Award Number: DAMD17-01-1-0268

TITLE: Breast Cancer in African American Women: Molecular Analysis of Differences in Incidence and Outcomes

PRINCIPAL INVESTIGATOR: Agnes Day, Ph.D.
Doctor John Stubbs
Doctor Rina Das
Doctor Marti Jett

CONTRACTING ORGANIZATION: Howard University
Washington, DC 20060

REPORT DATE: October 2002

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Title: Breast Cancer in African American Women: Molecular Analysis of Differences in Incidence and Outcomes

Author(s): Agnes Day, Ph.D.
Doctor John Stubbs
Doctor Rina Das
Doctor Marti Jett

Performing Organization Name(s) and Address(es):
Howard University
Washington, DC 20060
E-Mail: aday@fac.howard.edu

Sponsoring/Monitoring Agency Name(s) and Address(es):
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Supplementary Notes:
Original contains color plates. All DTIC reproductions will be in black and white.

Abstract:
Breast cancer mortality is higher among West African and African American women than it is among Caucasian women in the United States, but the reasons for these differences are not known. To devise effective methods for preventing breast cancer, we must understand which factors alone or in combination raise the risk of triggering a tumor, and which factors protect against the disease. Specific goals for the proposed research are to: (1) identify and validate the risk factors that can be modified to reduce breast cancer risk, and (2) achieve a better understanding of how various genetic and environmental factors interact to affect the risk of breast cancer. To reach these goals, we need a multidisciplinary training program and greater collaboration among investigators from diverse disciplines and institutions.

The goal of the current proposal is to obtain the necessary training needed to create an atmosphere at the Cancer Center at Howard University as a leading breast cancer training institute. It is also critical that multidisciplinary training take place so that individuals can participate effectively in multi-investigator collaborations that bring basic research discoveries to the bedside. Breast cancer research is increasingly becoming a multidisciplinary endeavor that requires a strong training program and better communication among investigators.

Appropriate animal models and models of human mammary cell and organ culture are urgently needed to accelerate progress in breast cancer research. This realm of research will require resources for necessary training, the development of animal models, technology development and access, and collaboration between Walter Reed Army Institute of Research and the Howard Cancer Center in diverse disciplines. Workshops in animal handling techniques by Division of Veterinary Medicine, Walter Reed Army Institute of Research will be provided for Howard investigators.

Subject Terms:
Normal Breast biology; Training programs; animal models; molecular biology of breast cancer; grantsmanship

Security Classification:
Report: Unclassified
This Page: Unclassified
Abstract: Unclassified

Number of Pages: 197
Price Code: 289-102
(1) FRONT COVER ... 1
(2) SF298, REPORT DOCUMENTATION PAGE 2
(3) TABLE OF CONTENTS .. 3
(4) INTRODUCTION .. 4
(5) BODY .. 5
 a. Key accomplishments / relationship to “Statement of Work”
 b. Reportable outcomes / Products
 i. Honors and Awards
 ii. Publications and presentations
 iii. Certifications
 iv. Workshops
 v. Oncology course syllabus
 vi. Funding applications submitted
 vii. Recruitment of personnel
 viii. Database for tracking training/collaboration outcomes

(6) CONCLUSIONS .. 8
(7) APPENDIX .. 9

Documentation of accomplishments:

i. Publications and presentations
ii. Certifications
iii. Workshops
iv. Collaborative Research Projects
v. Oncology course syllabus
vi. Funding applications submitted
vii. Database for tracking training/collaboration outcomes
Introduction

The peak incidence of breast cancer in African Americans and West Africans occurs around the premenopausal period while it occurs postmenopausal period in whites. Also, unlike white women, West-African and African-American women present late for treatment with a greater cancer burden and consequently lower survival rates. Breast cancer mortality is higher among African American women than among white women in the United States. The reasons for these racial differences are still not very clear, therefore we would aim to study some of these differences at the molecular and cellular level in these two different populations.

To devise effective methods for preventing breast cancer, we must understand which factors alone or in combination raise the risk of triggering a tumor, and which factors protect against the disease. Specific goals for the proposed research are to: (1) identify and validate the risk factors that can be modified to reduce breast cancer risk, and (2) achieve a better understanding of how various genetic and environmental factors interact to affect the risk of breast cancer. To reach these goals, we need a multidisciplinary training program and greater collaboration among investigators from diverse disciplines and institutions.

The goal of the current proposal is to obtain the necessary training needed to create an atmosphere at the Cancer Center at Howard University as a leading breast cancer training institute. Opportunities to acquire certain relevant skills are not readily available for HU faculty, postdoctoral staff and students at various stages in their training so a partnership has been established with WRAIR to fill this need.

There are several aspects of breast cancer research offered by Walter Reed Army Institute of Research that will be very important to our progress toward becoming a Breast Cancer Center at Howard University.

a) The first of these is a skill lacking in most laboratories addressing breast cancer; detailed pathological and biological studies of normal mammary glands at different stages of development using whole mouse mammary gland organ cultures. Dr. Barbara Vanderhaar developed this technique and she and Dr. Rina Das have used it for the past 5 years. The two of them will conduct training workshops utilizing those systems. In addition to the whole organ cultures, eventually we plan that we might use partial organ cultures of human tissue samples.

b) Differential display PCR, gene array technology, and other molecular biology methods have been used extensively in Dr. Jett’s laboratory over the past several years. She and Dr. Das have become expert in the identification of genes differentially expressed using these systems. The techniques are used constantly in their laboratories and will provide an ideal setting in which to utilize these novel methods.

c) Use of animals in breast cancer research is frequently an important extension of testing ideas. The Howard University Cancer Center does not have an animal facility at the present time. Therefore, the extensive facilities and training offered by the Walter Reed Army Institute of Research will provide opportunities for investigators to participate in this important aspect of research. Dr. Jett has extensive experience writing animal use protocols and has used rodents, swine and non-human primates in her research and will advise in all aspects of animal use proposals. In addition, the staff in the Division of Veterinary Medicine will permit us to join classes designed to provide hands-on experience for learning procedures and understanding regulations in the use of any type of animal desired.
d) The main objective of this program is to provide training to all investigators at the Howard Cancer Center who would like to have individual experience in strategies for preparation and writing grant proposals.

Drs. Agnes Day and John Stubbs will be the lead faculty for this training at the Howard Cancer Center. The postdoctoral associates working with them, graduate students and other faculty may participate in this training process. Dr. Stubbs will focus his studies on the extracellular matrix involvement in breast cancer, Dr. Day will direct her efforts toward studies of regulation of metastasis and Drs. Das and Jett will focus on silencing of transcriptional genes related to breast cancer. These three efforts will eventually aim to utilize tissues from African-American women.

BODY

Key accomplishments and reportable outcomes: The DOD funded HBCU/MI Partnership Training award entitled “Breast Cancer in African American Women: Molecular Analysis of Differences in Incidence and Outcomes” has had a very auspicious beginning. Our initial goals for year 01 were two-fold:

- To attract pre-doctoral students, post-doctoral fellows and faculty to breast cancer research via introductory symposia, hands-on workshops, specialized training and research opportunities.
- To perform breast cancer research at both sites, Howard University Cancer Center (HUCC) and Walter Reed Army Institute for Research (WRAIR) which would add to the knowledge base and ultimately lead to the understanding, cure and/or prevention of this disease.

Towards these goals, we have accomplished the following:

Administrative:

- A Cooperative Research and Development Agreement (CRADA) has been established between Howard University and WRAIR for exchange of funds between the two institutions, with clearly defined SOWs for each Institution’s participation.
- A full time Research Associate was hired at HUCC. A part-time administrator was hired at WRAIR to assist with the program coordination between sites.
- An advertisement for two full time postdoctoral positions has been created and the search continues. Various scientific journals and associations have been used to advertise for this position.
- Monthly meetings were implemented between the key investigators and coordinator at HUCC and WRAIR. These meetings are supplemented with e-mail and Tele-conferencing.
- An Access-based database has been created to track all individuals who are enrolled in this training program, including their areas of interest.
- HUCC has reorganized research labs around organ systems. Dr. Day is leader of the Breast Cancer Working Group. This allows for cross-fertilization of ideas and more interdisciplinary and collaborative research.

Introductory Symposia and Workshops:

- “Animal Models of Breast Cancer” Workshop – June 19, 2001. An overview of the goals and structure of the training program, introductory remarks from members of WRAIR and HU involved in the program, presentations from Deans of Research, Chairs of IACUC from HU and WRAIR and invited presentations by established cancer investigators from NCI, NIH and NIDDK, NIH and WRAIR. Presentation topics included animal models of breast cancer, mammary gland development, growth regulatory mechanisms of hormones during normal
mammary gland development and tumorigenesis, the use of experimental mouse genetics to understand mammary gland development, transgenic mouse models and In vivo Imaging of breast cancer in animals. Site of Performance-HUCC (105 participants).

A program book with abstracts and biographies of all speakers was created and disseminated to all participants.

- **"Conducting Research Responsibly" Satellite Teleconference-September 13, 2001.** Topics on human subjects research, conflict of interest, research misconduct and mentorship were discussed. Panel members included representatives from Office of Human Research Protection, NIH; American Association of Medical Colleges; Office of Research Compliance and Assurance, Veterans Administration; Office of Research Integrity, HHS and American Association for the Advancement of Science. Site of Performance-HUCC. (25 participants)

Hands-on Workshops
- **"Rodent Handling and Techniques" Workshop-July-September, 2002.** A total of 4 graduate students, 1 postdoctoral fellow and 3 faculty from Howard University have taken the 5-hour workshop offered at WRAIR. The workshop included lectures on various types of rodents used in research; and humane methodology and techniques used in injecting, bleeding and euthanising experimental animals. The lecture was followed by laboratory exercises in which each participant worked with mice and rats to perfect the various techniques described in the lecture. A waiting list for this workshop is currently at 8 HU individuals (students and faculty). WRAIR has offered to hold a workshop for HU individuals at a time of our choosing, since the class size is limited. Site of performance-WRAIR.
- **Mammary Gland Dissection Workshop – September 2002.** Hands-on laboratory procedures on dissection and staining of virgin, pregnant, lactating and involuting mammary gland to visualize normal mammary gland development. This workshop will be offered quarterly two HU faculty have participated. Site of Performance- WRAIR.

Newly Established Collaborative Research Projects
The projects listed below are in the formative phase and will be implemented in year 02.

- Dr. Rina Das (WRAIR) – Dr. Aleayehu Kassa (HUCC) Selective Estrogen Receptor Modulators and Depression in a Mouse Model of Breast Cancer. This is a recently established collaboration that is still in the planning phase. Dr. Kassa has taken the rodent handling and techniques workshop and is currently preparing a mini proposal on the use of WRAIR’s animal models and in vivo imaging for this project.
- Dr. Rina Das (WRAIR) – Dr. John Stubbs (HUCC) Use of inducible vectors along with luciferase vectors to study the effect of bone sialoproteins on metastasis of breast cancer in animal models.
- Dr. Marti Jett (WRAIR) – Dr. Agnes Day (HUCC) Microarray analysis of selected genes in normal and cancerous cell lines grown on plastic-vs- matrigel.
- Dr. Rasha Hammamieh (WRAIR) – Dr. Robert Canada (HUCC) Effects of anti-cancer agents on normal and cancerous breast organ cultures.

Dr. Day’s research progress: Research has been focussed on the expression of connective tissue protein genes in normal, transformed, primary cancerous and metastatic cancer cells. Initial studies have shown differential expression of these genes within cancer types (breast); between cancer types (breast-vs-colon) and between in situ sites (solid tumors-vs- ascites or pleural effusion. (See Appendix: Era of Hope Abstract, 2002). These experiments will be repeated after growing cells on
a basement membrane substrate (matrigel). Comparisons will then be performed between clinical samples from African American patients and the cell lines currently in use. Microarray analysis of gene expression in current cell lines has begun, and will also be compared to clinical samples, when available.

Students Trained:
All of the graduate students listed below have been supported-in-part by this training program. Most have participated in all of the workshops and all are involved in research projects involving cancer.
- Elizabeth Nelson, 3rd year graduate student (Microbiology). Gene regulation in Breast Cancer.
- Tamara Tatum-Broughton, 4th year graduate student (Microbiology). Gene expression in cervical and ovarian cancer.
- Douglas F. White, 2nd year graduate student (Microbiology). Molecular analysis of skin cancer and heritable diseases.
- Alesha Dobbins, 4th year graduate student (Biochemistry). Enhancement of SP6 Polymerase production for molecular biological use.
- Gay Morris, 5th year graduate student (Biology). Molecular analysis of lymphatic and breast cancer.

Grants Submitted

Promotions, Honors and Awards:
- **Agnes A. Day and John T. Stubbs:** American Association for Cancer Research, HBCU faculty Scholar Travel Award to attend the “metalloproteases, Extracellular Matrix and Cancer” meeting, Oct 9-11, 2002. Hilton Head, SC.
- **Agnes A. Day.** Associate Director for Basic Research, HUCC. March 2001-Present.
- **Rasha Hammamieh.** Scientist at WRAIR. American Society for Biochemistry and Molecular Biology, Scholar Travel Award and support to attend the Experimental Biology Meeting, April 2002 in New Orleans, LA.

Presentations

Courses:
• Oncology. This is a multidisciplinary graduate level course, which will be offered through the Microbiology department. Topics include cancer biology, genetics of cancer, viral vectors in cancer, oncogenes, hormonal regulation of cancer, and cancer epidemiology. Lecturers will be from Howard University, Johns Hopkins University, Georgetown University, Walter Reed Army Institute for Research, and the National Cancer Institute. The course is designed for 2 semesters, 4 credit hours each. It will be open to undergraduates, graduates, postdoctoral fellows, medical students, medical residents and faculty.
• Molecular Biology. The current molecular biology course offered within the Department of Microbiology will be enhanced through the addition of didactic lectures and/or laboratories on the following subjects: Gene array analysis; real time PCR; DNA methylation analysis; prokaryotic and eukaryotic expression vectors; stable eukaryotic transformation and selection; and phage display analysis of protein-protein interactions.

Tissue Repository: This facility has been established in the HUCC and will provide a source of cancerous tissue from breast, colon, prostate and other organs of African Americans and other ethnic groups. An individual with a strong background in cell and molecular biology and biotechnology is being hired to coordinate this laboratory. The HUCC Director’s financial support of the Laboratory Coordinator and the dedication of two laboratories for the preparation and storage of these tissues evidence the commitment to this training program.

Conclusions
Excellent progress has been made towards fulfilling the specific aims outlined in the first year’s statement of work. To fully utilize the training opportunities, offered by this program, in a logical progression, some of the goals designated for year 02 were re-scheduled to year 01, and vice versa. We had to enroll participants into the Animal Handling course first as per WRAIR requirement, which will then allow them to carry out other animal related research and training activities at WRAIR. We envision year two being equally productive in recruiting faculty and students for participation in other planned workshops, which will consist of new topics for established trainees (in vivo imaging, SCID mice with xenografts, Biostatistics and experimental design), and a continuation of the animal handling and mammary gland workshops and collaborative research projects. Year 02 will focus on basic research performance within the established collaborations augmented by animal use protocol preparation, grant writing workshops, and research proposal submissions for external funding.
APPENDIX

Documentation of accomplishments:

i. Publications and presentations
ii. Certifications
iii. Workshops
iv. Collaborative Research Projects
v. Oncology course syllabus
vi. Funding applications submitted
vii. Database for tracking training/collaboration outcomes
Late-Breaking Abstracts

New Orleans, LA
various chemotherapeutic drugs. Using the 041 cells as our negative control, FACS analysis was carried out in both samples. The sample with induced DNA damage as well as samples treated with Mitomycin C (MC) and Zeocin (Zeo) for the time points of 4 hrs., 24 hrs., and 48 hrs. TRS-3 (ctrl) samples showed an overall increased level of apoptosis with and without DNA damage. However, the changes in apoptosis at G1 arrest induced by the addition of MC and CPT were the same for both cell lines. Zeocin causes a significant G2 in the absence of p53 as well as G2 arrest in TRS-7 cells with induced p53. This preliminary data show that these drugs can cause apoptosis as well as growth arrest independent of p53.

LB160

cDNA Library Construction and Library Transfer Using Gateway Technology

**Barry Robert Niederlich**, Jon D. Chesnau, Mark R Smith, Larissa Kamcikova, Chris E Gruber, R&D, Invitrogen Inc, 1600 Faraday Ave, Carlsbad, CA 92008, **Invitrogen Inc, Carlsbad, CA**

Invitrogen's Gateway™ Technology is a versatile and efficient system for cloning DNA based on a lambda phage recombinase that can be applied in vitro to stimulate site specific (att) recombination. One application of this technology is the construction of robust directional cDNA libraries. Unlike standard expression cloning protocols, this approach does not require restriction enzyme digestion of the cDNA to create unique ends suitable for directional cloning. Construction of a library in a vector allows for efficient transfer into a variety of Destination vectors to create an expression-ready library without compromising library complexity. Primary libraries constructed with this method routinely consist of >10^7 cfu and an average insert size of >1.5 kb. Gateway™ cloning combined with the GeneRacer™ technology has also been applied to clone cap-selected cDNA and create full-length cDNA libraries.

LB161

GluT Uromodulin Promoter Drives GFP Kidney-Specific Expression in Transgenic Mice

Yee-Te Huang, Nathalie Cretien, Annie Bilodeau, Jiang Feng Zhou, Anastasia Laza, Costa N Karatzas, Nexbio Technologies Inc, 1000, Ave St Charles, Verdun, Montreal, Quebec H7V 1P5 Canada

Uromodulin is the most abundant protein in the urine of mammals. In an effort to use uromodulin promoter to target renal proteins in the urine of transgenic animals we have cloned a 1.6 kb fragment of the uromodulin (GUM) and localized the gene by FISH analysis to chromosome 21q21.1. This promoter-GFP cassettes were constructed and transgenic mice were generated in order to study the promoter's tissue specificity and GFP kidney distribution. Tissues were analyzed from three GUM-GFP transgenic lines, and analyzed by Western blotting and fluorescence microscopy confirmed that the UUM promoter drove expression of GFP specifically in the kidney. Using immuno-histochemistry analysis of kidney sections, GFP expression was found to be localized, with endogenous uromodulin protein, in the epithelial cells of the thick ascending limbs of Henle's loop (TAL) and the early distal convoluted tubule in the kidney. These results illustrate that the UUM promoter may be a useful tool to target proteins in the kidney.

