Award Number: DAMD17-01-1-0340

TITLE: Epstein-Barr Virus and Breast Cancer

PRINCIPAL INVESTIGATOR: Wing C. Chan, M.D.
 Kishor G. Bhatia, Ph.D.
 Guimei Zhou

CONTRACTING ORGANIZATION: University of Nebraska Medical Center
 Omaha, Nebraska 68198-6810

REPORT DATE: September 2002

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
 Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 2002 Annual (1 Sep 01 – 31 Aug 02)

4. TITLE AND SUBTITLE
Epstein-Barr Virus and Breast Cancer

5. FUNDING NUMBERS
DAMD17-01-1-0340

6. AUTHOR(S)
Wing C. Chan, M.D.
Kishor G. Bhatia, Ph.D.
Guimei Zhou

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Nebraska Medical Center
Omaha, Nebraska 68198-6810
E-Mail: jchan@unmc.edu

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Original contains color plates. All DTIC reproductions will be in black and white.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Epstein Barr virus (EBV) has been implicated as a cofactor in several human malignancies. The possibility that EBV may play a role in the development of breast cancer has been raised in recent years. However, a number of reports have shown conflicting results. This could be related to the different assays employed and also possible geographical variations in the incidence of this infection. We collected 203 cases of invasive breast carcinomas, as well as 30 non-neoplastic tissues adjacent to the tumors from 3 different geographical regions (USA, India and Kuwait), conventional polymerase chain reaction (PCR), real-time PCR and EBV-encoded small nonpolyadenylated RNA (EBER-1) in situ hybridization (ISH) were used to study these cases. The data suggest that EBV is present in a small subset of breast carcinomas, however, the high PCR positivity is likely due to the presence of latently infected lymphocytes; the incidence and/or the viral load of EBV associated with breast cancers may be geographically variable and there is a discrepancy between the PCR and ISH assays. Whether the discrepancy is only due to the detection of EBV by PCR on infiltrated lymphocytes or there is deleted EBV in tumor cells that fail to express EBERS needs to be explored by further studies.

14. SUBJECT TERMS
breast cancer, Epstein-Barr virus (EBV), pathogenesis

15. NUMBER OF PAGES
16

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
Unlimited
Table of Contents

Cover...1
SF 298...2
Table of Contents..3
Introduction..4
Body..5
Key Research Accomplishments.................................9
Reportable Outcomes...10
Conclusions..11
References...13
Appendices..16
INTRODUCTION

EBV is a γ-herpesvirus and infects more than 90% of the world population (1). The virus normally maintains a latent infection without symptoms, however, in the presence of impaired immunity or with additional genetic changes in virus-infected cells, EBV may be an important cofactor in the development of several human malignancies. Malignancies that have strong evidence for EBV include African Burkitt’s lymphoma (2), nasopharyngeal carcinoma (NPC) (3), classical Hodgkin’s disease (4), post-transplant and AIDS-associated lymphomas (5,6), nasal NK/T cell lymphoma (7), and gastric carcinomas (8). These are diseases that reflect the predominant tropism of EBV for two distinct cell types: B-lymphocytes and epithelial cells. A new study showed the entry of EBV to epithelial cells follows substantially different pathway compared to its entry to B-lymphocytes (9).

Breast cancer is the most frequent malignancy and the leading cause of cancer death among women in Western countries. Although the etiology of breast cancer is not completely understood, genetic background and hormonal effects are believed to play important roles in its development (10). With increasing reports of the association of EBV with epithelial cell malignancies, researchers have raised the question of whether EBV may play a role in the development of breast cancer. However, a number of reports on its association with breast cancer have shown conflicting results (11-18). This could be related to the different assays employed and also possible geographical variations in the incidence of this infection.

In an attempt to resolve this dispute, the aims of our study are: 1) To compare if different assays for the detection of EBV provide different endpoints. 2) To compare if there is a geographical variation in the association of EBV with breast cancer samples obtained from the USA, Middle Eastern countries, India and China. 3) To determine if the presence of EBV in these samples is a) restricted to tumor cells and b) if the virus was present prior to the clonal expansion of the tumor cells. 4) To assess the overall expression pattern of viral genes in EBV positive breast cancer specimens.

