cset all
cp

view -1 0 0
cp

%%

///COMPLETE WITH STRUCTURE///

%%

save 33

resu 33

/////Merge vertices in non-sliding cell groups///////
cset none
cset news cgro 2
cset cgro 3
cset cgro 4
cset cgro 5
cset cgro 6
cset cgro 7
cset cgro 8
cset cgro 9
cset cgro 10
cset cgro 11
cp

vset news cset
vmerge vset 0.0005
cset news cgro 3
cset cgro 10
cp
vset news cset
vmerge vset 0.0001

cset news cgro 8
cset cgro 9
cp
vset news cset
vmerge vset 0.0001

save 66

resu 66

Find embedded cell sets

vcdis cset
cset cgro 2
cp
esfind 2 3 0.01 10 11 12

cset news cgro 2
csys 2
cset gxyzrange 5 6.13 6.135 0 22 0 span
cset gxyzrange 5 6.13 6.135 300 360 0 span
cp
cp
esfind 2 5 0.02 30 11 12
cset news cgro 5
cset cgro 6
cp
esfind 5 6 0.01 30 11 12
cset news cgro 3
cset cgro 4
cp
esfind 3 4 0.005 30 11 12
cset news cglist 2 7
csys 2
cp
esfind 2 7 0.02 30 11 12
cset news cgro 2
cset cgro 10
cp
esfind 2 10 0.05 30 11 12
cset news cgro 7
cset cgro 8
cp
esfind 8 7 0.02 10 11 12
cset news cgro 7
cset cgro 10
cp
esfind 10 7 0.0001 10 11 12
cset news cgro 7
cset cgro 5
cp
esfind 5 7 0.0001 10 11 12
cset news cgro 10
cset cgro 11
cp
esfind 10 11 0.005 30 11 12

////////Compress all vertex and cell numbers///////////
save 1
resu 1

// Boundaries
// Inlet
cset none
cset cgro 4
view 1 0 0
cp
bface 1 east
bset news bgro 1
bp

// Outlet
cset none
cset cgro 9
view 0 0 -1
cp
bface 2 north
bset bgro 2
bp

// Symmetry
// Merge vertices first otherwise
// boundaries will be created on axis
csys 3
cset all
view 1 0 0
pltype hsurf
cp
bview 3 10
view -1 0 0
pltype hsurf
cp
bview 3 10

// Attached boundary 1
csys 2
cset news cgro 0
cset news gxyzrange 0 6.2 0 360 0 span
view 1 1 1
cp
bface 4 east
bset news bgro 4
bp

// Attached boundary 2

cset news cgro 2
view 1 1 1
cp
bface 5 west
bset bgro 5
bp

// Attached Boundary 3

csys 2
cset news cgro 0
cset news gxyzrange 0 4.15 4.2 0 360 0 span
view 1 1 1
cp
bface 6 west
bset news bgro 6
bp

// Attached Boundary 4

cset news cgro 1
cset news gxyzrange 1 4.0 4.15 0 360 0 span
view 1 1 1
cp
bface 7 east
bset news bgro 7
bp
bset bgro 6
bp

save 2
resu 2
movi on stand //yes
#def step 1.5e-6 0
// Note 1
// NB Watch out for this:
// #def speed 5000 //in RPM
// rather use this:
#def speed 3000 0 //in RPM

// Must fill in at least up to 'ratio'
// otherwise the dt will stay the same...
// in cases where it can automatically and with safety use a bigger time step
// Note 2
unst on step fixed 10 1 //1 1.05
unst on step adjust 10 1.2 10

#def dpt speed * 360 / 60 * step 0
slide on
//ssdef 1 2 0 0 dpt 0 arbitr 4 5 0.000001 20 const 1 1 2
//ssdef 2 2 0 0 dpt 0 arbitr 6 7 0.000001 20 const 1 1 1

ssdef 1 2 0 0 speed / 2 0 arbitr 4 5 0.000001 20 const 0 0 2
ssdef 2 2 0 0 speed / 2 0 arbitr 6 7 0.000001 20 const 0 0 1

ssdef 1 2 0 0 speed / 2 0 arbitr 4 5 0.0001 10 const 0 0 2
ssdef 2 2 0 0 speed / 2 0 arbitr 6 7 0.0003 10 const 0 0 1

bgdef 4 attach
2 0
bgdef 5 attach
2 0
bgdef 6 attach
2 0
bgdef 7 attach
2 0

bgdef 3 symm

bgdef 1 pres
0 300 0.05 0.001
//bgdef 1 inlet const
///2 -12.62 0 0 1.2 0.05 0.001 0.001
bgdef 2 pres
0 300 0.05 0.001

mdef 0 fluid

cgdef 0 0
cgdef 1 0
cgdef 2 0
cgdef 3 0
cgdef 4 0
cgdef 5 0
cgdef 6 0
cgdef 7 0
cgdef 8 0
cgdef 9 0
cgdef 10 0
cgdef 11 0

save 5

resu 5
/*
cset news cglist 3 4 5
cp
vset news cset
csys 0

98
vmerge vset
cp

cset news cglist 1
cp
vset news cset
csys 0
vmerge vset
cp
*/

// Note 3
// No unused vertices are allowed for... do away with them
cset all
vset news cset
vset unsel
vdel vset

vcomp all
ccomp all
wmesh .0254

mate 0
turb on
dens const 1.204
visc const 0.000018
pgrad zero
pref 100000 cm1

rest init
iter 20000 100 10
restart previous 1640
unst on 5.5e-7 adjust 1 1.5 50
conv 0.01
switch 21 on
wdef

save

plty wire
view 1 2 3
bset news bgro 1

bset bgro 0
bset bgro 1
bset bgro 2
bset bgro 4
bset bgro 5
bset bgro 6
bset bgro 7
bp
SYMMETRY boundaries were applied to the front and back faces, as well as to the north and south faces of the grid. Additionally, the north and south faces of the grid were placed relatively far from the surfaces of the wing section to minimize effects from these surfaces. The west face was defined as an INLET type, with velocity specified as the desired freestream velocity. The east face was defined as an OUTLET type, with FREE mass flow. The mass flow fraction set at this boundary equated to the total mass flow entering the inlet boundary less the mass flow that entered the intake. Figure C1 depicts the C-grid used for numerical simulation of the fan-in-wing section.

