Low Melting Salts

1 Greg Drake, Tommy Hawkins, Adam Brand, Milton McKay, Leslie Hall
2 Keri Tollison, Ashwani Vij, Ismail Ismail, Greg Warmoth, Sarah Sabowski

1 Air Force Research Laboratory (AFMC)
AFRL/PRSP
10 East Saturn Blvd.
Edwards AFB, CA 93524-7680

2 ERC
10 E. Saturn Blvd.
Edwards AFB, CA 93524-7680

Approved for public release; distribution unlimited.
MEMORANDUM FOR PRS (In-House/Contractor Publication)

FROM: PROI (STINFO)

✓ Greg Drake (AFRL/PRSP); Tommy Hawkins (AFRL/PRSP); Kerri Tollison (ERC), et al., “Low Melting Salts”

2003 JANNAF PDCS Meeting
(Chattanooga, VA, 22-27 Mar 2003)
(Deadline: 03 Mar 2003)

(Statement A)
Low Melting Salts

Greg Drake, Tommy Hawkins, Kerri Tollison#, Adam Brand, Milton McKay, Leslie Hall, Ashwani Vij#, Ismail Ismail#, Greg Warmoth#, Sarah Sabowski#

AFRL/PRSP and #ERC, Inc.
10 East Saturn Boulevard
Air Force Research Laboratory
Edwards Air Force Base, CA 93524-7680

Summary: The synthesis and characterization of several new families of low melting salts was carried out. 4-amino-1,2,4-triazole was alkylated in the N(1) position of the 1,2,4-triazole ring, resulting in 1-R-4-amino-1,2,4-triazolium salts, where R = methyl, ethyl, propyl, isopropyl, butyl, methylcyclopropyl, allyl, and 2-ethanol. These starting salts were metathesized with silver salts of nitrate, perchlorate, and nitrocyranamide making large families of new salts with low melting points and high decomposition onset temperatures.

Introduction

Research in the use of low melting salts based on alkyl 1,3-N, N'-substituted imidazolium cations has increased almost exponentially in the last five years.1-3 Scientists have used them as novel solvents in a wide array of organic synthesis4-6, catalytic work7,8 and separations9. Low melting salts offer several inherent advantages over neutral materials, including negligible vapor pressure, wide liquid ranges, and unique solvating power. The physical properties of the ionic liquid can be tailored by judicious choice of the pendant alkyl side chains of the substituted imidazolium cation ring as well as by the nature of the paired anion. However, di-alkyl substituted imidazolium rings suffer from being fuel rich, having relatively poor heats of formation, and low densities.

At AFRL, we have been investigating low melting salts for several years and have discovered similar physical properties with a different, more desirable, parent heterocyclic ring system, 4-amino-1,2,4-triazole. This heterocycle has a high positive heat of formation, significantly higher density, and less fuel content than that of the five-membered, two nitrogen atom imidazole ring. The chemistry used herein is not novel, it was first described by pharmaceutical workers over a decade ago10 in the search for
making pure 1-substituted-1,2,4-triazole systems. We have improved and expanded this
process to make a large family of new, high purity 1-R-4-amino-1,2,4-triazolium bromide
salts in essentially quantitative yields. Subsequent metathesis with the appropriate silver
salts led to several new families of nitrate, perchlorate and nitrocytanamide ionic liquids.
These materials were characterized by vibrational spectroscopy, multinuclear nmr,
elemental analyses, DSC studies, and initial impact and friction studies.

General Synthesis and Characterization

Previously, a communication reported the alkylation 4-amino-1,2,4-triazole
forming 1-alkyl-4-amino-1,2,4-triazolium salts with subsequent diazotization of the N-
amino group to form desired 1-substituted-1,2,4-triazoles.\(^{10}\) However, the intermediates
were not focused upon since the real effort was at the pharmaceutically active 1-
substituted-1,2,4-triazoles.\(^{11,12}\) We realized that the intermediate salt materials have a
similar shape to the well known class of ionic liquids based upon 1,3 di-substituted
imidazolium cations. These new materials would make a highly desirable family of
precursor halide salts that could open the door to many new families of energetic salts.
We improved the reaction scheme by increasing the mole ratio of alkyl halide to greater
than 2:1 mole ratio to 4-amino-1,2,4-triazole, which was much greater than the 1:1 or 1:1
mole ratio previously reported, and this also facilitated better precipitation of the product
salts from the reaction solution. A large family of new 1-substituted-4-amino-1,2,4-
triazolium cations have been synthesized and fully characterized. The synthesis of all of
the materials was accomplished by the reaction of excess n-bromoalkane with 4-amino-
1,2,4-triazole (< 2:1 mole ratio) in acetonitrile. The product salts precipitated from the
reaction mixture upon cooling. (Reaction 1)