For the study of geographical variations, we collected 203 cases of primary invasive breast cancers from three different areas (USA, India and Kuwait, more cases from different geographic regions will be collected later). Different assays were used to assess the presence of EBV in these tumors, including conventional PCR, real-time PCR and EBER ISH. Immunohistochemistry and laser capture microdissection (LCM) techniques have been developed and will be employed for further studies.
We collected 100 cases of invasive breast carcinomas, as well as 30 non-neoplastic tissues adjacent to the tumors to study for evidence of Epstein-Barr virus (EBV) infection. DNA was extracted from the paraffin embedded tissues using EX-WAX DNA extraction kit (Interagen Company, 2 Manhattanville Road, Purchase, NY 10577) according to the manufacturer’s instructions. Amplification of GAPDH or beta-globin gene was used to test the integrity of DNA for all breast cancer samples. Conventional PCR were performed on 30 cases including both tumor and benign tissues, using sets of primers flanking the EBV nuclear antigen (EBNA)-LP, latent membrane protein (LMP)-1, the transactivating immediate-early BZLF-1 and EBNA-3C genes. The rest of the samples were tested for the BZLF-1 region of EBV DNA only for the time been. Nineteen of 30 tumor tissues were positive for at least one set of primers (3 cases were positive for all), including 9 cases that were PCR positive for both tumor and benign tissues, see Figure 1. and Table 1.

Figure 1. PCR amplification of BZLF-1 (A) and LMP-1 (B) genomic DNA on 4 breast cancer samples (lane 1-4 in both A and B). Lane M is a 100 base pair (bp) Lane 3 represents a sample which is PCR positive for BZLF-1, but negative for LMP-1. Lane 6 (A) and Lane 5 (B) are Namalwa DNA. Lane 5 (A) and Lane 6 (B) are no template controls. (C) Breast cancer samples amplified with human β-globin DNA to demonstrate good DNA quality.

Figure 2. EBER-1 in situ hybridization in positive control and breast cancer sections. (A) shows strong nuclear staining in a control with posttransplant lymphoproliferative disorder. (B) Case #20 shows nuclear positivity in the infiltrated lymphocytes. (C) Positive staining was detected in focal tumor cells (case # 17R).
However, the correlation among the primer sets used was poor. This may due to the very low copy number of EBV present in tissues and some tissues may have partially deleted EBV genome (19,20). Thus, real-time PCR was employed to quantitate the number of EBV genome in tissues. A106-bp region of EBV BamHI K encoding EBNA1 was amplified to detect wild type EBV genome. A 90-bp region that encompassed the junction of rearranged DNA was amplified to detect defective, rearranged EBV genome. A 72-bp DNA sequence of human ApoB gene was used as an internal control. Preliminary data showed that cases, which only have one set of primer positive for PCR, had lower load of the EBV genome. See Figure 3.

<table>
<thead>
<tr>
<th>Case no.</th>
<th>BZLF-1</th>
<th>BWRF-1</th>
<th>LMP-1</th>
<th>EBNA-3C</th>
<th>EBER ISH</th>
<th>BZLF-1</th>
<th>BWRF-1</th>
<th>LMP-1</th>
<th>EBNA-3C</th>
<th>EBER ISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+L</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17R</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+T</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+L</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>29</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

NA- not available; +L – positive in lymphocytes; +T – positive in tumor cells
Association of EBV with breast cancers was also assessed by our collaborator, Dr. Bhatia at King Faisal Specialist Hospital, Saudi Arabia with 103 breast cancers from two different geographical regions.

40 breast tumors from Kidwai Cancer Center, Bangalore, India and 63 samples from Kuwait Cancer Center. To determine the presence of EBV, amplification of the region flanking BZLF1 gene was carried out. Only 3 of 63 samples from Kuwait were positive for EBV, whereas 16/40 Breast cancer samples from India were EBV positive.

Figure 3. Amplification plot of real-time PCR of EBNA-1. (A) Serially diluted plasmid containing EBV (100,000 to 10 copies per tube) were analyzed for controls. (B) Standard curve generated from the mean value of duplicated examinations. Black circles represent controls and red circles are breast cancer samples and cell line. The tested materials plotted are (from left to right) breast cancer case #2, #4 and Raji (an EBV positive lymphoma cell line). (C) and (D) Amplified for human Apo-B DNA to normalize DNA content of each sample. (C) Serially diluted RL-7 DNA (an EBV negative lymphoma cell line) from 1000 ng to 1 ng were analyzed for controls. (D) Same samples as tested in (B).

The 40 breast cancer biopsies from India and 30 samples form USA were also assessed for the expression of EBERs using in situ hybridization kit from DAKO (DAKO A/S, Produktionsvej 42, DK-2600 Glostrup, Denmark). All, but 1 sample from the USA, including those that were PCR positive, failed to show expression of EBERs in tumor.
cells. Two USA samples showed some staining of infiltrated lymphocytes. See Figure 2. and Table 2. These data suggest that the incidence and/or the viral load of EBV associated with breast cancers may be geographically variable and there is a discrepancy between the PCR and ISH assays. Part of the discrepancy may be due to the detection of EBV by PCR on infiltrating lymphoid cells. However, the possibility of the presence of partially deleted EBV in tumor cells that failed to express EBERs needs to be explored by further studies (21).