LB162

Molecular analysis of connective tissue protein gene expression in various skin diseases.

Halle F. Yancey, Elizabeth Nelson, Douglas White, Matthew George, Jr., Agnes A. Day, Cancer Center, Howard University, 2041 Georgia Ave, NW, Washington, DC 20059, **Microbiology, Howard University, Washington, DC, **Biochemistry & Molecular Biology, Howard University Cancer Center, Howard University, Washington, D.C., **Microbiology, Center for Howard University, Washington, DC**

Research has shown a direct correlation between genetic defects in collagen and elastin in skin diseases such as cutis laxa (CL), pseudoxanthoma elasticum (PXE), and Ehlers-Danlos syndrome (EDS). However, the genetic status of other skin related tissue proteins (CPTs) has not been ascertained. The goal of this study was to analyze the genetic status of type I collagen, decorin, osteonectin, and fibronectin in the diseases PXE, CL, EDS, s Gerodermia pigmentosa (XP), and malignant melanomas (MM). Total RNA, genomic DNA, and proteins were extracted from each cell line. RT-PCR and western analysis determined the transcriptional status of each CPT gene. Restriction fragment length polymorphism (RFLP), single strand conformation polymorphism (SSCP), and protein truncation test (PTT) analyses of the cell lines were performed to detect possible mutations. Two dimensional gel electrophoresis was performed to analyze the protein fingerprints of the diseases. Results indicate differential transcription occurred among pathologic cell lines. RFLP and SSCP analysis demonstrated altered gene structure of several CPT encoding genes. The PTT for decorin exhibited no mutations leading to a truncated protein. The 2-D protein fingerprint of MM and XP were different from normal skin. These results indicate there may be additional genetic defects contributing to the etiology of these diseases. Research support: DOH-BCRF grant DAMD 170110266; NIH, NCI grant RO3CA86991.

LB163

Investigation of the Kinetics of DNA Unwinding by Helicase I: Overproduction of Oligonucleotide Substrates and Reaction Conditions

Peter T. Siskau, Alan J. Tackett, Steven W. Matson, Kevin D. Raney, **Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, **Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC**

Helicase I is a multi-functional enzyme required for DNA transfer in bacterial conjugation. The enzyme is encoded by the traJ gene of Escherichia coli F. The enzyme exhibits 5' to 3' helicase activity and is classified in helicase superfamily I. In order to characterize the helicase activity, conditions and oligonucleotide substrates were optimized. DNA fork substrates were designed containing a 5' and a 3' ssDNA tail adjacent to a 30 base pair duplex. The 3'-ssDNA tail was 30 nt whereas the length of the 5'-ssDNA tail varied. Unwinding of the substrate containing a 5'- ssDNA tail was faster than substrates containing 45 or 30 nt. Unwinding of the 3'-ssDNA substrate was measured under conditions of excess enzyme at 37°C by using a KinetiQuik rapid quench-flow instrument. The resulting pseudo-first order rate constant of 42.4 s^-1 corresponds to 1,270 base pairs s^-1 for the 30 base pair substrate, making Helicase I one of the fastest helicases studied to date in vitro.

LB164

In vitro mutant mapping studies of NS3 helicase of HCV

Hughmark Byrne, Alan J. Tackett, Kevin D. Raney, **Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 516, Little Rock, Arkansas 72205, **Biology and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR**

The oligomeric state of NS3, a helicase of Hepatitis C virus has been a controversial issue in the helicase field for sometime. It has been postulated to be a dimer based on X-ray crystallography, a dimer based on gel filtration assays, and an oligomer based on protein-protein cross linking assays. In order to resolve the issue, an ATPase deficient mutant was made by point mutation (DECH-ÆCH) in helicase domain II. This was purified using chromatographic techniques. A spectrophotometric ATPase assay was used to confirm lack of ATPase activity in the mutant. The binding constant (KD), determined by fluorescence polarization, was similar to the wild type NS3 protein. Furthermore, mutant NS3 did not unwind a 45-30 mer DNA substrate under both excess enzyme and steady state conditions. The observations confirm that the mutant is ATPase deficient and lacks unwinding activity. Wild type NS3 protein has been shown to unwind DNA under steady state conditions. The dominant negative effect of mutant NS3 will be tested by mixing it with wild type NS3 under steady state conditions.

PROTEIN STRUCTURE AND FUNCTION

LB165

The SCAN Dimerization Domain Defines a Novel Family of Vertebrate-Specific Zinc Finger Transcription Factors

Tara L. Sander, James R. Stone, Jenny L. Maki, Stephen C. Blacklow, **Tucker Collins**, **Department of Pathology, Children's Hospital, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, **Departments of Pathology, Brigham and Women's Hospital and Children's Hospital, **Department of Pathology, Brigham and Women's Hospital**

The SCAN domain is a conserved protein interaction motif found predominantly in C2H2 zinc finger proteins of the Kruppel type. From an extensive search of Celera and NCBI databases, we identified sixty-one unique genes in the human genome that contain a SCAN domain. Lower eukaryotes such as worm and fly do not appear to contain SCAN genes, suggesting that the SCAN family is vertebrate-specific and has undergone significant lineage-specific expansion during recent evolution. The genes for SCAN family members are distributed throughout the human genome, with clusters...
Molecular Analysis of Connective Tissue Protein Gene Expression in Various Skin Diseases

Halle F. Yanci, Elizabeth E. Nelson, Douglas F. White, Timara A. Tusun-Broughton, Matthew George Jr., and Agnes A. Day. Department of Biolog, Department of Microbiology, and Department of Biochemistry, College of Medicine, University of Alabama, Birmingham, AL 35294.

Abstract

The goal of this study was to assess the genetic status of type I collagen, desmosomes, and fibrinogens in patients with various skin diseases. The results of this analysis are presented in this paper.

Introduction

Identification of the various skin diseases

Xenopus laevis (X.X) is a large species of amphibian that is widely used as a model organism for the study of development and regeneration. The skin of X.X is characterized by a thick, keratinized layer that is rich in collagen fibers. This layer provides structural support and protection to the underlying tissues. The skin of X.X is also characterized by a network of elastic fibers that are responsible for the elasticity and flexibility of the skin.

In the present study, we have analyzed the expression of various collagen genes in the skin of X.X. The results of this analysis are presented in this paper.

Results

Table 1

<table>
<thead>
<tr>
<th>Condition</th>
<th>mRNA Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>++</td>
</tr>
<tr>
<td>Disease A</td>
<td>+</td>
</tr>
<tr>
<td>Disease B</td>
<td>++</td>
</tr>
</tbody>
</table>

Discussion

The results of this study suggest that the expression of various collagen genes is altered in the skin of X.X with different skin diseases. This may be due to the differences in the expression of various collagen genes in the skin of X.X with different skin diseases.

References

Department of Defense
Breast Cancer Research Program Meeting

September 25-28, 2002
Orange County Convention Center
Orlando, Florida

Proceedings
Volume I
MOLECULAR PROFILING OF CONNECTIVE TISSUE PROTEIN SYNTHESIS IN BREAST CANCER CELLS

Agnes A. Day, Elizabeth E. Nelson,
John T. Stubbs, and Matthew George, Jr.

Departments of Microbiology and Biochemistry,
College of Medicine and Cancer Center, Howard University,
2041 Georgia Avenue, NW, Washington, DC 20060
aday@fac.howard.edu

The progression of normal cells to the benign, malignant and metastatic phenotype involves a highly complex series of events. Proteolytic degradation is the currently accepted method by which metastatic cells abrogate the basement membrane and connective tissue matrix to gain access to the circulatory and lymphatic systems for dispersal. Our studies were designed to ascertain whether there are alterations in the transcription of proteins of the extracellular matrix (ECM) which are concomitant with reported increased metalloprotease production, when metastatic cells are compared to their normal tissue counterparts, and when breast cancer tissue is compared between African American and Caucasian women.

Comparisons were made between paired sets of tissues or cells for the presence and/or quantitative levels of various connective tissue proteins and regulatory status of their promoters. Steady state levels and sizes of mRNAs were measured by hybridizing Northern blots and slot blots with radioactively labeled cDNA probes encoding decorin, fibronectin, osteonectin, and type I collagen. Southern blot analyses were done employing standardized concentrations of genomic DNA isolated from various breast cancer cell lines and the aforementioned probes.

Data from these studies show that there is differential expression of connective tissue proteins between various transformed cell lines. When comparisons of transcriptional status and genomic mutation were done between breast and colon cells, differential expression was also observed. Mobility shift patterns were generated by nuclear extracts from normal and cancerous breast and colon fibroblasts complexing with the fibronectin promoter. Alterations in the complexes interacting with sequences from the promoter may be responsible for the differences in fibronectin gene expression among normal and cancerous breast and colon fibroblasts. Collectively, these differences may play an important role in elucidating the metastatic phenotype of cancer. This research will provide a better understanding of the molecular events of cancer metastasis and, eventually, to the inhibition of this phenomenon.

The U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0268 supported this work.
Molecular Profiling of Connective Tissue Protein Gene Expression in Breast and Colon Cancer Cells

Agnes A. Day 1, Elizabeth E. Nelson 1, and Matthew George Jr. 2, Department of Microbiology, and Department of Biochemistry, College of Medicine, Howard University, Washington, D.C. 20059.

Abstract

The following studies were designed to ascertain whether there are alterations in the transcription of protein of the extracellular matrix of cells which are coexpressed with increased metastasizing potential, when breast cancer cells are compared with their normal breast counterparts, and in colon cancer cells. Characteristic markers were chosen and the cellular RNA and DNA extracted from normal breast and colon cancer cells. The RNA was fractionated, the protein isolated, and the mRNA transcribed. The mRNA was then subjected to various qualitative and quantitative techniques to ascertain whether there were significant differences in the expression of these genes. The results showed that there was a significant difference in the transcription of certain genes between normal breast and colon cancer cells.

Introduction

The preparation of normal cells to the tissue, epithelial and metastatic phenotypes involves a highly complex series of events. Proliferative stimulation is currently accepted as a mechanism by which cells undergo the transformation and resist to a polypeptide growth factor. The transformation of these cells results in an altered proliferation pattern and increased expression of various cell surface antigens. The transformation of these cells involves the expression of novel antigens, alteration of cell surface associated molecules and new cell surface antigens. These data suggest that the transformation of cells involves the expression of novel antigens, alteration of cell surface associated molecules and new cell surface antigens.

Materials and Methods

Cell Culture

All breast cell lines, CCL-1, 15A, 120, 155, 156, and 157, were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and were grown in Minimum Essential Medium (MEM), supplemented with 10% fetal bovine serum (FBS), and 1% penicillin-streptomycin. Cultures were passaged every 3-4 days. The cultures were maintained in a humidified incubator at 37°C in 5% CO2. All cell cultures were standardized to a final concentration of 1.0 ml.

RNA and DNA Extraction

Total RNA was isolated from the cell lines as outlined by the MDNAP 8 preparation kit (Takara, Otsu, Japan). This kit is a modification of the conventional protein and DNA. RNA was then isolated from the cell lines by the hot phenol extraction kit (Sage Laboratories, CA). The resulting RNA was used for the preparation of cDNA libraries from normal breast cells isolated from the breast tumor. Briefly, RNA and DNA were extracted by the phenol-chloroform method. The resulting RNA was used for the preparation of cDNA libraries from normal breast cells isolated from the breast tumor.

Restriction Fragment Length Polymorphism (RFLP) Analysis of Chromosomal DNA

Genomic DNA (200 pg) was digested with restriction endonucleases under conditions recommended by the manufacturer (BDI, Miami, FL). The digestion products were electrophoresed on a 0.8% agarose gel for 4 h. The gels were stained with ethidium bromide and photographed. The gels were washed with 0.8 M sodium acetate and 1 M NaOH, and were dried and autoradiographed. The agarose gels were then scanned for radioactivity using a PhosphorImager (Molecular Dynamics, CA). The results were analyzed by computer software (Molecular Dynamics, CA).

Results

The STFPC reaction was performed in the CTS-13 thermocycler (GenCam, Applied Research), using the Human ET-PCR system (GenCam, Applied Research). The reaction mixture was prepared by combining 50 mM Tris-HCl, pH 8.3, 200 mM KCl, 10 mM MgCl2, 0.1% Tween, 10 mM dNTP, 100 ng of cDNA, 0.1 U of a pancreatic DNase, and 0.1 U of a RNase H. The reaction mixture was then heated to 94°C for 5 min, followed by 35 cycles of 30 sec at 94°C, 30 sec at 55°C, and 1 min at 72°C. A 0.5% agarose gel was run to confirm the presence of the PCR products. The gel was stained with ethidium bromide and photographed. The gel was then scanned for radioactivity using a PhosphorImager (Molecular Dynamics, CA).

Discussion

The results of the present study indicate that breast cancer cells are more likely to have altered metastatic potential than normal breast cells. The results of the present study demonstrate that breast cancer cells are more likely to have altered metastatic potential than normal breast cells. The results of the present study demonstrate that breast cancer cells are more likely to have altered metastatic potential than normal breast cells. The results of the present study demonstrate that breast cancer cells are more likely to have altered metastatic potential than normal breast cells.
STUDY OF THE EFFECT OF OMEGA-3 AND OMEGA-6 FATTY ACID ON CELL GROWTH AND OXIDATIVE STRESS IN BREAST CANCER CELLS

Rasha Hammamieh, Kate Carr, Carrie Dulaney, Rina Das and Marti Jett

Walter Reed Army Institute of Research, Silver Spring, MD.

Rasha.hammamieh@na.amedda.army.mil

ABSTRACT: Epidemiological and preclinical studies have indicated a relationship between dietary practices and development of cancer. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega-3 fatty acids, including long chain polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of cancer whereas omega-6 fatty acids such as arachidonic acid (AA) and linoleic acid (LA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the omega-3 fatty acids EPA and DHA and of the omega-6 fatty acids AA and LA on cell growth in MDA-MB-231 breast cancer cells. We also studied the effect of omega-3 and omega-6 fatty acids on oxidative stress in MDA-MB-231. Furthermore, the effect of omega-6 fatty acids on gene expression of fatty acid binding proteins, PPAR-g and other genes involved in cells regulations and oxidative stress were studied. Our results showed that omega-3 fatty acids inhibited cell proliferation in breast cancer cells while omega-6 promoted cell proliferation. When TBARS assay was used to study oxidative stress, Omega-3 fatty acids showed an increase in oxidative stress compared to omega-6 fatty acids.
ANTI-SENSE OLIGODEOXYNUCLEOTIDE
COMPLEMENTARY TO LIVER FATTY ACID
BINDING PROTEIN ALTERS CELLULAR
FUNCTIONS IN BREAST CANCER CELLS

Rasha Hammamieh, Ryan Thomas, Rina Das and Marti Jett

Walter Reed Army Institute of Research, Silver Spring, MD.

Rasha hammamieh@na.amedd.army.mil

ABSTRACT: Studies show a relationship between dietary fat intake and increased incidence and growth of hormonally regulated cancers, such as breast and prostate. Dietary fats, especially arachidonic acid, are readily metabolized into potent bioactive lipids that stimulate proliferation in these cancer cells. The action of these lipids may be mediated by a family of small intracellular proteins, fatty acid binding proteins (FABP's), named according the tissue from which they were first identified. Our previous results showed that Liver(L)- and Intestine-FABPs were elevated in MCF-7 and T47D cancer relative to other breast cancer cells and normal breast cells. However, Epidermal (E)- and Adipose-FABPs were down-regulated in breast cancer cells compared to normal cells. Therefore, we developed antisense oligodeoxynucleotides able to direct RNase H activity on full-length L-FABP mRNA. Addition of anti-L FABP oligodeoxynucleotide caused a significant decrease in the growth rate of breast MCF-7 tumor cell lines. Furthermore, anti-L FABP, at 10 micro molar, induced apoptosis in breast MDA-MB-435 and MCF-7 cancer cells. To further understand the mechanism of action of anti-L FABP in cancer cells, we used quantitative RT-PCR and human cDNA array blots to explore differentially expressed genes in breast cancer cells treated with anti-L FABP antisense. This analysis revealed alterations in some of the genes that are significantly involved in the regulation of cell growth and apoptosis. These data support the contention that certain FABPs correlate with tumorigenicity. This study will provide the basis for a better understanding the direct role of fatty acids/bioactive lipids and FABPs in cancer development and progression, and indicates the therapeutic potential for FABPs to serve as targets for treatment of these hormonally-regulated cancers.
Certificate of Training

This is to certify that

ELIZABETH NELSON

has attended the

RODENT HANDLING TECHNIQUES
DOD LABORATORIAL ANIMAL CARE WORKSHOP

12 JULY 2002

Sponsored by:

Division of Veterinary Medicine

WALTER REED ARMY INSTITUTE OF RESEARCH
NAVAL MEDICAL RESEARCH CENTER
Division of Veterinary Medicine

ANN M. SCHIAVETTA, CPT, VC
Course Instructor

Director
Division of Veterinary Medicine

PATRICIA C. NOSSOV, COL, VC
Certificate of Training

This is to certify that

Dr. John Stubbs

has attended the

Rodent Handling Techniques

Laboratory Animal Care Workshop

2 August 2002

Sponsored by:

Division of Veterinary Medicine

Walter Reed Army Institute of Research

NAVAL MEDICAL RESEARCH CENTER

Division of Veterinary Medicine

Patricia C. Nosov, COL, VC

Director
Division of Veterinary Medicine

James Sheets, MAJ, VC

Course Instructor
WALTER REED ARMY INSTITUTE OF RESEARCH
NAVAL MEDICAL RESEARCH CENTER
Division of Veterinary Medicine

Certificate of Training

This is to certify that

Ms. TAMARA TATUM-BROUGHTON
has attended the

RODENT HANDLING TECHNIQUES
DOD LABORATORY ANIMAL CARE WORKSHOP
12 JULY 2002

Sponsored by:
Division of Veterinary Medicine

ANN M. SCHIAVETTA, CPT, VC
Course Instructor

PATRICIA C. NOSSOV, COL, VC
Director
Division of Veterinary Medicine
Certificate of Training

This is to certify that [Name] has attended the DOD Laboratory Animal Care Workshop on Rodent Handling Techniques from [Date].