![Chemical structure](image)

Reaction 1. The reaction of 4-amino-1,2,4-triazole with excess alkyl halide to form the
desired 1-R-substituted-4-amino-1,2,4-triazolium bromide.
Most of the materials precipitated as oils initially but could be induced to solidify by complete removal of the solvent, followed by recrystallization from hot acetonitrile or isopropyl alcohol. Alkyl side chains including methyl, ethyl, n-propyl, isopropyl, n-butyl, methylecyclopropyl, 2-propenyl(allyl), 2-hydroxyethyl were synthesized via this reaction pathway. The two fold symmetry of the 4-amino-1,2,4-triazole ring was broken by substitution in the one position of the triazole ring, resulting in the emergence of two separate peaks of equal intensity for both the C(3) and C(5) atoms of the 1,2,4-triazole rings as well as for their attached protons in the 1H and 13C nmr spectra of the crystalline salts. Similarly, these 1H and 13C peaks were shifted downfield in their respective spectra as well as a shift downfield of the N-amino NH$_2$ protons from those observed in the starting, neutral heterocycle. This can be attributed to the loss of electron density via quaternization of N(1) atom of the 1,2,4-triazole ring and the formal +1 charge upon the entire cation as a whole.$^{13-18}$ Typical 1H and 13C spectra are displayed in Figure 1.

![Figure 1. 1H (left) and 13C(right) of 1-n-butyl-4-amino-1,2,4-triazolium bromide.](image)

Since several of the bromide salts were highly crystalline, single crystal x-ray diffraction studies were carried out on the 1-ethyl-, 1-isopropyl, and 1-methylecyclopropyl substituted 1,2,4-triazolium salts revealing the expected 1-substituted-4-amino-1,2,4-triazolium
cation. In the case of the 1-ethyl- and the 1-methylcyclopropyl- substituted rings, the expected strong hydrogen bond interactions between the N-amino hydrogen atoms of the 4-amino-1,2,4-triazole ring and the bromide anion are observed with close interatomic distances in the crystal lattice. However, in the case of the 1-isopropyl-4-amino-1,2,4-triazolium bromide structure, the bromide anion is sandwiched between the forks of two isopropyl chains of two adjoining 1-isopropyl-4-amino-1,2,4-triazolium cations in the lattice with no significant hydrogen bonding noted. (Figure 2,3,4) This is somewhat surprising and cannot be easily explained. Further crystal structure investigations are ongoing with the rest of the series to see if there are any trends with the expected hydrogen bonding between the N-amino hydrogen atoms and the bromide anion in the crystal lattice.

Figure 2. Single crystal x-ray diffraction structure of 1-isopropyl-4-amino-1,2,4-triazolium bromide showing crystal lattice interactions between the cation and the anion.
Figure 3. Single crystal x-ray diffraction structure of 1-ethyl-4-amino-1,2,4-triazolium bromide showing crystal lattice interactions between the cation and the anion.

Figure 4. Single crystal x-ray diffraction structure of 1-n-propyl-4-amino-1,2,4-triazolium bromide showing crystal lattice interactions between the cation and the anion.
The bromide salts were reacted with either silver nitrate, silver perchlorate, or silver nitrocyanamide in simple metathesis reactions in polar solvents gave clean products after the silver bromide was carefully filtered away. (Reaction 2) Most of the salts were liquids at ambient temperatures, with melting points well below room temperature. All materials were stable at room temperature and showed no signs of decomposition even after over one year of storage at ambient temperatures.

![Chemical structure diagram]

Where $X = \text{NO}_3^-, \text{ClO}_4^-, \text{or N(NO}_2)(\text{CN})^-$

Reaction 2. The metathesis of 1-R-1,2,4-triazolium salts.