Table 2. PCR PRIMER AND PROBE SEQUENCES

<table>
<thead>
<tr>
<th>Primer/Probe</th>
<th>Sequence</th>
</tr>
</thead>
</table>
| BZLF-1 | +5’-AGGCTGTTGGAACACCAATG
 | -5’-AACCCAGAATCAACAGACTAAC |
| BWRF-1 | +5’-CCATGTAAGCCTGCTCGAG
 | -5’-GCCTTAGATCTGGCTCTTTG |
| LMP-1 | +5’-CGGAAGAGGGTGAACACAA
 | -5’-GTGGGGGTGCATCATCTCT |
| EBNA-3C | +5’-AGAAGGGGACGTGTTGTT
 | -5’-GGCTCGTTTTTGACGTCG |
| EBNA-1 | +5’-CCGGTGTGTCGTATATGGGAG
 | -5’-GGGAGACGACTCAATGGTGA |
| EBNA PROBE | FAM-TGCCCTTGCTATTCCACAAATGTCGTCTT-TAMRA |
| APO-B | +5’-TGAAGGGGAGGACATTCTCTA
 | -5’-CTGGAATGCGATTCTCGT |
| APO-B PROBE | VIC-CGAGAATCACCCTGCCAGACTTCG-TAMRA |

In conclusion, our study showed that using PCR technique alone to detect the presence of EBV genome in breast cancer can obtain 40-60% positive cases. However, PCR cannot distinguish between neoplastic cells and latently infected lymphocytes. The high rates of positivity may indicate a lack of specificity. In an attempt to define the cellular localization of EBV in breast cancer, the morphology-based assay RNA ISH to detect the expression of EBER was employed. Very few cases turn out to be positive by this assay and in some positive cases, the reactive cells are lymphocytes rather than tumor cells. In contrast to conventional PCR, the use of Real-Time PCR has a number of advantages including improved specificity, decreased contamination and quantitative results. We have developed this assay and it has been applied to a few cases.
KEY RESEARCH ACCOMPLISHMENTS

- Established PCR assays for 6 EBV genes including one for defective viruses.

- Established EBER in situ hybridization for localization of EBV infected cells.

- Assayed 100 of USA cases, 63 of Kuwaiti cases and 40 of Indian cases of breast carcinoma for EBV.

- Developed Real-Time PCR assay for the EBNA1 region and also an assay for the defective EBV.

- Organized a data base for the experimental findings.
REPORTBLE OUTCOMES:

The study from this period generated an abstract titled “Epstein-Barr virus and breast cancer” and presented in the “Era of Hope – Department of Defense Breast Cancer Research Program meeting, 2002”. See appendices
CONCLUSIONS:

We tested 203 primary invasive breast cancers as well as 30 non-neoplastic tissues adjacent to the tumors from 3 different geographical regions by amplifying EBV DNA region flanking the BZLF-1 gene, 30 cases from the USA which have both tumor and benign tissues were also tested for 3 other regions of EBV genome by PCR (see table 2 for primer sequences). These conventional PCR data showed that using BZLF-1 alone, we could detect EBV positivity in 5% of 63 fresh frozen tissues from Kuwait, 40% and 55% of paraffin embedded tissues from India and USA, respectively. 30 USA cases tested by PCR on 4 different EBV regions showed 63% positivity in tumors and 30 % in benign tissues. However, the correlation among the primer sets used was poor (figure 1 and 2). This maybe due to the very low copy number of EBV present in the tissues and some of the tissues may have partially deleted EBV genome (19,20). Sixbey JW and his co-workers reported that they successfully amplified sequences that span abnormally juxtaposed BamH1 W and Z fragments characteristic of defective heterogeneous (het) EBV DNA from 31% and 33% of EBER-positive and negative Hodgkin's disease, respectively. This may be true in breast cancers.

The EBER ISH was performed on 70 paraffin embedded sections from India and USA. All, but 1 sample from the USA, including those that were PCR positive, failed to show expression of EBERs in tumor cells. Two USA samples showed some staining of infiltrating lymphocytes. See Figure 2. and Table 2. These data suggest that the incidence of and/or the viral load of EBV associated with breast cancers may be geographically variable and there is a discrepancy between the PCR and ISH assays. Part of the discrepancy may be due to the detection of EBV by PCR on infiltrating lymphoid cells. However, the possibility of the presence of partially deleted EBV in tumor cells that failed to express EBERs needs to be explored by further studies (21).

These data suggest the incident of EBV associated with breast cancer is higher in the USA than the other two regions. This finding needs to be confirmed for a firm conclusion; however, some literature reported breast cancer risk is associated with “delayed” primary Epstein-bar virus infection (24), which is more frequent in developed countries.

These data also suggest that the high positivity of EBV in breast cancer by conventional PCR may lack specificity.