Figure C1. Fan-In-Wing C-Grid (10° AOA)
C1. FAN-IN-WING C-GRID FLO++ INPUT CODE

reset

// *** Mesh generation ***
// Define some user variables to
// First define some spline points and their locations
// Points for Spline 1 (5)
#def AOA -30 0
#def SPD 60 0 //in KNOTS
#def EXH 0 //in M/S
#def Wgrid 1.2 * 3 * .51444 * SPD
#def W 0 * 10.7153 / Wgrid //.058 //in percent of total mass flow through grid
#def SPAN .5

#def sinAOA AOA sine 0
#def cosAOA AOA cosi 0
vread c:\naca4424.txt
vp
vset all
csys 1
vmove 0 AOA 0
vp
csys 0
v vmax + 1 -2 0 0
v vmax + 1 -2 3 0
v vmax + 1 3 3 0
v vmax + 1 3 sinAOA 0
v vmax + 1 3 sinAOA 0
v vmax + 1 3 -3 0
v vmax + 1 -2 -3 0
v vmax + 1 cosAOA 3 0
v vmax + 1 cosAOA -3 0
v vmax + 1 0 3 0
v vmax + 1 0 -3 0
vp
vmax
#def bp1 vmax - 3
#def bp2 vmax - 1
#def bp3 vmax - 2
#def bp4 vmax
#def sp1a vmax - 9
#def sp1b vmax - 4

spline 1 vlist vmax - 8 -bp1 -bp2 -sp1a vmax - 10 -sp1b -bp4 -bp3 vmax - 5
sp
#def sp2a vmax - 45
#def sp2b vmax - 11
cset news cgro 1
view 0 0 -1
cp
bview 3
bp

cset news cgro 1
view 0 0 1
cp
bview 3

cset news gxyzrange 1 -2 3 2.9 3.1 0 SPAN
cp
view 0 1 0
bface 4 east
bp

cset news gxyzrange 1 -2 3 -3.1 -2.9 0 SPAN
cp
view 0 -1 0
bface 4 east
bp
cset news gxyzrange 1 -2.1 -1.9 -3 3 0 SPAN
cp
view -1 0 0
cp
bview 1
bp
//cset news gxyzrange 1 -1.1 -0.9 -2 2 0 SPAN
//view -1 0 0
//cp
//bview 1
//bp
bset news bgro 4
bp
cp
cset news cran 1121 1121 1
cset cran 1081 1081 1
cset cran 1041 1041 1
cset cran 1001 1001 1
cp
bface 5 west
bp
cset all
cp
cset news cran 401 401 1
cp
bface 6 west
bp
cset all
cp
// *** Fluid type definition ***********************************
energy on
// turb on
tref 273
pref 100000 1
// *** Material properties and initial conditions ***
dens ideal
visc const 1.8e-5
// *** Cell and boundary group definitions ********
bgdef 1 inlet const
0 SPD * .514444 0 0 1 0.05 0.001 0.001
bgdef 2 outlet const
free 1 - W
bgdef 3 symmetry
bgdef 4 symm
bgdef 5 outlet const
free W
bgdef 6 inlet const
0 cosAOA * EXH sinAOA * EXH 0 1 0.05 0.001 0.001
//save 99
//resu 99
cset all
vcdist cset
vmerge all 0.01
wmesh
// *** Solution control **
iter 1000 1
conv 0.001
monit 4
// *** Writing data for the solution stage ********
wdef
// *** Save the modelling status *******************************
save
view 1 2 3
plty norm
bset none
bset bglist 1 2 4 5 6 0
bp
APPENDIX D COMPLETE DATA LISTING

Date	Run #	PPM	Pdlm	Pcal	Post TTR	Pinc TTR (8 0/c)	Pinc TTR (8 0/c)	Pinc CTR (10 0/c)	Post OFF (Top)	Post OFF (Med)	Post OFF (Bot)	PA	PB	PC	PD	PE	PF	PG	PH	PI	PJ	

Table D1. Complete Data Listing
Table D1. Complete Data Listing (Continued)
Table D1. Complete Data Listing (Continued)
INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, VA

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, CA

3. Dr. Max F. Platzer
 Department of Aeronautics and Astronautics
 Naval Postgraduate School
 Monterey, CA

4. Dr. Garth V. Hobson
 Department of Aeronautics and Astronautics
 Naval Postgraduate School
 Monterey, CA

5. Dr. Raymond P. Shreeve
 Department of Aeronautics and Astronautics
 Naval Postgraduate School
 Monterey, CA

6. Dr. Kevin D. Jones
 Department of Aeronautics and Astronautics
 Naval Postgraduate School
 Monterey, CA

7. Dr. M. S. Chandrasekhara
 Department of Aeronautics and Astronautics
 Naval Postgraduate School
 Monterey, CA

8. Gary J. Skoch
 NASA Glenn Research Center
 Cleveland, OH

9. Louis LeGrange
 Softflo, Inc.
 Noordbrug, South Africa

10. Scot Seaton
 Santee, CA