Vibrational spectra revealed the presence of hydrogen bonding in the C-H and N-H stretching region (3300-2900 cm$^{-1}$) making absolute interpretations difficult. The corresponding energetic anions of the salts (nitrate19,20, perchlorate21, and nitrocyanamide22) were easily identified by their characteristic “fingerprint” bands in their respective infrared and Raman spectra. Despite repeated efforts at crystallization in several polar solvents, either by chilling extremely concentrated solutions or layering of concentrated, highly polar solutions with solvents such as diethyl ether, no reasonable crystals of the any of the energetic salts have been obtained for single crystal x-ray diffraction studies.

As expected all of the 1-substituted-4-amino-1,2,4-triazolium salts are weakly acidic via the equilibrium of the loss of a N-amino NH$_2$ proton forming a zwitterionic species, 1-substituted-4-imido-1,2,4-triazole. (Reaction 3) Typically the pH of aqueous solutions was around 5 for all of the studied materials. Viscosity was temperature dependent with all of the 1-substituted-4-amino-1,2,4-triazolium salts and was also very dependent on the corresponding paired anion. The nitrate salts were the most viscous.
Reaction 3. Weak acid equilibrium for 1-alkyl-4-amino-1,2,4-triazolium cation which lies far to the left, pK_a approx. 7.0×10^{-5}.

followed closely by the perchlorate salts, both anions have relatively high symmetry, while the nitrocyramamide salts were the least viscous, and nitrocyramamide is a low symmetry anion. Work in the near future will attempt to measure the absolute viscosity values of the energetic salts, and try to make correlations with chain length as well as cation anion interactions.

Thermal and Initial Safety Studies

Differential Scanning Calorimetry (DSC) studies revealed the high stability of all of the energetic salts. In many of the salts, a definite melt point could not be obtained, and often only a glass transition could be observed. This was noted even after many cooling/warming cycles (-100 °C to 50 °C) in the DSC cell. This behavior has been noted before in many other ionic liquids\(^1\)\(^-\)\(^3\), and can often be attributed to poor fit between the cation and anion of the salt. Figure 5 demonstrates a typical DSC study representative of the new energetic ionic liquids obtained, illustrating the low melting point as well as the high decomposition temperature onset.

In Tables 1, 2, and 3, the melting (often glassing point), and the decomposition onsets of the new nitrate, perchlorate, and nitrocyramamide salts have been listed respectively. With the relatively high decomposition onsets, all materials had excellent thermal stability losing significantly less than 1% mass loss per day at 75 °C.
Figure 5. DSC of 1-n-propyl-4-amino-1,2,4-triazolium nitrate.

<table>
<thead>
<tr>
<th>1-substituted-4-amino-1,2,4-triazolium nitrate salt</th>
<th>Melting point (°C)</th>
<th>Decomposition onset (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-methyl</td>
<td>54</td>
<td>185</td>
</tr>
<tr>
<td>1-ethyl</td>
<td>5</td>
<td>185</td>
</tr>
<tr>
<td>1-n-propyl</td>
<td>34</td>
<td>190</td>
</tr>
<tr>
<td>1-n-butyl</td>
<td>-10</td>
<td>190</td>
</tr>
<tr>
<td>1-ethanol</td>
<td>10</td>
<td>180</td>
</tr>
<tr>
<td>1-(2-propenyl)-</td>
<td>10</td>
<td>165</td>
</tr>
<tr>
<td>1-methylcyclopropyl</td>
<td>56</td>
<td>190</td>
</tr>
</tbody>
</table>

Table 1. Measured melting/decomposition onset temperatures of the nitrate salts.