Sponsored by:
Division of Veterinary Medicine

Director
Division of Veterinary Medicine

Course Instructor

JAMES T. SHEETS, MAJ, VC
Certificate of Training

This is to certify that

Mr. Douglas Whetstone

has attended the

Rodent Handling Techniques

Laboratory Animal Care Workshop

2 August 2002

Sponsored by:
Division of Veterinary Medicine

James T. Sheets, MAJ, VC
Course Instructor
Rodent Handling and Techniques

The Division of Veterinary Medicine
Walter Reed Army Institute of Research
Silver Spring, MD 20910
Important Numbers

Walter Reed Army Institute of Research (WRAIR)
Division of Veterinary Medicine
Bldg 511, Forest Glen Annex
Silver Spring, MD 20910
(301) 255-7017
http://wrais-www.army.mil (choose Animal Care and Use)

American Association for Laboratory Animal Science (AALAS)
70 Timber Creek Drive, Suite 5
Cordova, TN 38018
(901) 754-8620
http://www.aalas.org/AALAS

Animal Welfare Information Center (AWIC)
National Agricultural Library
10301 Baltimne Boulevard
Beltsville, MD 20705
(301) 504-5755
e-mail: AWIC@NAL.USDA.gov

Scientists Center for Animal Welfare (SCAW)
Golden Triangle Building One
7633 Walker Drive, Suite 340
Greenbelt, MD 20770
(301) 345-3500

National Association for Biomedical Research (NABR)
818 Connecticut Ave., Suite 303
Washington, DC 20006
(202) 857-0540
http://www.nabr.org/NABR

The Guide for the Care and Use of Laboratory Animals (1996)
National Academy Press
2101 Constitution Ave., NW, Lockbox 285
Washington, DC 20055
(202)334-3313
The Guide can be found at http://www.nap.edu/readingroom/books/labrats
TABLE OF CONTENTS

SECTION 1: Misc Techniques

Handling Techniques ... 2
Sex Determination .. 4
Oral Gavage ... 5

SECTION 2: Injection Techniques

General Overview ... 6
Subcutaneous Injection ... 7
Intramuscular Injection .. 8
Intradermal Injection .. 9
Intrapertitoneal Injection ... 10
Intravenous Injection .. 11

SECTION 3: Blood Withdrawal Techniques

General Overview .. 12
Tail Artery and Vein ... 13
Periorbital Venous Sinus ... 14
Orbital Venous Plexus ... 14
Ear Frick .. 15
Cranial Vena Cava .. 16
Cardiac Puncture .. 17
HANDLING TECHNIQUES

MOUSE: Mice are small rodents that are hard to grasp. Care should be taken to avoid getting bit or causing harm to the animal. One method of moving mice from one cage to another is by grasping the skin behind the neck with a pair of forceps. When using this method be careful not to grasp too hard. Restraining the mouse can be done by grasping the base of the tail with one hand and with the other grasp the loose skin behind its neck. Take extra precaution to avoid getting bitten. When you have a firm grasp you may secure the tail in the same hand you have the scruff in to accomplish a one handed restraint.

RAT: Rats can inflict a painful bite. DO NOT grasp the rat by the scruff, as it will react violently to this type of restraint. First grab the rat by the base of the tail and lift out of the cage and place on a soft surface. Hard smooth surfaces can make the rat tense. Second, become friends with your rat by gently petting it, as this will calm it. Place your index and middle fingers along side the rat’s head and your thumb and ring fingers under its forelegs. Use your index and middle fingers to secure its head and the remaining fingers to support the chest. Hold the tail and support the lower body with your other hand. Be careful not to squeeze hard as this may interfere with the rat’s ability to breathe.
GUINEA PIG: Guinea pigs are curious, easy to handle animals. They are not aggressive by nature. Do not grasp the guinea pig by the loose skin. Body hair is easily pulled out and the guinea pig will often object when handled in this manner. Calmly grasp it with one hand under the chest and use your other hand to support its hindquarters.

***Care should be taken not to excite any of these animals. Slow deliberate movements will make the job of restraining much easier. Noise should also be kept to a minimum.
SEX DETERMINATION

MOUSE: Restrain the mouse and lift the base of the tail. Sex is most easily determined by ano-genital distance. Males normally have a greater distance between the anus and urogenital openings. Male mice also have a larger genital papilla.

RAT: Procedure same as in the mouse.

GUINEA PIG: Both male and female guinea pigs display similar ano-genital distances. The female has a separate urethral orifice, a vaginal membrane, a perineal sac, and an anus; the male has a penis, a larger perineal sac, and an anus. The penis lies just under the skin and can be inverted with gentle pressure. The testes and penis are palpable in adults.
ORAL GAVAGE

MOUSE: Restrain the mouse and measure the gavage tube from the tip of the nose to the last rib. This is the length you must insert the tube. With the use of the tube push the mouse’s head slightly upward and back to straighten the esophagus. Position tube to the right or left of the mouth and slowly pass the tube watching for the swallowing reflex. The tube should pass freely into the esophagus. DO NOT FORCE. When desired length of insertion is achieved, inject solution. Observe mouse after the procedure for signs of distress, such as gasping or frothing as the mouth.

RAT: Procedure same as in the mouse.

GUINEA PIG: The guinea pig has a small palatal ostium that is easily damaged. For this reason this procedure is not recommended in the guinea pig.

*** When using a plastic tube, care should be taken to ensure animal does not bite down and sever the tube. An artificial device to hold the mouth open can be used.
INJECTION TECHNIQUES
GENERAL OVERVIEW

MOUSE: Injection sites should be cleaned with a suitable disinfectant, typically isopropyl alcohol. Sterile syringes and needles must be used for all injections. The one time use of disposable supplies insures aseptic techniques and sharp needles. Always select the smallest gauge needle possible to limit tissue trauma and injection discomfort. A 25–30 gauge needle is recommended for use in a mouse. Before injecting, check for correct placement by pulling back on the plunger of the syringe to create a vacuum. This is known as aspiration.

RAT: Same overview as the mouse except it is recommended that 21-30 gauge needles be used.

GUINEA PIG: Same overview as the mouse except it is recommended that 22-30 gauge needles be used.
SUBCUTANEOUS (SQ) INJECTION

MOUSE: The mouse should be restrained in the normal manner. With your fingers, lift the skin to make a “tent.” Disinfect the injection site and insert needle into the subcutaneous tissue. Aspirate prior to making the injection. Proper placement should yield no aspirate. Inject.

- Most common injection site is the loose skin around the neck and shoulder area.

RAT: Restrain the rat by grasping the base of the tail with one hand and with the other, flatten the rat against the table. With your fingers, lift the skin to make a “tent.” Disinfect injection site and insert needle into the subcutaneous tissue. Aspirate, you should not aspirate anything. Inject.

- Most common injection site is the loose skin around neck and shoulder area.

GUINEA PIG: The guinea pig should be restrained and the injection site disinfected. With your fingers, lift the skin to make a “tent.” Insert needle into the subcutaneous tissue and aspirate, you should not aspirate anything. Inject.

- Most common injection site is the loose skin around neck and shoulder area

*** The recommended needle size for SQ injections are 23-25 gauge.
INTRAMUSCULAR (IM) INJECTION

MOUSE: IM injections are not recommended due to the mouse's lack of muscle mass. Injection may cause discomfort and local tissue irritation.

RAT: Restrain rat by either holding rat against your body and isolating the rear leg or restrain the rat in the traditional manner and grasp the hind leg and hold securely. Disinfect injection site and insert needle into the caudal thigh muscle. You first must isolate the caudal thigh muscle to prevent injection into the ischiatic nerve. Injection into the nerve may cause discomfort and lameness. Aspirate and inject. If blood is aspirated, you must reposition the needle.

GUINEA PIG: Restrain the guinea pig and isolate the caudal thigh muscles. Disinfect injection site and insert the needle. Aspirate. Prior to making the injection be sure to inject into the caudal thigh. Placement of the needle too far laterally can result in damage to the ischiatic nerve. Another injection site is the lumbar muscles. To administer an IM injection here, outline the lumbar muscles with your thumb and second finger, using your index finger locate the vertebral column for orientation. Insert needle lateral to the midline, avoiding the spine.

*** The recommended needle size for an IM injection is 25 gauge.
INTRADERMAL (ID) INJECTIONS

MOUSE: ID injections are not commonly performed in the mouse due to limited clinical application.

RAT: ID injections are not commonly performed in the rat due to limited clinical application.

GUINEA PIG: Restrain the guinea pig by using either physical or chemical restraint. Shave or Nair the injection site and disinfect. Isolate the injection site by pinching or stretching skin. Insert the needle bevel up just under the surface of the skin and inject. A distinct bleb should form.

*** The recommended needle size for an ID injection is 25 gauge.
INTRAPERITONEAL (IP) INJECTION

MOUSE: Restrain the mouse and tilt so that the head is facing downward and its abdomen is exposed. Disinfect injection site and insert the needle cranially into the abdomen at a 30-45 degree angle caudal to the umbilicus and lateral to the midline.

Aspirate
- greenish-brown aspirate indicates needle penetration into the intestines
- yellow aspirate indicates needle penetration into the bladder

If any fluid is aspirated, your solution is contaminated and must be discarded and the procedure repeated with a new syringe and needle. If nothing is aspirated, inject. The recommended needle size for IP injections in the mouse is 25-27 gauge.

RAT: Procedure same as in the mouse
The recommended needle size for IP injections in the rat is 25 gauge.

GUINEA PIG: Procedure same as in the mouse. The recommended needle size for IP injections in the guinea pig is 23-25 gauge.
INTRAVenous (IV) INJECTION

MOUSE (Tail Vein): Restrained the mouse with physical or chemical restraint. Rotate the tail slightly to visualize vein. Disinfect injection site and insert needle (27-30 gauge) into the vein at a slight angle. You will not be able to aspirate, instead inject slowly and watch for clearing of the lumen. Incorrect positioning will result in a slight bulge in the tail. If this occurs, remove needle and repeat process proximal to previous site. Upon completion remove needle and apply pressure to injection site.

RAT (Tail or Saphenous Vein): Tail injection procedure same as in the mouse. For the saphenous vein, restrain the rat with the use of anesthesia. Extend the hind leg and shave hair to expose lateral saphenous vein. Disinfect the injection site and apply tourniquet-like pressure to the upper portion of the leg. Insert needle into the vein and aspirate. Release tourniquet pressure and inject. Upon completion remove needle and ensure proper hemostasis. The recommended needle size for IV injections in the rat is 22-25 gauge.

GUINEA PIG (Saphenous Vein): Same procedure as for the rat, but much more difficult to visualize in the guinea pig. The recommended needle size for IP injections in the guinea pig is 25 gauge.

***Be sure there are no air pockets or bubbles in the solution to be injected, as this can kill small animals.
BLOOD WITHDRAWAL TECHNIQUES
GENERAL OVERVIEW

MOUSE: Withdrawal sites should be cleaned with a suitable disinfectant. Sterile syringes and needles must be used for all withdrawals. The one time use of disposable supplies insures aseptic techniques and sharp needles. Always select the smallest gauge needle possible to limit tissue trauma and discomfort. A 25–30 gauge needle is recommended for use in a mouse. Check for correct placement by pulling back on the plunger of the syringe to create a vacuum. This is known as aspiration.

RAT: Same overview as the mouse except it is recommended that 21-30 gauge needles be used.

GUINEA PIG: Same overview as the mouse except it is recommended that 22-30 gauge needles be used.
TAIL ARtery AND VEINS

MOUSE: The tail arteries and veins may be used to collect small amounts of blood. First warm the animal in an incubator or under an incandescent light. The animal must be watched closely during this procedure to ensure they don’t overheat or receive thermal burns to their extremities, particularly their ears. There are two blood collection techniques that can be used.

- Restrain mouse, disinfect withdrawal site and insert a 25 gauge needle into the vein and use a capillary tube to collect the blood from the hub.

- Restrain mouse in a rodent restrainer, disinfect withdrawal site and locate vein. Using a razor blade, knick tail vein and collect in a blood collection tube or capillary tube. This method should only be used every 1-2 weeks for a limited number of collections.

Upon completion of either blood withdrawal technique, ensure proper hemostasis

RAT: The tail arteries and veins may be used to collect small amounts of blood. First you must warm the animal in an incubator or under an incandescent light. Restrain rat in a rodent restrainer, disinfect withdrawal site and insert a 25 gauge needle into the vein. Use a capillary tube to collect the blood from the hub. Upon completion apply pressure until bleeding stops.

GUINEA PIG: This method of blood collection is not recommended in the guinea pig, as the guinea pig has no tail.
PERIORBITAL VENOUS SINUS
ORBITAL VENOUS PLEXUS

MOUSE (periorbital venous sinus): This method must be done on an anesthetized mouse and is only recommended to be done at weekly intervals using alternate eyes. Microhematocrit tubes or Pasteur pipettes may be used to collect blood. Push the upper and lower eyelids apart to protrude the globe. Insert the tube into the medial canthus of the eye. Apply slight downward pressure while rotating the tube to pass it through the conjunctiva and into the periorbital sinus. When the tube "pops" through, back tube out slightly to allow blood to flow. When collection is complete, close both eyelids and apply pressure with a piece of gauze until bleeding stops.

RAT (orbital venous plexus): This method must be done on an anesthetized rat and is only recommended to be done at weekly intervals using alternate eyes. Microhematocrit tubes or Pasteur pipettes may be used to collect blood. Push the upper and lower eyelids apart to protrude the globe. Insert the tube into the dorsal portion of the bony orbit. Apply slight downward pressure while rotating the tube to pass it through the conjunctiva and into the venous plexus. When the tube "pops" through, back tube out slightly to allow blood to flow. When collection is complete, close both eyelids and apply pressure with a piece of gauze until bleeding stops.

GUINEA PIG: This method of blood collection is not recommended in the guinea pig.
EAR PRICK

MOUSE: This procedure is not used in the mouse.

RAT: This procedure is not used in the rat.

GUINEA PIG: Restrain the guinea pig. The use of a towel is helpful in restraining. Disinfect the ear. With a 22 gauge needle insert it perpendicular into the vein and remove. Collect blood in a microhematocrit tube or Pasteur pipettes. When collection is done ensure proper hemostasis.
CRANIAL VENA CAVA

MOUSE: This procedure is not used in the mouse.

RAT: This method must be done on an anesthetized rat. It is recommended that a 3cc or 6cc syringe with a 22-23 gauge needle be used. Place the rat in dorsal recumbency and locate the cranial portion of the sternum. Insert the needle at a 30-45 degree angle, under the first rib, lateral to the sternum on the animal’s right side. Direct the needle toward the midline and insert it no more than 1/4 inch. Maintain a slight amount of negative pressure and slowly withdraw until blood begins to flow. After the procedure is complete, remove needle and apply pressure to the injection site. If no blood flows, remove needle and repeat procedure. Probing for the vessel is not recommended as this could cause major damage and premature death. This procedure is useful in the rat for collecting 1ml or less of blood.

GUINEA PIG: Procedure same as in the rat. This procedure is useful in the guinea pig for collecting 1 1/2ml or less of blood.
CARDiac PUNCTURE

MOUSE: This method must be done on an anesthetized mouse and is only recommended to be done as a terminal procedure. The use of a 1cc syringe with a 25 gauge needle is recommended. Find the xiphoid process as a reference point. Insert the needle at a 35-40 degree angle just under and to the left of the xiphoid process. As the needle is inserted into the chest, gently aspirate until blood begins to flow. Overzealous withdrawal may collapse the heart. If you do not get blood flow on the first try, withdraw the needle and repeat entire process. Probing for the heart is not recommended, this could cause damage to major vessels and premature death.

RAT: Procedure same as in the mouse, except it is recommended that a 6cc or 12cc syringe with a 20-22 gauge needle be used.

GUINEA PIG: Procedure same as in the mouse, except it is recommended that a 12cc or 20cc syringe with a 20-22 gauge needle be used.

Upon completion of this procedure the animal should be euthanized and disposed of properly.
Humane Animal Care and Use

All animals owned by the U.S. Army for research or training will receive proper care, and will be used humanely in accordance with approved protocols, federal laws, and Department of Defense regulations and guidelines. Any person who witnesses or suspects abuse of animals is encouraged to report their concern to:

Dr. Topper, Chairman, Laboratory Animal Care and Use Committee (Bldg 503, Rm 1A20A) (301)319-9567

COL Nossov, Director, Division of Veterinary Medicine (Bldg 511) (301)319-9967

MAJ Wiltshire, Deputy Director, Division of Veterinary Medicine (Bldg 503) (301)319-9026
MAJ Probst, Chief, Dept. of Animal Resources, Division of Veterinary Medicine (Bldg 511) (301)319-9228
MAJ Sheets, Chief, Dept. of Animal Medicine, Division of Veterinary Medicine (Bldg 503) (301)319-9942

Written Concerns may be sent to the Laboratory Animal Care and Use Committee, (ATTN: COL Nossov, Div of Vet Med), Walter Reed Army Institute of Research/Naval Medical Research Center, Silver Spring, MD 20910

No Adverse Action will be taken against anyone making a report. You are not required to give your name.
CONDUCTING RESEARCH RESPONSIBLY

satellite teleconference

Thursday, September 13, 2001
1:00 - 4:00 pm

Room 201, Howard University Cancer Center

This teleconference will explore four of the nine core instructional areas defined as Responsible Conduct of Research:

- human subjects research
- conflict of interest
- research misconduct
- mentorship

Panel of Experts: (Partial list)

Greg Koski, PhD, MD, Director, Office of Human Research Protection, NIH

David Kom, MD, Sr. VP, Div. of Biomedical & Health Sciences Research, American Association of Medical Colleges

Joan Porter, DPA, MPH, Asso Dir, Office of Research Compliance & Assurance, Veterans Administration

Chris Pascal, Director, Office of Research Integrity, HHS

Mark S. Frankel, Program Director, AAAS

Geoff Grant, Asso VP, Stanford University Research Administration

Co-sponsored by the Howard University Cancer Center and the DOD-HUCC/WRAIR Training Grant # DAMD 17-01-1-0268. For more information call Colleen Sundstrom at 202-806-7037.

