REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 May 2003</td>
<td>View Graphs</td>
<td></td>
</tr>
</tbody>
</table>

4. TITLE AND SUBTITLE

Multi-Scale Strain Measurements of a Polymeric Material

5. AUTHOR(S)

C.T. Liu

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2302</td>
<td>0378</td>
<td></td>
</tr>
</tbody>
</table>

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory (AFMC)
AFRL/PRSM
10 E. Saturn Blvd.
Edwards AFB, CA 93524-7680

8. PERFORMING ORGANIZATION REPORT NUMBER

AFRL-PR-ED-VG-2003-117

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR’S ACRONYM(S)

AFRL-PR-ED-VG-2003-117

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON

Sheila Benner

<table>
<thead>
<tr>
<th>19b. TELEPHONE NUMBER (include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(661) 275-5693</td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 229.18
MEMORANDUM FOR PRS (In-House Publication)

FROM: PROI (STINFO)

C.T. Liu (AFRL/PRSM) et al., "Multi-Scale Strain Measurements of a Polymeric Material"

2003 SEM Conf: Exprmtl & Appl Mechanics

(Statement A)
Polymeric Material
Measurements of Multi-Scalar Strain
Objectives

- Determine the Displacement and Strain Fields in a Polymeric Material
- Investigate the Local Damage Mechanisms and Failure Behavior near the Crack Tip
Strain Distributions
(2.5mm x 2.0mm)

ε_{yy} field, Load = 52 grams

ε_{xx} field, Load = 52 grams
Strain Distributions
(1.2mm x 1.0mm)

\(\epsilon_{yy} \) field, Load = 41 grams

\(\epsilon_{xx} \) field, Load = 41 grams
\(\varepsilon_{yy} \) field, Load = 47 grams \(\varepsilon_{xx} \) field, Load = 47 grams
Strain Distributions
(0.065mm x 0.055mm)

\(\varepsilon_{yy} \) field, Load = 49 grams

\(\varepsilon_{xx} \) field, Load = 49 grams
Strain Distribution
(0.065mm x 0.055mm)

\[\varepsilon_{yy} \] field (3-D), Load = 49 grams

\[\varepsilon_{xx} \] field (3-D), Load = 49 grams
Strain Ratio ($-\varepsilon_{xx}/\varepsilon_{yy}$) Distributions at Different Magnifications

40x "Poisson Ratio" distribution
Average is 0.7913

80x
Average is 0.8047
Strain Ratio ($-\varepsilon_{xx}/\varepsilon_{yy}$) Distributions at Different Magnifications

200x

Average is 0.8558

1500x

Average is 0.1
Side View of Crack Tip at 150x & 400x
Side View of Crack Tip at 500x & 1000x
Crack Tip Top View

07/12/2002
Standard Deviation / Mean of ε_{xx} Vs. Examined Area

(Standard Deviation) / Mean

Examined Area (μm^2)
Coefficient of Variation of X-Ray Intensity

Histogram Size and Location

- 2.67 mm Top
- 2.67 mm Middle
- 2.67 mm Bottom
- 0.53 mm Top
- 0.53 mm Middle
- 0.53 mm Bottom
- 0.11 mm Top
- 0.11 mm Middle
- 0.11 mm Bottom
Conclusions

- The strain distributions vary with the size of the area, A, in which the data were analyzed.

- When the size of A is smaller or equal to $1.5 \text{ mm} \times 1.5 \text{ mm}$, the nonuniformity of the strain distributions is increased. Especially, when the size of A is equal to $0.065 \text{ mm} \times 0.055 \text{ mm}$, both tensile and compressive strain fields exist in the small area.

- The representative area, which is defined as an area in which the material's microstructure has no significant effect on the strain distribution, of the material considered is $1.5 \text{ mm} \times 1.5 \text{ mm}$.

- A highly damaged region of 20-50 micron long is developed at the crack tip.

- The crack growth mechanism involves voids formation ahead of the crack tip and the coalescence of the main crack tip with the void.