<table>
<thead>
<tr>
<th>1-substituted-4-amino-1,2,4-triazolium perchlorate salt</th>
<th>Melting point (°C)</th>
<th>Decomposition onset (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-methyl</td>
<td>83</td>
<td>250</td>
</tr>
<tr>
<td>1-ethyl</td>
<td>5</td>
<td>195</td>
</tr>
<tr>
<td>1-n-propyl</td>
<td>0</td>
<td>190</td>
</tr>
<tr>
<td>1-n-butyl</td>
<td>39</td>
<td>240</td>
</tr>
<tr>
<td>1-ethanol</td>
<td>10</td>
<td>175</td>
</tr>
<tr>
<td>1-(2-propenyl)-</td>
<td>-11</td>
<td>180</td>
</tr>
<tr>
<td>1-methylcyclopropyl</td>
<td>5</td>
<td>150</td>
</tr>
</tbody>
</table>

Table 2. Measured melting/decomposition onset temperatures of the perchlorate salts.
<table>
<thead>
<tr>
<th>1-substituted-4-amino-1,2,4-triazolium nitrocyanamide salt</th>
<th>Melting point (°C)</th>
<th>Decomposition onset (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-methyl</td>
<td>11</td>
<td>180</td>
</tr>
<tr>
<td>1-ethyl</td>
<td>10</td>
<td>175</td>
</tr>
<tr>
<td>1-n-propyl</td>
<td>5</td>
<td>185</td>
</tr>
<tr>
<td>1-n-butyl</td>
<td><-10</td>
<td>175</td>
</tr>
<tr>
<td>1-ethanol</td>
<td><-10</td>
<td>175</td>
</tr>
<tr>
<td>1-(2-propenyl)-</td>
<td>-10</td>
<td>185</td>
</tr>
<tr>
<td>1-methylcyclopropyl</td>
<td>-11</td>
<td>195</td>
</tr>
</tbody>
</table>

Table 3. Measured melting/decomp. onset temperatures of the nitrocyanamide salts.

Some of the salts were tested for their sensitivity to impact and friction. Impact sensitivity was determined on an Olin-Mathieson style drop weight tester. For friction sensitivity, a Julius Peters instrument was employed with ceramic pins and plates. Some general trends were noted and follow the expected nature of the corresponding anion. Most of the nitrate salts are relatively insensitive to impact and friction, the perchlorate salts being significantly more sensitive, while most are still reasonable to work with, and finally the nitrocyanamide salts which were extremely sensitive to impact and friction and should be handled with extreme caution.

Conclusions
Several new families of low melting salts based on 1-alkyl-substituted-4-amino-1,2,4-triazolium cations were synthesized and well characterized using a variety of techniques. These families of materials all share desirable low melting points yet have relatively high decomposition onsets which make many of these materials interesting for a wide array of uses. Initial safety testing revealed a wide array of relatively insensitive nitrate salts to the highly sensitive nitrocyanamide salts.
Acknowledgements
The authors would like to thank Mr. Mike Huggins (AFRL/PRS), Dr. Ronald Channell
(AFRL/PRSP), and Dr. Mike Berman (AFOSR) for financial support as well as for their
encouragement and patience for these efforts. One of the authors (S.S.) is indebted for her
summer ACS fellowship for outstanding high school scientists. One of the authors
(G.D.) would like to thank Dr. Tommy Highsmith (ATKThiokol) and Dr. Jeff Sheehy
(Univ. of Alabama at Huntsville/NASA Marshall) for their support, patience, helpful
discussions and friendship.

References Cited
1. K.R. Seddon “Room Temperature Ionic Liquids: Neoteric Solvents for Clean
Catalysis” Kinetics and Catalysis 1996, 37, 693.
2. T. Welton “Room Temperature Ionic Liquids. Solvents for Synthesis and
3. J. S. Wilkes “A short history of ionic liquids- from molten salts to neoteric
4. Singer, R. D. ; Hemeon, I. ; Green, L. “1-ethyl-3-methylimidazolium
halogenoaluminate ionic liquids as reaction media for the acylative cleavage of
M. ; Seddon, K. R. “Alkylation Process” U.S. Patent # 5,994,602, Nov. 30,
1999.
7. Chauvin, Y. ; Mussmann, L. ; Olivier, H. “A Novel Class of Versatile Solvents
for Two-Phase Catalysis: Hydrogenation, Isomerization, and Hydroformylation
of Alkenes Catalyzed by Rhodium Complexes in Liquid 1,3-Dialkylimidazolium
of New Ionic Liquids in Two-Phase Catalytic Hydrogenation Reaction by
Rhodium Complexes” Polyhedron 1996, 15, 1217.