ATTENDANCE IS LIMITED TO 50 PARTICIPANTS. PLEASE CALL 202-806-7037 TO RESERVE A PLACE. Certificates of Attendance will be given.
Conducting Research Responsibly

Satellite Teleconference - 3 hours
Society of Research Administrators International
has attended the

John Schultz

This certifies that
Certificate of Attendance
Certificate of Attendance

This certifies that

Agnes Day

has attended the Society of Research Administrators International Satellite Teleconference - 3 hours

CONDUCTING RESEARCH RESPONSIBLY

Presented by Howard University Cancer Center
September 13, 2001

Lucile L. Adams-Campbell, PhD
Director, Howard University Cancer Center
Conducting Research Responsibly Teleconference

Thursday, September 13, 2001

Attendance

<table>
<thead>
<tr>
<th>Signature</th>
<th>Name (Print)</th>
<th>Department</th>
<th>e-mail address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Douglas F. White</td>
<td>Microbiology</td>
<td>dougwhite@hotmail.com</td>
</tr>
<tr>
<td>2</td>
<td>Anne A. Dau</td>
<td>Microbiology</td>
<td>adau@fac.Howard.edu</td>
</tr>
<tr>
<td>3</td>
<td>Trici G. White</td>
<td>Psychology</td>
<td>trici@lindsey.com</td>
</tr>
<tr>
<td>4</td>
<td>Judith Richardson</td>
<td>Biochemistry</td>
<td>Judith_Richardson@msn.com</td>
</tr>
<tr>
<td>5</td>
<td>Jacqueline A. Mason</td>
<td>Microbiology</td>
<td>Jacqueline302@cs.com</td>
</tr>
<tr>
<td>6</td>
<td>Ken Utley</td>
<td>Microbiology</td>
<td>k_utley@Howard.edu</td>
</tr>
<tr>
<td>7</td>
<td>Pamela Nolan</td>
<td>Cancer Prevention</td>
<td>cancer-polar@howard.edu</td>
</tr>
<tr>
<td>8</td>
<td>Desta Beyene</td>
<td>Cancer Center</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Desta Beyene</td>
<td>Biochemistry</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Elizabeth E. Nelson</td>
<td>Microbiology</td>
<td>enelson@howard.edu</td>
</tr>
<tr>
<td>11</td>
<td>Cynthia Tucker</td>
<td>Nutrition</td>
<td>cynthia.tucker@roots.com</td>
</tr>
<tr>
<td>12</td>
<td>M. Spalding</td>
<td>Biochemistry</td>
<td>mspalding@Howard.edu</td>
</tr>
<tr>
<td>13</td>
<td>M. Abegaz</td>
<td>Biochemistry</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>John Stubbins</td>
<td>Microbiology</td>
<td>jsstubbs@Howard.edu</td>
</tr>
<tr>
<td>15</td>
<td>Alecia Saunders</td>
<td>Biochemistry</td>
<td>jessah-s@yahoo.com</td>
</tr>
</tbody>
</table>

Sponsored by Howard University Cancer Center and DOD HU/WRAIR Training Grant # DAMD 17-01-1-0268
Conducting Research Responsibly Teleconference

Thursday, September 13, 2001

Attendance

<table>
<thead>
<tr>
<th>Signature</th>
<th>Name (Print)</th>
<th>Department</th>
<th>e-mail address</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>NICOLAS EPIE</td>
<td>MICROBIOLOGY</td>
<td>nepie@howard.edu</td>
</tr>
<tr>
<td>17</td>
<td>Kimberly Dinh</td>
<td>Pharmacy</td>
<td>kimdungthidinh@hotmail.com</td>
</tr>
<tr>
<td>18</td>
<td>Deloisie Saunders</td>
<td>HUCC</td>
<td>dsauders2@howard.edu</td>
</tr>
<tr>
<td>19</td>
<td>Robert Gooding</td>
<td>HUCC</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Everett E. Dodson</td>
<td>HUCC</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Theodore A. Bremner</td>
<td>HUCC</td>
<td>bremner@howard.edu</td>
</tr>
<tr>
<td>22</td>
<td>Hilair Kenguell</td>
<td>Branch</td>
<td>kenguell@hotmail.com</td>
</tr>
<tr>
<td>23</td>
<td>Trisha Tullson</td>
<td>Biochemistry</td>
<td>tullson66@hotmail.com</td>
</tr>
<tr>
<td>24</td>
<td>Geidelman Bocoum</td>
<td>Pharmacy</td>
<td>gbocoum@pharm.com</td>
</tr>
<tr>
<td>25</td>
<td>Vasant G. Telang</td>
<td>Office of the Provost</td>
<td>vtelang@howard.edu</td>
</tr>
<tr>
<td>26</td>
<td>Raj Sridhar</td>
<td>Dept of Rad Oncol</td>
<td>sridhar_howard@hotmail.com</td>
</tr>
<tr>
<td>27</td>
<td>Fred Lomansolo</td>
<td>HUCC</td>
<td>almado@howard.edu</td>
</tr>
<tr>
<td>28</td>
<td>Flora Ukoli</td>
<td>HUCC</td>
<td>fukoli@howard.edu</td>
</tr>
<tr>
<td>29</td>
<td>Dianne Thorne</td>
<td>HUCC</td>
<td>dthorne@howard.edu</td>
</tr>
<tr>
<td>30</td>
<td>Tonya Agurs-Collins</td>
<td>HUCC</td>
<td>agurs-collins@facs.howard.edu</td>
</tr>
</tbody>
</table>

Sponsored by Howard University Cancer Center and DOD HU/WRAIR Training Grant # DAMD 17-01-1-0268
John T. Stubbs III, Ph.D.
Breast Cancer Project

Breast Cancer in African American Women: Molecular Analysis of Differences in Incidence and Outcomes.

Abstract

Bone sialoprotein (BSP) is a small integrin binding phosphosialoprotein that has the ability to bind to cells. BSP also has the ability to bind to and de novo nucleate hydroxyapatite, the mineral found in bone. BSP is normally synthesized by osteoblasts, osteoclasts, and chondrocytes. Ectopic BSP expression in primary breast tumors has been correlated with 1) later development of breast cancer bone metastasis and 2) poor patient survival. Furthermore, in vitro studies suggest that exogenous bone sialoprotein can induce the proliferation, migration, and cell adhesion of breast cancer cells. Collectively, this data suggest that BSP plays some role in breast cancer. However, it is unknown if BSP is essential for breast tumor survival and or osteotropism. We propose to utilize an inducible expression system to investigate the biological effects that BSP has upon breast cancer cells in vitro and in vivo. Conditional BSP expression in breast cancer cells allows direct correlation between BSP expression and biological parameters associated with metastasis since BSP induced effects should appear when BSP is induced and disappear when BSP is not stimulated. Additionally, an inducible expression system allows one to investigate the biological down stream effects of BSP gene expression at different stages of tumor development. We have partnered with Drs. Marti Jett and Rina Das of the Walter Reed Army institute of Research in the Howard University / Walter Reed breast cancer training program entitled Breast Cancer in African American Women: Molecular Analysis of Differences in Incidence and Outcomes. One of the many exciting components of this program is the non-invasive in vivo imaging technologies that may be utilized to monitor the growth and distribution of tumor cells in live rodents. Presently, we are constructing BSP (and BSP related extracellular matrix proteins) inducible vectors that will be used to transform and generate BSP inducible breast cancer cell lines. Ultimately, these cell lines will be used in animal models to study the effects of induced BSP expression on breast tumor growth, distribution, and osteotropism.
SELECTIVE ESTROGEN RECEPTOR MODULATORS AND DEPRESSION

A proposal submitted to Howard University Cancer Center

Alemayehu Kassa, Ph.D.

Research Associate, HUCC

&

Yousef Tizabi, Ph.D.

Associate Professor of Pharmacology
SPECIFIC AIMS

Extensive interactions between estrogen and central neurotransmitter systems controlling the mood are documented. The effects of estrogen are mediated primarily through estrogenic receptors that are expressed in distinct brain regions involved in regulation of affective behavior. Adequate stimulation of the estrogenic receptors appear to be essential in mood regulation. Inadequate stimulation of ERs due to reduction of estrogen levels (e.g. during menopause or post-partum) may trigger depressive feelings in some women. Similarly, blockade of estrogen receptors by antiestrogenic drugs may also result in depression. Tamoxifen is an oral anti-estrogen, first generation selective estrogen receptor modulator (SERM) that is widely used for the treatment of breast cancer. While tamoxifen is generally well tolerated, some serious side effects including anxiety and depression may be associated with its use. Raloxifene is a new, second generation SERM with clinical profiles similar to tamoxifen. Although raloxifene has not yet been recommended for breast cancer treatment, it has promising therapeutic potential in reducing the risk of breast cancer in postmenopausal women treated for osteoporosis. The effects of raloxifene on mood or affective behavior is not known. In this proposal, using animal models, we plan to further elucidate the relationship between estrogen/antiestrogens and mood regulation.. Specifically, we will determine: 1. whether estrogen may exert antidepressant effects in an animal model of depression; 2. whether depressive characteristics in an animal model of depression is associated with low levels of estrogen; 3. whether antiestrogenic compounds such as tamoxifen or raloxifene would induce depressive characteristics in an animal model. In
addition, to gain a better understanding of the interaction of estrogentic compounds with central
neurotransmitter systems implicated in mood regulation, the effects of estrogen and its
antagonists on several biogenic amines will be evaluated. This will be achieved by measuring the
release of dopamine, serotonin and norepinephrine in distinct brain regions following chronic
analrophochemical administration of estrogen or its antagonists. The results of these studies would not only enhance
our understanding of the relationship between estrogen/estrogenic receptors and mood regulation
but would also be of relevance to treatment of breast cancer with SERMs.

BACKGROUND

SERMs

Recent advances in the molecular pharmacology of estrogen and estrogen receptors have
resulted in the development of agents that are selective estrogen receptor modulators
(SERMs). These compounds possess very selective estrogentic activities (both inhibitory and
stimulatory) and their effects are tissue-specific. Thus, in the breast SERMs act as estrogenic
antagonists to inhibit estrogen-induced proliferation of cancer cells, whereas in the endometrium,
bone, brain and liver SERMs may act as estrogenic agonists (see below).

TAMOXIFEN AND BREAST CANCER

Tamoxifen (nolvadex®, Zeneca, Pharmaceuticals, Wilmington, DE) is an oral anti-
estrogen, first generation selective estrogen receptors modulator that is widely used for the
treatment of breast cancer. Breast cancer is the most common and frequently diagnosed cancer
and the major cause of cancer related deaths in women (Greenlee et al. 2000). In the United
States, approximately 183,000 women are diagnosed with invasive form of breast cancer
annually and nearly 41,000 die of the disease every year (Greenlee et al. 2000; Bennett et al.
2000). Tamoxifen was originally synthesized in 1966 by Harper and Walpole, in England as an
antifertility drug. Evaluation of tamoxifen for the treatment of breast cancer was started in 1970. It was approved in the U.S. in 1997 and is the most frequently prescribed endocrine therapy for women with breast cancer (Robinson et al. 1996; Assikis and Jordan, 1997). The use of tamoxifen has expanded to include management of breast cancer in premenopausal women, systemic adjuvant therapy for early stage breast cancer in pre- and postmenopausal women, and treatment of advanced breast cancer in both men and women, especially for cancer cells that are positive for estrogen receptors (Robert, 1997). Thus, tamoxifen may be efficacious in the treatment of all stages of breast cancer (Jordan, 1993; Jordan and Murphy, 1990). Tamoxifen may also prevent osteoporosis (Thomson et al. 1999; Wilseman and Lewis, 1996).

SIDE EFFECTS OF TAMOXIFEN

While tamoxifen is generally well tolerated, some serious side effects may be associated with its use. The most frequent side effects of tamoxifen include flashes, nausea, vomiting, fatigue, thrombophlebitis, endometrial cancer, anxiety and depression (Arnold et al. 2001). Other vasomotor and gynecological symptomatic side effects may also be frequent (Love, 1992). Whereas flashes may be attributed solely to tamoxifen use, depression, anxiety and fatigue may also be attributed to breast cancer itself.

TAMOXIFEN, ANXIETY AND DEPRESSION

Many reports indicate that women with breast cancer have an increased incidence of anxiety and depression (Brever and Anderson, 2000; McDaniel et al. 1995; Feting 1997; Moyer and Salovery, 1996). In addition, several reports indicate possible association of anxiety and/or depression with tamoxifen treatment (Cathart et al., 1993; and Shariff et al. 1995). Thus, the incidence of depression in breast cancer patients may be exacerbated by tamoxifen therapy (Brever and Anderson, 2000).
ESTROGEN AND ESTROGENIC RECEPTORS

Estrogens are steroid hormones that play an important role in the growth and development of the mammary gland, uterus, vagina, and the ovary. Estrogen is responsible for the changes that take place at puberty and development of the secondary sexual characteristics in females. The action of estrogen is mediated through binding to an intracellular estrogen receptor (ER) (Beato, 1989; Evans, 1988), which undergoes extensive conformational changes upon ligand binding (Renaud et al 1995; Wagner et al 1995). The ER is a DNA binding protein that is a member of the super family of nuclear receptors that includes the steroid hormones, Vitamin D, thyroid hormone, and retinoic acid receptors. Although these receptors have considerable variation in molecular size, they share a common functional and structural organization.

Two major estrogen receptor subtypes have been identified. One is the classic ER, or estrogen receptor alpha, ERα (Greene et al, 1986; Greene et al, 2000) and the second is estrogen receptor beta, ERβ that was recently identified and cloned from both human and rat tissue (Kuiper et al, 1996; Mosselman et al, 1996). These two receptor subtypes appear to have distinct anatomical distribution as well as physiological functions. Kuiper et al (1996) reported that there is more expression of ERα in the uterus, testis, pituitary and epididymis, while ERβ appears to be dominant in the prostate and bladder tissues. ERα have been detected in different brain regions: frontal cortex, hippocampus, hypothalamic nuclei, nucleus accumbens (Fink et al.,1996; Shughrue et al.1997; Holschneider et al. 1998; Chen et al. 2002). Melinda et al (2002) reported that ERα is highly concentrated in the anteroventral periventricular, medial preoptic, arcuate, and ventromedial nuclei and the amygdala, regions of the brain that are responsible for reproductive functions; whereas, ERβ is concentrated in the cerebral cortex, hippocampus,
periventricular preoptic, preoptic, the striatum, paraventricular and supraoptic nuclei, and amygdala. There is an equal distribution of both subtypes in the breast and the ovary. In addition to estrogen, other agents may also activate the ER. These include: epidermal growth factors (EGF), insulin-like growth factors (ILGF) and neurotransmitters such as dopamine (Aronica & Katzenellenbogen 1993; Ignar-Trowbridge et al 1993; El-Tanani et al 1997; Smith et al 1993). Activation of the ER may be mainly through phosphorylation pathways involving protein kinases (Trowbridge et al., 1993; Kato et al., 1995).

TAMOXIFEN AND ESTROGEN RECEPTORS

Although the mechanism of action of tamoxifen is not yet clearly understood, its primary effect is believed to be through binding to the estrogen receptors and acting mainly as a competitive estrogen inhibitor. Tamoxifen may act by altering ER structural conformation or by altering the RNA transcription (Thompson et al 1999; Jackson et al 1997). Thus, in breast-cancer cells tamoxifen blocks the binding of estrogen to its receptors and prevents estrogen-dependent cancer cells from growth and multiplication. This results in inhibition of proliferation of breast cancer cells and causes reduction in tumor size and number (Jiayesimi et al.1995). This effect of tamoxifen renders it as one of the most effective non-steroidal anti-estrogen agents for the treatment of ERα positive breast cancer (Wijayarantne et al. 1999).

In the endometrium, bone and lipids, however, tamoxifen may act as an estrogen agonist. Estrogenic action of tamoxifen in the endometrium can result in proliferation of endometrial cells and lead to endometrial cancer (Lahti et al. 1993). The estrogenic activity of tamoxifen in bones and lipids, on the other hand, may be associated with positive effects in preserving mineral density and lipid profiles. This suggests that tamoxifen may be a suitable alternative to traditional estrogen replacement therapy in conditions such as postmenopausal-
related osteoporosis. An added advantage for this recommendation would be the avoidance of an increased risk of breast cancer which may follow long-term estrogen therapy (Jordan 1989).

Tamoxifen may also cause apoptosis of potentially malignant cells by increasing production of transforming growth factors, decreasing insulin-like growth factors and/or increasing circulating levels of serum hormone binding globulin (SHBG) Vogel (1995). Increase in levels of SHBG may decrease the availability of estrogen. The agonist or antagonist effects of SERMs are mediated through transcription activation functions (AF-1 and AF-2) in the ER. The AF-1 domain appears to be essential for the agonistic activity of SERMs (Berry et al 1990; Tzukerman et al 1994; Webb et al, 2000), while AF-2 domain may be responsible for the antagonist activity of SERMs (Chakravarti et al 1996; Yao et all 1996).

RALOXIFENE

Raloxifene (Evista ®), is a new, second generation selective estrogen receptor modulator (SERM) (Body and Sternon, 2000). It is a benzothiophene derivative with clinical profile similar to tamoxifen. Raloxifene has been approved for the treatment and prevention of osteoporosis in postmenopausal women. Raloxifene has antiestrogenic effects on breast and endometrial tissues; and estrogenic effects on bone, lipid metabolism and blood clotting. It lowers the blood levels of total and low-density lipoprotein the “bad cholesterol,” but doesn’t affect the concentration of high-density lipoprotein (Agnusdei, 1999). Raloxifene, unlike tamoxifen does not cause estrogenic effects in the uterus (Goldstein et al. 1999). Although raloxifene has not yet been recommended for breast cancer treatment, it has promising therapeutic potential in reducing the risk of breast cancer in postmenopausal women treated for osteoporosis (van den Brule et al. 1999; Goldstein et al. 2000; Yao and Jordan, 2000).
Tamoxifen and raloxifene are under investigation by the National Surgical Adjuvant Breast and Bowel Project (NSABP) to evaluate how the drug raloxifene compares with tamoxifen in reducing the incidence of breast cancer in women who are at high risk of developing the disease. Both tamoxifen and raloxifene interact with both ER subtypes, but the two SERM recognize different surfaces on ERα and ERβ and each ligand induces a distinct pharmacological effect (Erikensen, 2000).

ESTROGEN, MOOD AND CENTRAL NEUROTRANSMISSION SYSTEMS

Effects of estrogen on mood, mental state and memory have been reported (George et al. 1996; Fink et al 1996). Indeed, it has been postulated that low levels of estrogen may be a contributing factor to postmenopausal depression (Halbreich 1997). Estrogen may interact with serotonin (5HT), dopamine (DA) and norepinephrine (NE) (Biegon and McEwen 1982; Dluzen 2000; Fink et al 1996; Thompson et al 1999), central neurotransmitters that have been implicated in mood regulation (see below).