We will explore the role of Real-Time PCR in resolving some of these uncertainties in the future. In contrast to conventional PCR, Real-Time PCR should improve specificity by using a sequence-specific probe in the reporting system (22). Since the PCR is in a
closed system, it will avoid cross contamination which is a major concern in experiments involving amplification of viral genomes. We can also obtain the copy numbers of EBV genome present in the sample and hence have a good estimate of the level of infection present. We have developed this technique and have applied it to a few cases.

In an attempt to further define the cellular localization of EBV in breast cancer, morphology-based assays such as DNA in situ to detect EBV genome in addition to immunohistochemistry to assess the expression of latent protein LMPs and/or EBNAs will be established and applied to the study.

Laser capture microdissection [LCM] may also be used in this study (23). When combined with real–time PCR technique, it should provide a reliable mean of assessing the distribution of EBV in breast cancer. Our laboratory is experienced in the use of LCM and would not anticipate any technical problems in using it for this project.
REFERENCES

EPSTEIN-BARR VIRUS AND BREAST CANCER
Guanzi Zhou, Kavita Patel, William W. West, Clemensinsia Rao, Labinda Temrin, Kishor G Bhatia, Wing C. Chan
Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-6495
and King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia

Abstract
We collected 100 cases of invasive breast carcinoma, as well as 30 non-invasive ductal adjacent to the tumor for studying the evidence of Epstein-Barr virus (EBV)-infected. DNA was extracted from tissue samples using the DNA extraction kit. Immunohistochemical techniques were performed on 30 cases including both breast and benign tissues, using antibodies against the BZLF1, LMP1, BRLF1 and EBNA-3C genes. Monoclonal anti-EBV antibodies were used in the 30 cases. In 22 cases, there were positive for at least one set of genes (3 cases were positive for all), indicating that EBV-positive tissue is present. EBV infection is associated with breast cancer. EBV infection may provide an advantage for the proliferation of the malignant breast cells. EBV infection is associated with breast cancer. EBV infection may provide an advantage for the proliferation of the malignant breast cells. The viral genome of EBV can be detected in breast cancer tissue. EBV infection is associated with breast cancer.

Figure 1: EBER-1 in situ hybridization in positive control and breast cancer sections. (A) shows strong nuclear staining in a paraffin-embedded lymphoma cells. (B) Case 019 shows nuclear positivity in the infiltrating lymphocytes. (C) Positive staining was detected in focal tumor cells (case # 170).

1 2 3 4 5 6 M 1 2 3 4 5 6 M 1 2 3 4 5 6 7

Figure 2: PCR amplification of BZLF1 (B) and LMP1 (D) using DNA from breast cancer tissue (lane 1-4). The PCR product was detected in breast cancer tissue. The PCR products were of the expected size.

Figure 3: Amplification plot of real-time PCR of EBNA-3A (A) from cDNA samples containing EBV DNA (50000 or 5000 copies per sample) and EBNA-3C (B) from cDNA samples containing EBV DNA (50000 or 5000 copies per sample). EBV DNA was detected in breast cancer tissue.

Table 1. Summary of EBV-positive breast cancer by PCR and EBER in situ hybridization

Sample	EBER-1	BZLF1	LMP1	EBNA-3C	EBNA-3A	EBER-1+ BZLF1	EBER-1+ LMP1	EBER-1+ EBNA-3C	EBER-1+ EBNA-3A	EBER-1+ BZLF1+ LMP1	EBER-1+ BZLF1+ EBNA-3C	EBER-1+ BZLF1+ EBNA-3A	EBER-1+ LMP1+ EBNA-3C	EBER-1+ LMP1+ EBNA-3A	EBER-1+ EBNA-3C+ EBNA-3A	EBER-1+ BZLF1+ LMP1+ EBNA-3C	EBER-1+ BZLF1+ LMP1+ EBNA-3A	EBER-1+ BZLF1+ EBNA-3C+ EBNA-3A	EBER-1+ LMP1+ EBNA-3C+ EBNA-3A	EBER-1+ BZLF1+ LMP1+ EBNA-3C+ EBNA-3A		
Case 1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Case 2	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Case 3	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Case 4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

NA: not available; +: positive in lymphocytes; CT: positive in tumor cells

Conclusions
EBV does present in a small subset of breast carcinomas, however, the high PCR positivity is largely associated with breast infiltrating lymphocytes.

There is a discrepancy between the PCR and EBER assays.

Acknowledgment
The U.S. Army Medical Research Material Command under DAMD17-96-1-8940 (to WCC) supported this work.

Dr. Wing C. Chan & Colleagues
988092 Nebraska Medical Center
Omaha, NE 68198-6495
julieb@unmc.edu phone=402-913-4345