BIOGENIC AMINES AND MOOD REGULATION

Alterations in a number of neurochemicals, particularly biogenic amines (e.g. norepinephrine, dopamine and serotonin) have been postulated as etiologic factors in affective disorders (see recent reviews: Ban 2001, Bauman and Bogerts 2001, Pacher et al 2001, Skolnick et al 2001, Sampson 2001). Indeed, Current pharmacotherapy of depression is primarily based on pharmacological alterations of one or another biogenic amine (see reviews by Skolnick et al 2001, Sampson 2001).

Although the exact circuitry mediating mood regulation remains unknown, specific biogenic amine pathways have been implicated in antidepressant effects of current

ESTROGEN AND SEROTONIN (5HT)

The serotonin system plays a pivotal role in the regulation of mood, affective behavior, pituitary hormone secretion and many autonomic activities. The amino acid tryptophan is the primary substrate and the enzyme tryptophan hydroxylase is the rate-limiting enzyme for the synthesis of 5-hydroxy tryptophan (serotonin). Depletion of serotonin in the mammalian central nervous system has been reported to induce profound behavioral depression (Cooper et al. 1996). Estrogen increases 5-HT2A receptors in several brain regions including: anterior frontal, cingulated and primary olfactory cortex, and nucleus accumbens (Fink et al 1996). Because estrogen can modulate mood through its interaction with serotonin (Chang and Chang 1999; Fink et al. 1996), the antiestrogenic drug, tamoxifen may also have mood altering effects (Julia et al. 2001).

ESTROGEN AND DOPAMINE (DA)

Dopamine (3,4-dihydroxyphenylethylamine) is a major monoamine neurotransmitter that represents about 50% of total catecholamines of the central nervous system of most mammals. The dopaminergic system is believed to play important roles in emotional responses (mood, pain, pleasure), motor control, and endocrine functions (Clark et al. 1987; DiChiara, 1995; Fremeau et al. 1991; Graybiel et al. 1994; Kiyatkin, 1995). Modulation of dopamine receptors, dopamine release, dopamine synapses, dopamine neuron differentiation as well as neuroprotection of dopamine system by estrogen have been reported.
ESTROGEN AND NOREPINEPHRINE

Norepinephrine (NE) is derived from DA through enzymatic process that involves dopamine-beta-hydroxylase. It is well established that NE exerts important role in diverse neuronal networks involved in regulation of variety of functions including affective behavior (Ban 2001, Bauman and Bogerts 2001, Pacher et al 2001, Skolnick et al 2001, Sampson 2001). Stimulatory effects of estrogen on NE turnover and NE-induced cAMP increase have been documented (Hiemke et al 1985; Etgen 1987). In addition, it is now known that selective sub-population of brainstem NE neurons express ERs and that estrogen can modulate NE transmission by regulating adrenergic receptor expression and function in distinct brain regions including the cortex (Herbison et al 2000).

GENERAL AIMS

The above discussions suggest extensive interactions between estrogen and central neurotransmitter systems controlling the mood. The effects of estrogen are mediated primarily through estrogenic receptors that are expressed in distinct brain regions involved in regulation of affective behavior. Adequate stimulation of the estrogentic receptors appear to be essential in mood regulation. Inadequate stimulation of ERs due to reduction of estrogen levels (e.g. during menopause or post-partum) may trigger depressive feelings in some women. Similarly, blockade of estrogen receptors by antiestrogenic drugs may also result in depression. In this proposal, using animal models, we plan to verify some of the above postulates. Specifically, we will determine: 1. whether estrogen may exert antidepressant effects in an animal model of depression; 2. whether depressive characteristics in an animal model of depression is associated with low levels of estrogen; 3. whether antiestrogenic compounds such as tamoxifen or
raloxifene would induce depressive characteristics in an animal model. In addition, to gain a better understanding of the interaction of estrogenic compounds with central neurotransmitter systems implicated in mood regulation, the effects of estrogen and its antagonists on several biogenic amines will be evaluated. This will be achieved by measuring the release of dopamine, serotonin and norepinephrine in distinct brain regions following administration of estrogen or its antagonists.

RESEARCH DESIGN AND METHODS

Specific Aims 1.

Objective:
Determine whether acute or chronic estrogen may exert antidepressant effects in an animal model of depression.

Protocol

The Wistar Kyoto (WKY) rat model of depression will be used to evaluate the possible antidepressant effects of estrogen. WKY rat has been proposed as a suitable model for studying the biological substrates of depression (Paré 1989, 1994, Marti and Amario 1996). WKY rats show considerable reduction in locomotor activity in the open-field and exaggerated immobility in the forced swim test compared to their control the Wistar rats (Paré, 1994, Nesporet al 2001). In addition, clinically effective antidepressants normalize these behaviors in WKY rats.

Groups of adult female WKY and Wistar rats (8/group) will be administered various doses (0.01, 0.02, 0.05, 0.1, and 0.5 mg/Kg) of estrogen (17-beta estradiol) or vehicle subcutaneously, and 30 min later they will be tested in elevated plus maze (5 min), locomotor
activity chamber (10 min) and Porsolt swim test (5 min). For chronic studies the same dose will be administered daily and animals will be tested on day 7, 14 and 21.

Total rats required = 48 (2 groups x 8/group x 3 doses = 48)

Specific Aims 2.

Objective:
Determine whether depressive characteristics in an animal model of depression is associated with low levels of estrogen.

Protocol
Adult female WKY and Wistar rats (10/group) will be sacrificed by decapitation and plasma levels of estrogen (17-beta estradiol) will be determined by radioimmunoassay (RIA).

Total rats required = 20 (2 group x 10/group)

Specific Aims 3.

Objective:
Determine whether acute or chronic tamoxifen or raloxifene may result in depressive characteristics in an animal model.

Protocol
Groups of adult female WKY and Wistar rats (8/group) will be administered various doses (0.1, 0.5 and 1.0 mg/kg) of tamoxifen, raloxifene or vehicle intraperitoneally and 30 min later they will be tested in elevated plus maze (5 min), locomotor activity chamber (10 min) and Porsolt swim test (5 min). For chronic studies the same dose will be administered daily and animals will be tested on day 7, 14 and 21.

Total rats required = 128 (2 groups x 8/group x 2 drugs x 4 doses = 128)
Specific Aims 4.

Objective:
Determine the effects of chronic estrogen, tamoxifen and raloxifene on biogenic amine neurotransmission in discrete brain regions.

Protocol
Microdialysis technique will be applied in evaluating the effects of 17-beta estradiol, tamoxifen and raloxifene on dopaminergic noradrenergic and serotonergic neurons in selective pathways. These pathways will include the shell region of nucleus accumbens (NACC) and the frontal cortex, terminal fields of mesolimbic and mesofrontal pathways, respectively. Although the release of dopamine in the NACC is of primary interest, the release of all three biogenic amines in the frontal cortex will be of significant relevance. This is because the frontal cortex also receives a significant noradrenergic input from the locus coeruleus and serotonergic input from the dorsal raphe.

Groups of untreated WKY and Wistar rats (8/group) will be implanted with microdialysis probes in nucleus accumbens (shell region) and the frontal cortex. Separate groups of rats will be used for each region. They will be administered estrogen, tamoxifen or raloxifene (the highest effective doses as determined in protocol 1 and 3) and the concentration of DA, NE and 5HT in the dialysate will be determined by HPLC-EC.

Number of rats required = 120 (8/group x 2 group x 2 areas x 3 treatments = 96, in addition, 24 rats will be required to determine the stereotaxic coordinates for each region in each strain: 2 strain x regions x 6 rat/region = 24).
ANIMALS

The experiment will be conducted using adult female WKY and Wistar rats. Upon arrival, the animals will be housed at the Veterinary Services, College of Medicine, and Howard University. The animals will be maintained in a group of three or four in a plastic cage at a temperature of 22°C and humidity (50%), exposed to 12-hour light and 12 dark cycles with free access to food and water. The animals will be kept under quarantine for one week prior to

BEHAVIORAL EVALUATIONS

SWIM TEST

The swim test will be conducted in a cylindrical tank 60 cm tall and 18 cm diameter, containing enough 25°C water so that the rat could not touch the bottom with its hindpaws. The animals will be placed in the water and the amount of time it is immobile will be recorded over a single 5 min period (Tizabi et al 1999b, 2000b). It is of relevance to note that immobility of the FSL rats at 5 min correlated highly with immobility at 10 min (Overstreet et al 1994). Therefore, the shorter session will be used in this study. Moreover, it was observed that FSL rats are very immobile, so it was not necessary to have the 15 min pretest session, as is common in standard Porsolt test protocols for other rats (Overstreet et al 1995). The tests will be carried out during the early part of the dark phase, between 10.00 and 14.00 h (Tizabi et al 1999b, 2000b). The validity of this test as an index of depression is well established (Overstreet et al 1994, Pare' 1994, Lucki 1997, Weiss et al 1998). In addition to immobility and swimming time, climbing and diving activity will also be quantified according to Lucki et al (1997). Climbing effort is a reflection of active rather than passive (immobility) behavior and has been attributed to catecholaminergic functions (Lucki 1997, Page et al 1999, see also preliminary results above).
Thus, in our new procedure, the behavior of rats in the swim test will be videotaped. This will not only allow a more accurate scoring capability of all the parameters, but will also afford a collection of permanent record for future viewing if necessary.

LOCOMOTOR ACTIVITY TEST

This test will be conducted in an automated "open field" photocell cage as described in detail (Richardson and Tizabi 1994, Tizabi et al 1997).

ELEVATED PLUS-MAZE Briefly, spontaneous locomotor activity, determined by the total horizontal distance traveled as well as vertical activity determined by the number of rearing will be automatically gathered. Animals will be monitored continuously for 10 minutes. The activity-monitoring cage will be wiped with soap and water after each use. This test will be performed immediately prior to the swim test.

The elevated-plus maze is widely used to test anxiogenic or anxiolytic effects of drugs in rats. The test relies on the relative aversion of rats to walk onto narrow, open arms of the maze as compared to the region that is protected by walls (Pellow et al. 1985; Duncan et al. 1996). Rats make significantly fewer entries into the open arm and spend less time in the open arms as compared to the closed arms of the +maze. Agents that may cause anxiety are likely to reduce the percentage of entries into, and time spent on the open arms. Therefore, the entries made to onto the open arms and the time spend on the open arms are considered to be correlated with anxiety. Expression of the data as the percentage of the total number of arm entries (% number of open arm entries) or total time spent (% time on the open arms) on either the open or the closed arms will be used to correct for the overall changes in exploration of the maze technique (File, 1992; Liter1987). An elevated plus-maze with two open arms (23x6 cm) and two closed arms (23x6x15 cm) that extend from a central platform will be used. The platform is mounted on
a base that is 60 cm high from the floor. Video-camera will be setup and used to record the activities on the two closed and opened arms that extend from the central platform. The animal will be placed in the center of the maze and the following parameters will be scored: time spent in the middle of the central platform and frequency of crossing, time spent in the open arm, time spent in the closed arm, and total number of crossing between arms. The camera automatically records the variables and the data will be later processed using software. Each test will be conducted for five minutes for each animal and the apparatus will be cleaned after each test.

MICRODIALYSIS

Rats will be anesthetized with pentobarbital (60 mg/kg ip) and placed in a Kopf stereotaxic apparatus. After the skull is exposed, two burr holes will be drilled for stereotaxic implantation of two microdialysis probes using standard procedures (Yoshimoto and McBride 1992) with coordinates determined according to the atlas of Paxinos and Watson (1986). Loop-style probes will be used as described (Perry and Fuller 1992) except that these probes will be secured in 18 gauge thin-wall stainless-steel wire, which allows for more accurate placement during surgery (Campbell and McBride 1995). The microdialysis probe will be implanted into areas of interest and will be secured with stainless-steel screws and fixed in place with cranioplast cement. The animals will be allowed 48 hours to recover from surgery before initiating experiments. Surgery will be performed under aseptic condition. Experiments will be performed in awake, freely moving animals. A liquid swivel will be used to connect the microdialysis probes to the microinfusion pump. Artificial cerebral spinal fluid (CSF) (composition in mM: 145 NaCl, 2.7 KCl, 1.0 MgCl₂, 1.2 CaCl₂, pH 7.4 with NaH₂PO₄) will be filtered through a 0.2 μm sterile filter and perfused through the probe at 0.5 μl/min for 60-90 min before baseline samples are collected. Baseline samples will be collected every 20 minutes for
120 minutes. Dialysates will be collected in vials containing 2 ul 0.2 N HCl and will be immediately frozen on dry ice and stored at -80\(^{\circ}\)C until analysis.

At the end of the experiment, a 1% solution of bromphenol blue in artificial CSF will be perfused through the probes to verify placements. Animals will be overdosed with CO\(_2\), decapitated and the brains removed. Brains will be stores at -80\(^{\circ}\)C. Frozen sections will be prepared and probe placements verified according to the atlas of Paxinos and Watson (1986). Only data from animals with verified placements will be analyzed.

MEASUREMENT OF BIOGENIC AMINES

Concentrations of dopamine (DA), norepinephrine (NE) and serotonin (5HT) in dialysates will be carried out by HPLC- electrochemical detectors (Campbell and McBride 1995, Campbell et al 1996, Yoshioka et al 2000, see also preliminary data). The pre-column and analytical column will be UniJet ODS, 3 um, 14mm x 1mm I.D., respectively. The columns will be maintained at 27.5\(^{\circ}\)C using a LC-22C temperature controller. The mobile phase will consist of a mixture of 1000 mL buffer (50 mM sodium citrate, 25 mM monobasic sodium phosphate, 10 mM diethylamine hydrochloride, 2.2 mM sodium octylsulfonate and 0.03 mM disodium EDTA, pH 3.2, adjusted with 85% phosphoric acid), 30 mL acetonitrile, 15 mL dimethylacetamide, and will be filtered through a 0.2 um filter. The flow rate will be at 0.2 mL/min. The back pressure of the system will be 3000-3500 psi. Detection will be at a glassy carbon working electrode (3 mm) maintained at a potential of +700 mV vs Ag/AgCl.

DATA ANALYSIS

Applicable parametric statistical tests will be used to analyze the data. Analysis of the data from the proposed experiments will usually require analysis of variance (ANOVA), since most experiments use more than two groups and/or multi-factor designs. When significant
differences are obtained with ANOVAs, Newman-Keuls post hoc test will be applied to conduct individual comparisons between groups. In the event that comparisons between only two groups are needed, appropriate t-tests will be used to assess significant differences. All analyses will utilize two-tailed distributions and significance level of 0.05.
References

Berry M, Metzger D, Chambon P. 1990. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J. 9: 2811-2818.

Evans RM. 1988. The steroid and thyroid hormone receptor superfamily. Science 240; 889-895

Lucki I. 1997. The forced swimming test as a model core and component behavioral effects of antidepressant drugs. Behav Pharmacol. 8: 523-532

Sheline YI, Gado MH, Price JL. 1998. Amygdala core nuclei volumes are decreased in recurrent major depression. NeuroReport. 9: 2023-2028

Wiseman H, Lewis D. 1996. The metabolism of tamoxifen by human cytochromes P450 is
rationalized by molecular modeling of the enzyme-substrate anti-carcinogenid/carcinogenic actions. Carcinogenesis 17: 1357-60.

SPECIFIC AIMS OF RESEARCH INTERESTS

The development of cisplatin resistance by the cancer cell is one of the major drawbacks in treating patients with cisplatin chemotherapy. Although cisplatin resistance is multifactor, the defective accumulation of cisplatin has emerged as a prominent feature in many cisplatin-resistant cell lines. It is known that the cytotoxicity of cisplatin is dependent on the amount of drug accumulated in the cell. It is also known that a wide variety of physiological and pharmacologic manipulations can modulate the cellular accumulation of cisplatin. For example, cisplatin accumulation is partially dependent on the extracellular Na⁺ concentration, and is altered by osmotic strength, pH, membrane polarization, protein kinase C agonists, calmodulin antagonists, calcium channel blockers, ATP and cAMP. The mechanism by which cisplatin accumulation is reduced in cisplatin-resistant cells is not known. The lack of such knowledge hinders the rational design of specific strategies to overcome accumulation-mediated resistance.

Our long-term goal is to circumvent cisplatin resistance in cells having the cisplatin accumulation defect. The objective of our research, which is the next step in the pursuit of that goal, is to evaluate the relative contribution of cisplatin accumulation to the cytotoxic activity of cisplatin. The central hypothesis is that a specific terbium/cisplatin binding protein plays a key role in the transport of cisplatin across the plasma membrane. This theory has been formulated on the basis of preliminary data produced in our laboratory. Terbium, a lanthanide metal, was found to increase the cellular accumulation and cytotoxicity of cisplatin in human breast cancer cells. The combination of cisplatin and terbium was more effective in cisplatin-resistant cells than in cisplatin-sensitive cells. We discovered the terbium/cisplatin binding protein by using time-resolved terbium luminescence. In our most recent preliminary studies, gadolinium was also found to increase the cellular accumulation of cisplatin in human breast cancer cells. The rationale for this research is that, once the factors that influence the cellular accumulation of cisplatin are known, they can be used to enhance the antitumor efficacy of cisplatin. Our laboratory is unique in its capacity to conduct cancer research from a biophysical point of view at a Historically Black College or University. In addition, we are particularly well prepared to undertake this research, because we have already developed and validated the instruments that will be used to conduct the in vitro studies. The principal investigator is a trained Ph.D. Biophysicist with over twenty (20) years of experience in biophysical cytochemistry. He was the first to establish that the membrane binding of cisplatin is to a specific terbium/cisplatin binding protein. This work will be conducted in a research environment that is conducive for its successful completion. In addition, the Director of the Cancer Center has expressed her enthusiastic support for this project.

We propose to test our central hypothesis and, thereby, achieve the objective of this research, by pursuing the following three specific aims:

1. Evaluate the effects of gadolinium on the cellular accumulation and cytotoxicity of cisplatin in cisplatin-sensitive and cisplatin-resistant human breast cancer cells in vitro.
The working hypothesis for this aim is that the cellular accumulation of cisplatin will increase in the presence of gadolinium, thus increasing the cytotoxicity of cisplatin. This is based on our preliminary studies. Further, gadolinium is a lanthanide metal, having one proton less than terbium. The chemistry and physiological nature of gadolinium are very similar to that of terbium.

2. **Evaluate the combined effects of cisplatin and gadolinium on the growth of cisplatin in cisplatin-sensitive and cisplatin-resistant human breast cancer transplants in mice.**

 The working hypothesis for this aim is that the growth of human breast cancer transplants will decrease to a greater extent in the presence of cisplatin combined with gadolinium than in the presence of cisplatin alone. This is based on our preliminary studies, and on the concept that the pharmacologic behavior of drugs in vivo will be similar to their behavior in vitro.

3. **Determine that the membrane binding of gadolinium is to the terbium/cisplatin binding protein in vitro.**

 Based on our preliminary data, the working hypothesis for this aim is that gadolinium will competitively decrease the membrane binding of terbium, without affecting the binding of cisplatin.

Various strategies have been developed to address specific features of cisplatin resistance. Since cisplatin accumulation is a major determinant of its antitumor activity, research into the mechanism of cisplatin transport is warranted. The proposed research represents an innovative approach to cancer research and treatment. It capitalizes on a novel method to increase the cytotoxicity of cisplatin. Our expectation is that, at the conclusion of this research, we will have confirmed that the coadministration of cisplatin and gadolinium will effectively eliminate cisplatin-resistant cells. We expect that the combination of cisplatin and gadolinium will permit the treatment of breast cancer patient with lower doses of cisplatin. Increasing our basic understanding of the interactions of cisplatin with the terbium/cisplatin binding protein will provide important insight on how breast cancer cells become resistant to cisplatin and on how to circumvent cisplatin resistance. Complete characterization of the terbium/cisplatin binding protein may facilitate the development of cancer-specific drugs devoid of unwanted side effects. Such an outcome is expected to have substantive impact on the future abilities of physicians to treat cancer patients.
RESEARCH DESIGN AND METHOD

The primary objective of our research is to determine whether gadolinium can increase the antitumor activity of cisplatin in athymic nude mice. We plan to examine four different human breast cancer cell lines: MDA, MDA/CH, MCF-7 and MCF-7/CH. Each cell line was chosen because of their hormone dependency, cisplatin sensitivity and mechanism of cisplatin resistance. The main mode of cisplatin resistance in MDA cells is by elevated levels of glutathione, while cisplatin-resistant MCF-7 cells have exhibited a defective accumulation of the drug. The cisplatin-sensitive MDA cells are estrogen receptor negative, hormone-independent cells, and will be used as our experimental control line. In a small pilot project, gadolinium was found to increase the cellular accumulation and cytotoxicity of cisplatin in the MDA cell lines. The cisplatin-sensitive MCF-7 cells are estrogen receptor positive, hormone-dependent cells.

The importance of gadolinium-based magnetic resonance imaging in cancer treatment and research is unquestioned. We will use gadolinium chloride (Gd-Cl) and gadolinium diethylene-triamine pentaacetic acid (Gd-DTPA) in these studies. Chelation of gadolinium with DTPA reduces its toxicity. However, the physicochemical characteristics of Gd-Cl may increase the membrane interaction of gadolinium. Consequently, we plan to use both Gd-Cl and Gd-DTPA. Further, the toxicity of gadolinium is reduced at low concentrations of Gd-Cl.

SPECIFIC AIM: Evaluate the combined effects of cisplatin and gadolinium on the growth of human breast cancer transplants in mice.

The working hypothesis for this aim is that the growth of human breast cancer transplants will decrease to a greater extent in the presence of cisplatin combined with gadolinium than in the presence of cisplatin alone. This is based on our preliminary studies, and on the concept that the pharmacologic behavior of drugs in vivo will be similar to their behavior in vitro.

It is not known whether the preliminary results obtained in vitro will mirror those in vivo. Therefore, research must be performed on animals to obtain any meaningful results applicable to humans. In the experiments described here, we will use an athymic nude mouse model to study the effects of cisplatin and/or gadolinium (i.e., Gd-Cl and Gd-DTPA) on the growth of subcutaneous transplants of cisplatin-sensitive and cisplatin-resistant human breast cancer cells via bioluminescence imaging.

Healthy 7-week old female athymic nude mice (18-22 g) will be randomly assigned to each of three groups (12 mice/group), a tumor-free control and two tumor-bearing experimental groups. Animals will be housed in individual cages, at room temperature (22-25°C) and controlled in 12-hour light-dark diurnal cycles. Experimental animals will be subjected to subcutaneous
transplantation of 1.) cisplatin-sensitive or 2.) cisplatin-resistant dissociated cells from human breast cultures. Cancer cell inoculum will be assigned randomly across all tumor-bearing control and experimental groups. Subcutaneous transplantation will be performed under sterile conditions. The cancer cell inoculum will be loaded into trocars for subcutaneous inoculation in the back of the animal at a volume of 0.2 ml, a volume expected to contain approx. 10^5 cells. Prior to these experiments, standard curves will be constructed for each cell line. The mean number of photon will be measured as a function of cells (25 to 2.5×10^5) transplanted into the animals.

Experimental animals in groups 1 and 2 will be inoculated with tumor tissue and those in group 3 will be tumor-free controls. Animals will be age-matched and fed a diet containing normal levels of all dietary nutrients.

Food and drinking water will be provided *ad libitum*. Because of the sensitivity of tumor growth to food intake, food intake will be carefully measured three times per week, accounting for spillage, and daily intake values will be computed. Usually, during a 28-day experiment, 10%–30% of the experimental animals might expire. Their data will be omitted; thereby, having the potential to decrease the numbers in each of the experimental tumor-bearing groups to, at worst case, 10 mice. Twelve animals will be used in each control and experimental group, therefore, to obviate the possibility that too small a number of surviving experimental animals could compromise statistical significance of these studies. Death will not be used as an endpoint in this research. Body weight-loss is a reliable indicator for the time of death in tumor-bearing animals. The signs of pain and distress are readily recognized and assessed in laboratory rodents. Tumors will be considered painful, when the animals display abnormal locomotion, cease to eat and drink normally, bite or mutilate their affected area; at which time, the animals will be sacrificed via cervical dislocation. Mice will be sacrificed when their weights decrease by 10% of their original value.

Growth Modulation of Cisplatin-Sensitive and Cisplatin-Resistant Cancer Cells by Gd-Cl and Gd-DTPA: Twelve animals in the control and twelve animals in each of the experimental groups will be intravenously injected (0.1 ml, via the tail vein) with a vehicle (control), cisplatin, Gd-Cl, Gd-DTPA, cisplatin + Gd-Cl, cisplatin + Gd-DTPA on days 2, 5 and 8 after cancer cell transplantation. Initially, (unless determine otherwise), the following drug concentrations will be used in all cases: cisplatin = 3 mg/kg, Gd-Cl = 37.2 mg/kg and Gd-DTPA = 59 mg/kg. Studies will be performed on animals with cisplatin-sensitive and cisplatin-resistant tumor transplants of human breast cancer cells using the same methods as described above for characterizing the growth of these tumor transplants. The data will be evaluated by descriptive statistics, Student's *t*-test, one-way ANOVA, as well as presented in graphical or tabular format to illustrate the effects of drug combination or time after drug treatment on cancer cell number (i.e., Mean Photon Counts). Using a two-way ANOVA, the data obtained for the control cisplatin-sensitive parent cell line will be compared to the data for each cisplatin-resistant daughter cell line, as well as that of the other cell lines.
GRADUATE ONCOLOGY COURSE
SYLLABUS

EPIDEMIOLOGY OF CANCER
Lucille Adams-Campbell, Ph.D., Director HUCC & Professor of Medicine
Flora Ukoji, MD; D.P.H., MPH, Pamela Carter-Nolan, Ph.D., Division of Epidemiology and Biostatistics, HUCC

Educational Objectives:
1. To provide an understanding of epidemiology in cancer research.
2. To provide an understanding of the epidemiology of specific cancers which effect minority communities (e.g., breast, prostate, GI, etc.).
3. To evaluate the cause-effect relationships that may exist between risk factors and specific cancers effecting minority populations (e.g., evaluating the consistency of epidemiologic data with etiologic hypotheses identified either clinically or experimentally).
4. To provide the basis for developing and understanding preventive procedures and public health practice.

Instructional Units/Topics:
1. Basic Concepts
 Causation and Causal Inference
 Molecular Epidemiology in Cancer Prevention

2. Magnitude of Cancer
 Cancer Incidence, Mortality, and Survival among Racial and Ethnic Minority Groups in the US

3. Causes of Cancer
 Risk factors associated with cancers that effect Minority Populations

4. Cancer Prevention and Control
 Principles and Applications of Cancer Prevention
 Health Education and Health Promotion
 Clinical Trials
 Fundamental Issues in Screening

References: (Tentative)
CANCER STATISTICS AND STATISTICAL METHODS;
EPIDEMIOLOGY OF CANCER
Kyung Sook Kim, Ph.D., assistant professor, Division of Epidemiology and Biostatistics, HUCC

Introduction to Biostatistics
Kyung Sook Kim, Ph.D., Assistant professor, Department of Community Health and Family Practice.

Educational Objectives:
Upon successful completion of this component, participants will be able to
1. Develop an understanding of the statistical concepts and of how and when to apply various statistical techniques.
2. Better understand published medical literature and critically evaluate authors' conclusions.

Instructional Units:
The student shall distinguish the following concepts:

1. Descriptive statistics/ Graphic representation
2. Probability
3. Normal Distribution
4. Statistical Inference
5. Correlation, Regression
6. Survival Curve
7. Sample size, power

References:
CELL CYCLE AND CANCER
Hassan Ashktorab, Ph.D., graduate assistant professor, GI Division, Department of Medicine, Howard University; Gastrointestinal Carcinogenesis Laboratory, Howard University Cancer Center.

Instructional Units/Topics
1. Biochemistry and genetics of the cell cycle; growth factors, growth factor receptors, and receptor-mediated signaling; cell cycle regulators (cyclins and cyclin-dependent kinases (CDKs); inhibitors of CDKs (CDIs)
2. Cell cycle-related gene expression, checkpoints, transitions.
3. Cell cycle dysregulation and oncogenesis
4. p53, Rb, etc tumor suppressors and regulation of cell cycle

MOLECULAR DIAGNOSIS OF CANCER
Hassan Ashktorab, Ph.D., graduate assistant professor, GI Division, Department of Medicine, Howard University; Gastrointestinal Carcinogenesis Laboratory, Howard University Cancer Center.

Instructional Units/Topics
1. Current methods for molecular diagnosis of various cancers
2. Molecular basis of diagnostic techniques for breast cancer
3. Translational studies and clinical benefits

References:

Cell Cycle and Cancer
4. Dickson C; Pauil V; Gillett C; Brookes S; Bartek J; Smith R; Fisher C; Barnes D; Peters Amplification of chromosome band 11q13 and a role for cyclin D1 in human breast cancer. Cancer Lett 1995 Mar 23;90(1):43-50

Cell cycle machinery
3. Grana X; Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases
(CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995 Jul 20;11(2):211-9
13. Ishikawa T; Akimaru K; Nakanishi M; Tomokiyo K; Furuta K; Suzuki M; Noyori Anti-cancer-prostaglandin-induced cell-cycle arrest and its modulation by an inhibitor of the ATP-dependent glutathione S-conjugate export pump (GS-X pump). Biochem J 1998 Dec 15;336(Pt 3):569-76
15. Sgambeato A; Flamino O; Cittadini A; Weinstein IB. Tumorigenesis in cell cycle control in cancer and their clinical implications. 1998 Jul-Aug;84(4):421-33
17. Wang S; Wu J; Savas I; Patwardhan N; Khan. The role of cell cycle regulatory proteins, cyclin D1, cyclin E, and p27 in thyroid carcinogenesis. Hum Pathol 1998 Nov;29(11):1304-9
18. Zhou JR; Mukherjee P; Gugger ET; Tanaka T; Blackburn GL; Clinton. Inhibition of murine bladder tumorigenesis by soy isoflavones via alterations in the cell cycle, apoptosis, and angiogenesis. Cancer Res 1998 Nov 15;58(22):5231-8
NUTRITION AND CANCER
Tanya Agurs-Collins, Ph.D., R.D., Nutrition Epidemiologist, Howard University Cancer Center, and Assistant Professor, Department of Community Health and Family Practice, Howard University College of Medicine.

Educational Objectives:
Upon successful completion of this component, participants will be able to:

Describe the biological principles of nutritional oncolgy
Understand the mechanisms/pathways that link nutritional status and the etiology of cancer
Understand the relationship between diet, nutrition and cancer prevention.

Instructional Units/Topics:
1. Fundamentals of nutrition: applications to cancer research
2. Epidemiology basis of nutritional influences on cancer
3. Dietary assessment and cancer prevention
4. Fruits and vegetable intake and cancer prevention
5. Energy balance, anthropometry and cancer
6. Dietary fiber, carbohydrate and cancer
7. Dietary lipid, alcohol and cancer
8. Functional foods and cancer prevention

References:
17. Block G, Patterson B, Subar A. Fruit, vegetables and cancer prevention: a review of the

CANCER CHEMOTHERAPY: AGENTS AND TARGETS
Fred Lombardo, Pharm. D., College of Pharmacy and Pharmacal Sciences, and H.U. Cancer Center Faculty.

Topics/Instructional units
Agents utilized in cancer therapy
Cell cycle specificity: cytotoxicity

S-phase (antimetabolites)
1. Antifolates (Methotrexate, Trimetrexate)
2. Antipyrimidines (Cytarabine, 5-Fluorouracil, etc)
3. Antipurines (6-Mercaptopurine, 6-Thioguanine)
4. Miscellaneous Agents (Hydroxyurea, Procarbazine)

G2-Phase
Bleomycin

M-Phase
1. Vinca alkaloids (Vincristine, Vinblastine, Vinorelbine)
2. Podophytoxins (Etoposide, Teniposide)
3. Taxanes (Taxol, Taxotere)

G0-Phase
1. Nitrosoureas
2. Alkylators
3. Intercalators

G1-Phase
1. L-asparaginase
2. Steroids

Cell cycle Non-Specificity
Apoptosis
Anti-Angiogenic Agents
Monoclonal Antibodies in cancer therapy
Cytokines/Chemokines
APOPTOSIS AND CANCER
Theodore A. Brømsen, Ph.D., graduate associate professor, Department of Biology, and Tumor Biology Laboratory, Howard University Cancer Center; adjunct associate professor of molecular biology (research), Department of Cell Biology, Molecular Biology, and Biochemistry, Brown University.

Educational Objectives:
Upon successful completion of this component, participants will be able to
1. Describe apoptotic pathways and discuss the importance of apoptosis as a mechanism of tissue homeostasis, and its abrogation in cancer.
2. Discuss the role of the Bcl-2 family of proteins in modulating apoptosis.
3. Understand the loss of susceptibility to apoptosis as a mechanism of tumor promotion, and resistance to cancer chemotherapeutic drugs.
4. Describe the caspase activation cascade involved in Fas-mediated apoptosis; the mechanism of activation of caspases, and the cleavage of critical death substrates during programmed cell death.
5. Describe the role of the p53 tumor-suppressor gene in the induction of apoptosis in response to DNA damage or viral infection.
7. Discuss the mechanisms of action of oncolytic viruses on p53-negative tumors.
8. Describe laboratory methods of detection and quantitation of apoptosis.

Instructional Units:
2. Oncogenes and tumor suppressor genes that affect (primarily) cell cycling, apoptosis, or both (excluding ras, p53, and Rb, covered earlier): fos, APC, DCC, PTEN, Cbl, MTS1, BRCA1. Fos and gene silencing via methylation; the APC/β-catenin signaling pathway; PTEN and abrogation of survival signaling; DCC, a dependence receptor. Fearon-Vogelstein model of colorectal carcinogenesis.
3. Receptor-mediated apoptotic signaling: Fas/Apo-1/CD95 and Fas ligand (FasL) in immune regulation and cell-mediated killing.
4. Proapoptotic and antiapoptotic molecules: Bcl-2 family members, NF-κB, cIAP, superoxide.
5. Mechanisms of p53 potentiation of apoptosis in response to DNA damage and viral infection: ATM kinase and phosphorylation of p53; transcriptional regulation of bax and bcl-2; Fas trafficking.
7. Laboratory methods for the detection and quantitation of apoptosis: DNA laddering, nuclear morphology, phosphatidyl serine (PS) externalization and Annexin V binding, TUNBL analysis, flow cytometry (FCM) using propidium iodide, Hoechst 33342, Annexin V-FITC labeling. Interpretation of FCM data.
WWW RESOURCES

American Cancer Society: http://www.cancer.org/
Apoptosis Online: http://www.apopnet.com/
BioMedLink: http://biomedlink.com
Cancer Coalition: http://www.cancercollection.org
Cell and Molecular Biology Online: http://www.cellbio.com/
Cells Alive: http://www.cellsalive.com
Howard Hughes Medical Institute: http://www.hhmi.org
Leukemia Society of America: http://www.leukemia.org/docs/fs_leuk_rel.html
National Library of Medicine (Internet Grateful Med; Pub Med; etc. Literature searches in all areas of the biomedical sciences): http://www.nlm.nih.gov/
National Cancer Institute (NCI): Cancer Trials; CancerNet™, NCI Event Calendar; Research at NCI;
Office of International Affairs, etc.: http://www.nci.nih.gov
OncoLink (University of Pennsylvania): http://oncolink.upenn.edu/upcc/
UICC (International Union Against Cancer/Union Internationale Contre le Cancer): http://www.uicc.org

Tutorials
Flow cytometry in cell cycle analysis and apoptosis: An excellent tutorial is available at the Derek Davies Home Page (Imperial Cancer Research Fund (ICRF), London:
http://www.lif.icrnet.uk/axp/facs/davies/annexin2.gif
Can be accessed through BioMedLink: http://biomedlink.com

About Apoptosis, by P. Henkart, NIH
A Brief Introduction to Apoptosis by L. W. Browder
Apoptosis, Radiosensitivity and the Cell Cycle, by W Gillies McKenna, M.D., Ph.D. in OncoLink
Can be accessed through http://www.apopnet.com/
References:

BIOLOGY OF RADIOTHERAPY
Raj Sridhar, Ph.D., graduate associate professor, Dept. of Radiation Oncology, Howard University Hospital.

Topics/Instructional Units
1. Types of radiation used in cancer therapy
2. Interactions of radiation with matter
3. Concept of radiation
4. Dose-response curves, cellular target for radiation damage
5. Repair of radiation damage
6. Fractionation of radiation dose
7. Normal tissue tolerance and radiation response of tumors
8. Goals of radiation therapy and multi-modality treatment of cancer
9. Radiosensitization, radioprotection and drug radiation interactions
10. Brachytherapy

References:
CHEMOPREVENTION AND CARCINOGENESIS
Joel Schwartz, D.M.D., D.M.Sc., Director of Research, College of Dentistry, Howard University
Department of Oral Maxillofacial Pathology, Rm. 2A-3, Laboratory, 2F-8. Pjones: (202) 806-0094; (202)
806-0345

Educational Objectives
Upon successful completion of this component, participants will have knowledge of:

1. The possible mechanisms for the prevention of cancer.
2. The interaction of nutrients with cellular processes.
3. The specific oxidative-redox features of nutrients that result in the modification of cellular processes.
4. The redox characteristics of tumor suppressor genes.
5. The redox features (describing features) of programmed cell death and DNA repair. (?)
6. Transcription response to redox molecules.
7. Alterations in the cell cycle as derivatives of chemopreventive actions.
8. Carcinogenesis described by molecular and histopathologic markers.

Topics/Instructional Units
1. Programmed cell death: the tumor suppressor and immune generated pathways: assays to assess chemopreventive modifications.
2. Laboratory methods to detect nutrient chemopreventive agents: animal and laboratory assays.
3. Laboratory methods to detect novel mutations in tumor suppressor genes and protocols to determine novel for early malignant transformation.
4. Focus on the interaction between nutrient chemopreventives, and/or diet and the process of oral carcinogenesis.

References:
CANCER GENETICS AND GENOMICS
Carolyn Watfield Broome, Ph.D., Associate professor, Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, and
Rick Kittles, Ph.D., Human Genome Research Associate, Cancer center, Howard University.

Educational Objectives

Instructional Units/Topics

References:
BEHAVIOR
Paige Green-McDonald, Ph.D., Assistant professor of Medicine, Division of Epidemiology and Biostatistics, Howard University Cancer Center.

Educational Objectives
Upon successful completion of this component, participants will be able to:

1. Describe the role of behavioral research in the prevention, early detection, and control of cancer
2. Identify and discuss priorities in behavioral research related to cancer prevention and control
3. Identify and describe health behavior theories in cancer prevention and control
4. Critically discuss and evaluate behavioral interventions used in cancer prevention and control

Instructional Units/Topics
1. Risk factors: tobacco use, diet, physical exercise, alcohol use, stress, racism, socioeconomic status
2. Priorities in behavioral research in cancer prevention and control
3. Individual health behavior theories: Health Belief Model, Theory of Reasoned Action, Transtheoretical model of change, Prospect Theory, Transactional Model of Stress and Coping
4. Interpersonal health behavior theories: Social Cognitive Theory, social networks and social support, patient-provider communication
5. PRECEDE-PROCEED Planning Model
6. Race in cancer prevention and control
7. Behavioral intervention studies

References:
DRAFT LETTER TO DIRECTORS OF GRADUATE PROGRAMS AND CHAIRS OF DEPARTMENTS

Dear Director, chairman, etc.:

The Howard University Cancer Center would like to request your help in developing a graduate course in oncology. We also invite you to suggest ways of increasing the interest of graduate, medical and other students in such a course. At present, there is no comprehensive course in oncology at the university. The proposed course will utilize the primary literature, and instructional units will be designed to give the student a background in the processes associated with the development of cancer as well as to stimulate interest in cancer research.

The course will also cover prevention, detection and treatment of various cancers with special emphasis on those cancers that have a disparate impact on minority populations. We believe that the experience would be a valuable supplement to graduate education in a variety of biomedical specialties. The teaching staff will be drawn from the various colleges of the university, but primarily from faculty conducting ongoing basic and clinical research at Howard University Cancer Center. In addition, noted authorities in various specialties will be invited as guest lecturers. They will be selected for their excellence in cancer research and training, as well as for their interest in cancer in minority populations.

Please assist us by estimating the number of graduate students in your administrative area who might be interested in registering for this course. A copy of the draft syllabus is enclosed for your comments and suggestions which should be forwarded to the address below no later than ____________________.

Dr. Lucile Adams-Campbell, Director, HUCC
Chair, Graduate Oncology Course Committee
Howard University Cancer Center
2041 Georgia Avenue, NW
Washington, DC 20060
E-mail: ladams-campbell@fac.howard.edu
Telephone: (202) 806-7697; Fax: (202) 667-1686

We thank you for your assistance in this endeavor.

Sincerely

Lucile L. Campbell-Adams, Ph.D.
Professor
GRADUATE ONCOLOGY COURSE

Proposed Class: 12 to 15 for the first year, with projected growth of approximately 20% per year to a total of 30.

Class meetings: 2 meetings per week, 90 minutes each

Proposed Times: 5:00 - 6:30 PM, Mon, Wed.

Tentative list of prospective guest lecturers and consultants

Donald Coffey
Marc Lipman
Richard Klausner
Nancy Dawson
Eddie Reid
Bruce Trock
John Finerty
Curt Harris
E. Premkumar-Reddy
21 January 2000

Meeting with Dr. Donald Coffey
Brady Urological Institute (Rm 121)
Marburg Building
Johns Hopkins Medical Institutions

SUBJECT: Collaboration on developing the "Integrative Oncology Course" for the
HU College of Medicine through the HU Cancer Center

<table>
<thead>
<tr>
<th>Prospective JHU Faculty</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stewart Grossman</td>
<td>Neuro-oncology and pain</td>
</tr>
<tr>
<td>Steve Piantidosi</td>
<td>Statistics/ Clinical trials</td>
</tr>
<tr>
<td>Bert Vogelstein</td>
<td>Cell cycle control</td>
</tr>
<tr>
<td>Ken Kensler</td>
<td>Cell cycle control</td>
</tr>
<tr>
<td>Ted De Weese</td>
<td>Radiation biology/radiotherapy</td>
</tr>
<tr>
<td>William G. Nelson</td>
<td>Nutrition and cancer, molecular biology, therapy</td>
</tr>
<tr>
<td>John Isaacs</td>
<td>Cancer and chemotherapy</td>
</tr>
<tr>
<td>Don Coffey</td>
<td>Apoptosis, chemotherapy, epigenetics, prevention</td>
</tr>
<tr>
<td>Tom Kensler</td>
<td>Chemoprevention</td>
</tr>
<tr>
<td>John Groopman</td>
<td>Chemoprevention</td>
</tr>
<tr>
<td>Jim Zabor</td>
<td>Behavior; cancer control</td>
</tr>
<tr>
<td>Scott Kearn</td>
<td>Cancer genetics (pancreas)</td>
</tr>
<tr>
<td>Steve Baylin</td>
<td>Methylation</td>
</tr>
<tr>
<td>Drew Pardoe</td>
<td>Cancer immunology</td>
</tr>
<tr>
<td>Hilivitski</td>
<td>Cancer immunology</td>
</tr>
<tr>
<td>Liz Jaffe</td>
<td>Cancer immunology</td>
</tr>
<tr>
<td>Jim Herman</td>
<td>Methylation</td>
</tr>
</tbody>
</table>

Opening lecture by Don Coffey:

An Overview to the Understanding and Control of Cancer
PROPOSED SCHEDULE OF LECTURES FOR THE FIRST YEAR

The class will meet twice weekly for 90 minutes per session.
Proposed hrs: Mon. 4:00 to 5:30 PM; Wed 4:00 to 5:30 PM

FIRST SEMESTER
Lectures 1 and 2, (lecture titles are tentative):

Week 1

1. *Introduction and welcome. Opening lecture.*
2. *An Overview to the Understanding and Control of Cancer.*
 Dr. Donald Coffey, Johns Hopkins Oncology Center (JHOC)
 Dr. Donald Coffey, JHOC

Week 2

1. *Genetics of Cancer*
 Dr. Kenneth Kinzler, JHOC
2. To be determined

Week 3

1. *Epigenetics of Cancer*
 Dr. Theodore A. Bremner, Howard University Cancer Center (HUCC)
2. Dr. Stephen Baylin, JHOC

Week 4

1. *Cell Cycle and Cell Growth*
 Dr. Hassan Ashktorab, HUCC
2. Dr. Chi Dang, JHOC

Submission of research proposal abstracts. 3 - 5-page concept paper.

Week 5

1. *Apoptosis*
 Dr. Theodore A. Bremner, HUCC
2. Dr. John Isaacs, JHOC

Week 6

1. *Mechanisms of Carcinogenesis*
 Dr. Joel Schwartz, College of Dentistry, Howard University
2. Dr. Thomas Kensler, JHOC

Week 7

1. *Cancer Statistics And Statistical Methods*
 Kyung Sook Kim, Ph.D., HUCC
2. Kyung Sook Kim, Ph.D., HUCC

Week 8

1. *Epidemiology of Cancer*
 Dr. Pamela Carter-Nolan, HUCC
2. Dr. Flora Ukoli, HUCC
Week 9
Cancer Prevention
1. Dr. Joel Schwartz, Howard University College of Dentistry
2. Dr. John Groopman, JHOC

Week 10
Radiation Therapy
1. Dr. Raj Sridhar, HUCC
2. Dr. Theodore DeWeese, JHOC

Week 11
Cancer Chemotherapy
1. Dr. Frederick Lombardo, HUCC
2. Dr. William Nelson, JHOC

Week 12
Cancer Immunology
1. Dr. Drew Pardoll, JHOC
2. Dr. Hyam Levitsky, JHOC

Week 13
Nutrition and Cancer
1. Dr. Tanya Agurs-Collins, HUCC
2. Dr. William Nelson, JHOC

Week 14
Behavior and Cancer
1. Dr. Paige McDonald, HUCC
2. Dr. Richard Klausner (proposed, to be invited)

Week 15
Oral and written presentations of research proposals: Students will present their proposals for research in any of the areas covered in the course to a panel of HUCC and JHOC faculty. Reviewers will critique proposals for aims, feasibility, background, and methods.

Reading period Faculty will be available for conferences, discussions, etc.

FINAL EXAMINATION:

STUDENTS WILL TAKE A WRITTEN EXAMINATION IN ESSAY FORMAT DESIGNED TO TEST THEIR KNOWLEDGE AND APPLICATION OF SKILLS AND CONCEPTS DEEMED BY THE TEACHING FACULTY TO BE OF FUNDAMENTAL IMPORTANCE TO THE AIDS AND OBJECTIVES OF THE COURSE.

SECOND SEMESTER
Registration for the second semester will be limited to students whose performance in the first semester was superior and who demonstrated an active interest in cancer research. It is proposed that the second semester will be devoted to research seminars and focused discussions, to assist students in identifying specific areas of investigation and career opportunities. The syllabus for the second semester will be developed in consultation with all members of the teaching staff and other consultants as needed.
Topic areas to be developed include the following:

1. Principles of research and Experimental design
2. Exploration of gene and protein sequence databases in relation to cancer
3. Development of grant proposals for support of pre-doctoral and post-doctoral cancer research
4. Completion of NIH Form 398, and similar instruments
5. Applications for Internal Review Board (IRB) approvals, consent forms, etc.
6. Animal models (transgenic and orthotopic mouse models, etc)
7. Translational studies and clinical trials
8. Ethics and Scientific misconduct
GRADUATE ONCOLOGY COURSE
SYLLABUS

CANCER GENETICS AND ONCogenes
Carolyn Whitfield Broome, Ph.D., graduate associate professor, Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, and Howard University Cancer Center.

Educational Objectives
1. To understand the role of germ line and somatic cell mutations in the development of cancer, particularly in African Americans.
2. To critically evaluate the literature
3. To understand the methods used to detect mutations.
4. To examine the function of the normal and mutated gene.

Instructional Units/Topics
1. Breast Cancer
2. Prostate Cancer
3. Colorectal Cancer

References:
carcinomas, and association of codon-12 valine with early mortality. J. Path. 185, 130-138.

EPIGENETICS OF CANCER
Theodore A. Bremner, Ph.D., graduate associate professor, Department of Biology, and Tumor Biology Laboratory, Howard University Cancer Center

Educational Objectives
1. To explore the mechanisms of gene silencing by DNA methylation
2. To understand the mechanisms by which tumor suppressor genes can be silenced by DNA methylation.
3. To study the role of DNA methylation in the action of selected oncogenes.

Instructional Units
1. Regulation of transcription by modulation of chromatin architecture: histone deacetylase and DNA methyltransferase.
2. DNA methylation and the mechanism of fos tumorigenesis.

References

CELL CYCLE AND CANCER

Hassan Ashktorab, Ph.D., *graduate assistant professor*, GI Division, Department of Medicine, Howard University; Gastrointestinal Carcinogenesis Laboratory, Howard University Cancer Center.

Instructional Units/Topics

1. Biochemistry and genetics of the cell cycle; growth factors, growth factor receptors and receptor-mediated signaling; cell cycle regulators (cyclins and cyclin-dependent kinases (CDks); inhibitors of CDKs (CDIs)
2. Cell cycle-related gene expression, checkpoints, transitions.
3. Cell cycle dysregulation and oncogenesis
4. p53, Rb, etc tumor suppressors and regulation of cell cycle

MOLECULAR DIAGNOSIS OF CANCER

Hassan Ashktorab, Ph.D., *graduate assistant professor*, GI Division, Department of Medicine, Howard University; Gastrointestinal Carcinogenesis Laboratory, Howard University Cancer Center.

Instructional Units/Topics

1. Current methods for molecular diagnosis of various cancers
2. Molecular basis of diagnostic techniques for breast cancer
3. Translational studies and clinical benefits

References:

Cell Cycle and Cancer

4. Dickson C; Fantl V; Gillett C; Brookes S; Bartek J; Smith R; Fisher C; Barnes D; Peters Amplification of chromosome band 11q13 and a role for cyclin D1 in human breast cancer. *Cancer Lett* 1995 Mar 23;90(1):43-50
5. Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with
the HPV-16 E7 oncoprotein. Genes Dev 1997 Aug 15;11(16):2090-100
16;266(5192):1821-8
7. Hunter T; Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age
Cell 1994 Nov 18;79(4):573-82
8. Hui R, Cornish AL, McClelland RA, Robertson JFR, Blamey RW, Musgrove EA,
Nicholson RI, Sutherland RL. Cyclin D1 and Estrogen Receptor Messenger RNA
Jun;2(6):923-928
9. Prall OW, Rogan EM, Musgrove EA, Watts CK, Sutherland RL. c-Myc or cyclin D1
mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Mol Cell
10. Tahara E. Genetic alterations in human gastrointestinal cancers. The application to
11. Waga S, Stillman B. Cyclin-dependent kinase inhibitor p21 modulates the DNA

Cell cycle machinery
1. Charollais RH; Tiwari S; Thomas. Into and out of G1: the control of cell proliferation.
Biochimie 1994;76(9):887-94
2. Deshaies RJ. The self-destructive personality of a cell cycle in transition. Curr Opin
3. Grana X; Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin
dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase
inhibitors (CKIs). Oncogene 1995 Jul 20;11(2):211-9
4. Heichman KA; Roberts JM. CDC16 controls initiation at chromosome replication
6. Kraneburg O; van der Eb AJ; Zantema A. Cyclin-dependent kinases and pRb:
26;367(2):103-6
Oct;4(10):1103-6
9. Peepers DS; van der Eb AJ; Zantema A. The G1/S cell-cycle checkpoint in eukaryotic
10. Peepers DS; Bernard R. Communication between the extracellular environment,
cytosolic signalling cascades and the nuclear cell-cycle machinery. FEBS Lett
1997 Jun 23;410(1):11-6
11. Yu D; Jing T; Liu B; Yao J; Tan M; McDonnell TJ; Hung. Overexpression of ErbB2
blocks Taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2
12. Iseki H; Ko TC; Xue XY; Seapan A; Townsend CM Jr. A novel strategy for
inhibiting growth of human pancreatic cancer cells by blocking cyclin-dependent
13. Ishikawa T; Akimaru K; Nakanishi M; Tomokiyoko K; Furuta K; Suzuki M; Noyori
Anti-cancer-prostaglandin-induced cell-cycle arrest and its modulation by an inhibitor
of the ATP-dependent glutathione S-conjugate export pump (GS-X pump). Biochem
J 1998 Dec 15;336(Pt 3):569-576
14. Su ZZ; Madireddi MT; Lin JJ; Young CSH; Kitada S; Reed JC; Goldstein NI; Fisher
The cancer growth suppressor gene mda-7 selectively induces apoptosis in human
breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci U S A
15. Sgambato A; Flamini G; Cittadini A; Weinstein IB. Tumor Abnormalities in cell
16. Bardon S; Picard K; Martel. Monoterpenes inhibit cell growth, cell cycle progression,
and cyclin D1 gene expression in human breast cancer cell lines. Nutr Cancer
1998;32(1):1-7
17. Wang S; Wuu J; Savas L; Patwardhan N; Khan. The role of cell cycle regulatory
proteins, cyclin D1, cyclin E, and p27 in thyroid carcinogenesis. Hum Pathol 1998
Nov;29(11):1304-9
18. Zhou JR; Mukherjee P; Gugger ET; Tanaka T; Blackburn GL; Clinton. Inhibition of
murine bladder tumorigenesis by soy isoflavones via alterations in the cell cycle,

APOPTOSIS AND CANCER
Theodore A. Bremner, Ph.D., graduate associate professor, Department of Biology,
and Tumor Biology Laboratory, Howard University Cancer Center

Educational Objectives:
Upon successful completion of this component, participants will be able to
1. Describe apoptotic pathways and discuss the importance of apoptosis as a
 mechanism of tissue homeostasis, and its abrogation in cancer.
2. Discuss the role of the Bcl-2 family of proteins in modulating apoptosis.
3. Understand the loss of susceptibility to apoptosis as a mechanism of tumor
 promotion, and resistance to cancer chemotherapeutic drugs.
4. Describe the caspase activation cascade involved in Fas-mediated apoptosis; the
 mechanism of activation of caspases, and the cleavage of critical death substrates
 during programmed cell death.
5. Describe the role of the p53 tumor-suppressor gene in the induction of apoptosis in
 response to DNA damage or viral infection.
6. Describe the association between the p53 proline/arginine 72 polymorphism and risk
 of human papillomavirus-associated cervical cancer.
7. Discuss the mechanisms of action of oncolytic viruses on p53-negative tumors.
8. Describe laboratory methods of detection and quantitation of apoptosis.

Instructional Units:
1. Tissue homeostasis: proliferation and apoptosis. Survival/anti-apoptotic signaling:
 Akt/PKB and NF-κB in anti-apoptotic signaling.
2. Oncogenes and tumor suppressor genes that affect (primarily) cell cycling, apoptosis, or both (excluding ras, p53, and Rb, covered earlier): fos, APC, DCC, PTEN, Cbl, MTS1, BRCA1. Fos and gene silencing via methylation; the APC/β-catenin signaling pathway; PTEN and abrogation of survival signaling; DCC, a dependence receptor. Fearon-Vogelstein model of colorectal carcinogenesis.

3. Receptor-mediated apoptotic signaling: Fas/Apo-1/CD95 and Fas ligand (FasL) in immune regulation and cell-mediated killing.

4. Proapoptotic and antiapoptotic molecules: Bcl-2 family members, NF-κB, cIAP, superoxide.

5. Mechanisms of p53 potentiation of apoptosis in response to DNA damage and viral infection: ATM kinase and phosphorylation of p53; transcriptional regulation of bax and bcl-2; Fas trafficking.

7. Laboratory methods for the detection and quantitation of apoptosis: DNA laddering, nuclear morphology, phosphatidyl serine (PS) externalization and Annexin V binding; TUNEL analysis, flow cytometry (FCM) using propidium iodide, Hoechst 33342, Annexin V-FITC labeling. Interpretation of FCM data.

WWW RESOURCES

American Cancer Society: http://www.cancer.org/
Apologetis Online: http://www.apopnet.com/
BioMedLink: http://biomedlink.com
Cancer Coalition: http://www.cancercoalition.org
Cell and Molecular Biology Online: http://www.cellbio.com/
Cells Alive: http://www.cellsalive.com
Howard Hughes Medical Institute: http://www.hhmi.org
Leukemia Society of America: http://www.leukemia.org/docs/fs_leuk_rel.html
National Library of Medicine (Internet Grateful Med; Pub Med; etc. Literature searches in all areas of the biomedical sciences): http://www.nlm.nih.gov/
National Cancer Institute (NCI): Cancer Trials; CancerNet™, NCI Event Calendar; Research at NCI; Office of International Affairs, etc.: http://www.nci.nih.gov
OncoLink (University of Pennsylvania): http://oncolink.upenn.edu/upcc/
UICC (International Union Against Cancer/Union Internationale Contre le Cancer): http://www.uicc.org

Tutorials
Flow cytometry in cell cycle analysis and apoptosis: An excellent tutorial is available at the Derek Davies Home Page (Imperial Cancer Research Fund (ICRF), London):
http://www.lif.icnet.uk/axp/facs/davies/annexin2.gif
Can be accessed through BioMedLink: http://biomedlink.com

About Apoptosis, by P. Henkart, NIH
A Brief Introduction to Apoptosis by L. W. Browder
References:

CARCINOGENESIS AND CHEMOPREVENTION

Joel Schwartz, D.M.D., D.M.Sc., Director of Research, College of Dentistry, Howard University

Department of Oral Maxillofacial Pathology, Rm. 2A-3, Laboratory, 2F-8. Pjones: (202) 806-0094; (202) 806-0345

Educational Objectives

Upon successful completion of this component, participants will have knowledge of:

1. The possible mechanisms for the prevention of cancer.
2. The interaction of nutrients with cellular processes.
3. The specific oxidative-redox features of nutrients that result in the modification of cellular processes.
4. The redox characteristics of tumor suppressor genes.
5. The redox features [describing features] of programmed cell death and DNA repair.
6. Transcription response to redox molecules.
7. Alterations in the cell cycle as derivatives of chemopreventive actions.
8. Carcinogenesis described by molecular and histopathologic markers.
Topics/Instructional Units
1. Programmed cell death: the tumor suppressor and immune generated pathways: assays to assess chemopreventive modifications.
2. Laboratory methods to detect nutrient chemopreventive agents: animal and laboratory assays.
3. Laboratory methods to detect novel mutations in tumor suppressor genes and protocols to determine novel for early malignant transformation.
4. Focus on the interaction between nutrient chemopreventives, and/or diet and the process of oral carcinogenesis.

References:
EPIDEMIOLOGY OF CANCER
Lucille Adams-Campbell, Ph.D., Director HUCC & Professor of Medicine
Flora Ukoli, MD, D.P.H., MPH, Pamela Carter-Nolan, Ph.D., Division of Epidemiology
and Biostatistics, HUCC

Educational Objectives:
1. To provide an understanding of epidemiology in cancer research.
2. To provide an understanding of the epidemiology of specific cancers which effect
minority communities (e.g., breast, prostate, GI, etc.).
3. To evaluate the cause-effect relationships that may exist between risk factors and
specific cancers effecting minority populations (e.g., evaluating the consistency of
epidemiologic data with etiologic hypotheses identified either clinically or
experimentally).
4. To provide the basis for developing and understanding preventive procedures and
public health practice.

Instructional Units/Topics:
2. Basic Concepts
 Causation and Causal Inference
 Molecular Epidemiology in Cancer Prevention
3. Magnitude of Cancer
 Cancer Incidence, Mortality, and Survival among Racial and Ethnic
 Minority Groups in the US
4. Causes of Cancer
 Risk factors associated with cancers that effect Minority Populations
5. Cancer Prevention and Control
 Principles and Applications of Cancer Prevention
 Health Education and Health Promotion
 Clinical Trials
 Fundamental Issues in Screening

References: (Tentative)
American Cancer Society.
prospects for the future—II. BMJ 309:517-520.

CANCER STATISTICS AND STATISTICAL METHODS;
EPIDEMIOLOGY OF CANCER
Kyung Sook Kim, Ph.D., assistant professor, Division of Epidemiology and Biostatistics, HUCC

Introduction to Biostatistics
Kyung Sook Kim, Ph.D., Assistant professor, Department of Community Health and Family Practice.

Educational Objectives:
Upon successful completion of this component, participants will be able to
1. Develop an understanding of the statistical concepts and of how and when to apply various statistical techniques.
2. Better understand published medical literature and critically evaluate authors' conclusions.

Instructional Units:
The student shall distinguish the following concepts:
1. Descriptive statistics/ Graphic representation
2. Probability
3. Normal Distribution
4. Statistical Inference
5. Correlation, Regression
6. Survival Curve
7. Sample size, power

References:

BIOLGY OF RADIOTHERAPY
Raj Sridhar, Ph.D., graduate associate professor, Dept. of Radiation Oncology, Howard University Hospital.

Topics/Instructional Units
1. Types of radiation used in cancer therapy
2. Interactions of radiation with matter
3. Concept of radiation
4. Dose-response curves, cellular target for radiation damage
5. Repair of radiation damage
6. Fractionation of radiation dose
7. Normal tissue tolerance and radiation response of tumors
8. Goals of radiation therapy and multi-modality treatment of cancer
9. Radiosensitization, radioprotection and drug radiation interactions
10. Brachytherapy

References:

CANCER CHEMOTHERAPY: AGENTS AND TARGETS
Frederick Lombardo, Pharm. D., College of Pharmacy and Pharmacal Sciences, and H.U. Cancer Center Faculty.

Topics/Instructional units
Agents utilized in cancer therapy
Cell cycle specificity: cytotoxicity

S-phase (antimetabolites)
1. Antifolates (Methotrexate, Trimetrexate)
2. Antipyrimidines (Cytarabine, 5-Fluorouracil, etc)
3. Antipurines (6-Mercaptopurine, 6-Thioguanine)
4. Miscellaneous Agents (Hydroxyurea, Procarbazine)

G-2 Phase
Bleomycin

M-Phase
1. Vinca alkaloids (Vincristine, Vinblastine, Vinorelbine)
2. Podophyllotoxins (Etoposide, Teniposide)
3. Taxanes (Taxol, Taxotere)

G-0 Phase
1. Nitrosoureas
2. Alkylators
3. Intercalators

G-1 Phase
1. L-asparaginase
2. Steroids

Cell cycle Non-Specificity
- Apoptosis
- Anti-Angiogenic Agents
- Monoclonal Antibodies in cancer therapy
- Cytokines/Chemokines

NUTRITION AND CANCER
Tanya Agurs-Collins, Ph.D., R.D., Nutrition Epidemiologist, Howard University Cancer Center, and Assistant Professor, Department of Community Health and Family Practice, Howard University College of Medicine.

Educational Objectives:
Upon successful completion of this component, participants will be able to:

- Describe the biological principles of nutritional oncology
- Understand the mechanisms/pathways that link nutritional status and the etiology of cancer
- Understand the relationship between diet, nutrition and cancer prevention.

Instructional Units/Topics:
8. Fundamentals of nutrition: applications to cancer research
9. Epidemiology basis of nutritional influences on cancer
10. Dietary assessment and cancer prevention
11. Fruits and vegetable intake and cancer prevention
12. Energy balance, anthropometry and cancer
13. Dietary fiber, carbohydrate and cancer
14. Dietary lipid, alcohol and cancer
15. Functional foods and cancer prevention
References:
18. Kumanyika S. Racial and Ethnic Issues in Diet and Cancer Epidemiology. In Diet and Cancer:
22. Nutrition: The comprehensive guide for health professionals. Edited by Bendich

BEHAVIOR

Paige Green-McDonald, Ph.D., Assistant professor of Medicine, Division of Epidemiology and Biostatistics, Howard University Cancer Center.

Educational Objectives

Upon successful completion of this component, participants will be able to:

1. Describe the role of behavioral research in the prevention, early detection, and control of cancer
2. Identify and discuss priorities in behavioral research related to cancer prevention and control
3. Identify and describe health behavior theories in cancer prevention and control
4. Critically discuss and evaluate behavioral interventions used in cancer prevention and control

Instructional Units/Topics

1. Risk factors: tobacco use, diet, physical exercise, alcohol use, stress, racism, socioeconomic status
2. Priorities in behavioral research in cancer prevention and control
3. Individual health behavior theories: Health Belief Model, Theory of Reasoned Action, Transtheoretical model of change, Prospect Theory, Transactional Model of Stress and Coping
4. Interpersonal health behavior theories: Social Cognitive Theory, social networks and social support, patient-provider communication
5. PRECEDE-PROCEED Planning Model
6. Race in cancer prevention and control
7. Behavioral intervention studies

References:
GRADUATE ONCOLOGY COURSE
SYLLABUS

EPIDEMIOLOGY OF CANCER
Lucile Adams-Campbell, Ph.D., Director HUCC & Professor of Medicine
Flora Ukoli, MD, D.P.H., MPH, Pamela Carter-Nolan, Ph.D., Division of Epidemiology and Biostatistics, HUCC

Educational Objectives:
1. To provide an understanding of epidemiology in cancer research.
2. To provide an understanding of the epidemiology of specific cancers which effect minority communities (e.g., breast, prostate, GI, etc.).
3. To evaluate the cause-effect relationships that may exist between risk factors and specific cancers effecting minority populations (e.g., evaluating the consistency of epidemiologic data with etiologic hypotheses identified either clinically or experimentally).
4. To provide the basis for developing and understanding preventive procedures and public health practice.

Instructional Units/Topics:
1. Basic Concepts
 - Causation and Causal Inference
 - Molecular Epidemiology in Cancer Prevention

2. Magnitude of Cancer
 - Cancer Incidence, Mortality, and Survival among Racial and Ethnic Minority Groups in the US

3. Causes of Cancer
 - Risk factors associated with cancers that effect Minority Populations

4. Cancer Prevention and Control
 - Principles and Applications of Cancer Prevention
 - Health Education and Health Promotion
 - Clinical Trials
 - Fundamental Issues in Screening

References: (Tentative)

CANCER STATISTICS AND STATISTICAL METHODS;
EPIDEMIOLOGY OF CANCER
Kyung Sook Kim, Ph.D., assistant professor, Division of Epidemiology and Biostatistics, HUCC

Introduction to Biostatistics
Kyung Sook Kim, Ph.D., Assistant professor, Department of Community Health and Family Practice.

Educational Objectives:
Upon successful completion of this component, participants will be able to
1. Develop an understanding of the statistical concepts and of how and when to apply various statistical techniques.
2. Better understand published medical literature and critically evaluate authors' conclusions.

Instructional Units:
The student shall distinguish the following concepts:

1. Descriptive statistics/ Graphic representation
2. Probability
3. Normal Distribution
4. Statistical Inference
5. Correlation, Regression
6. Survival Curve
7. Sample size, power

References:
CELL CYCLE AND CANCER
Hassan Ashktorab, Ph.D., graduate assistant professor, GI Division, Department of Medicine, Howard University; Gastrointestinal Carcinogenesis Laboratory, Howard University Cancer Center.

Instructional Units/Topics
1. Biochemistry and genetics of the cell cycle; growth factors, growth factor receptors, and receptor-mediated signaling; cell cycle regulators (cyclins and cyclin-dependent kinases (CDKs); inhibitors of CDKs (CDIs)
2. Cell cycle-related gene expression, checkpoints, transitions.
3. Cell cycle dysregulation and oncogenesis
4. p53, Rb, etc tumor suppressors and regulation of cell cycle

MOLECULAR DIAGNOSIS OF CANCER
Hassan Ashktorab, Ph.D., graduate assistant professor, GI Division, Department of Medicine, Howard University; Gastrointestinal Carcinogenesis Laboratory, Howard University Cancer Center.

Instructional Units/Topics
1. Current methods for molecular diagnosis of various cancers
2. Molecular basis of diagnostic techniques for breast cancer
3. Translational studies and clinical benefits

References:
Cell Cycle and Cancer
4. Dickson C; Fantl V; Gillett C; Brookes S; Bartek J; Smith R; Fisher C; Barnes D; Peters Amplification of chromosome band 11q13 and a role for cyclin D1 in human breast cancer. Cancer Lett 1995 Mar 23;90(1):43-50

Cell cycle machinery
3. Grana X; Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases

NUTRITION AND CANCER
Tanya Agurs-Collins, Ph.D., R.D., Nutrition Epidemiologist, Howard University Cancer Center, and Assistant Professor, Department of Community Health and Family Practice, Howard University College of Medicine.

Educational Objectives:
Upon successful completion of this component, participants will be able to:

Describe the biological principles of nutritional oncology
Understand the mechanisms/pathways that link nutritional status and the etiology of cancer
Understand the relationship between diet, nutrition and cancer prevention.

Instructional Units/Topics:
1. Fundamentals of nutrition: applications to cancer research
2. Epidemiology basis of nutritional influences on cancer
3. Dietary assessment and cancer prevention
4. Fruits and vegetable intake and cancer prevention
5. Energy balance, anthropometry and cancer
6. Dietary fiber, carbohydrate and cancer
7. Dietary lipid, alcohol and cancer
8. Functional foods and cancer prevention

References:
17. Block G, Patterson B, Subar A. Fruit, vegetables and cancer prevention: a review of the

CANCER CHEMOTHERAPY: AGENTS AND TARGETS
Fred Lombardo, Pharm. D., College of Pharmacy and Pharmacal Sciences, and H.U. Cancer Center Faculty.

Topics/instructional units
Agents utilized in cancer therapy
Cell cycle specificity: cytotoxicity

S-phase (antimetabolites)
1. Antifolates (Methotrexate, Trimetrexate)
2. Antipyrimidines (Cytarabine, 5-Fluorouracil, etc)
3. Antipurines (6-Mercaptopurine, 6-Thioguanine)
4. Miscellaneous Agents (Hydroxyurea, Procarbazine)

G-2 Phase
Bleomycin

M-Phase
1. Vinca alkaloids (Vincristine, Vinblastine, Vinorelbine)
2. Podophytoxins (Etoposide, Teniposide)
3. Taxanes (Taxol, Taxotere)

G-0 Phase
1. Nitrosoureas
2. Alkylators
3. Intercalators

G-1 Phase
1. L-asparaginase
2. Steroids

Cell cycle Non-Specificity
Apoptosis
Anti-Angiogenic Agents
Monoclonal Antibodies in cancer therapy
Cytokines/Chemokines
APOTOTIC AND CANCER
Theodore A. Bremer, Ph.D., graduate associate professor, Department of Biology, and Tumor Biology Laboratory, Howard University Cancer Center; adjunct associate professor of molecular biology (research), Department of Cell Biology, Molecular Biology, and Biochemistry, Brown University.

Educational Objectives:
Upon successful completion of this component, participants will be able to
1. Describe apoptotic pathways and discuss the importance of apoptosis as a mechanism of tissue homeostasis, and its abrogation in cancer.
2. Discuss the role of the Bcl-2 family of proteins in modulating apoptosis.
3. Understand the loss of susceptibility to apoptosis as a mechanism of tumor promotion, and resistance to cancer chemotherapeutic drugs.
4. Describe the caspase activation cascade involved in Fas-mediated apoptosis; the mechanism of activation of caspases, and the cleavage of critical death substrates during programmed cell death.
5. Describe the role of the p53 tumor-suppressor gene in the induction of apoptosis in response to DNA damage or viral infection.
7. Discuss the mechanisms of action of oncolytic viruses on p53-negative tumors.
8. Describe laboratory methods of detection and quantitation of apoptosis.

Instructional Units:
2. Oncogenes and tumor suppressor genes that affect (primarily) cell cycling, apoptosis, or both (excluding ras, p53, and Rb, covered earlier): fos, APC, DCC, PTEN, Cbl, MTS1, BRCA1. Fos and gene silencing via methylation; the APC/β-catenin signaling pathway; PTEN and abrogation of survival signaling; DCC, a dependence receptor. Fearon-Vogelstein model of colorectal carcinogenesis.
3. Receptor-mediated apoptotic signaling: Fas/Apo-1/CD95 and Fas ligand (FasL) in immune regulation and cell-mediated killing.
4. Proapoptotic and antiapoptotic molecules: Bcl-2 family members, NF-kB, cIAP, superoxide.
5. Mechanisms of p53 potentiation of apoptosis in response to DNA damage and viral infection: ATM kinase and phosphorylation of p53; transcriptional regulation of bax and bcl-2; Fas trafficking.
7. Laboratory methods for the detection and quantitation of apoptosis: DNA laddering, nuclear morphology, phosphatidyly serine (PS) externalization and Annexin V binding; TUNEL analysis, flow cytometry (FCM) using propidium iodide, Hoechst 33342, Annexin V-FITC labeling. Interpretation of FCM data.
WWW RESOURCES

American Cancer Society: http://www.cancer.org/
Apoptosis Online: http://www.apopnet.com/
BioMedLink: http://biomedlink.com
Cancer Coalition: http://www.cancercoalition.org
Cell and Molecular Biology Online: http://www.cellbio.com/
Cells Alive: http://www.cellsalive.com
Howard Hughes Medical Institute: http://www.hhmi.org
Leukemia Society of America: http://www.leukemia.org/docs/fs_leuk_rel.html
National Library of Medicine (Internet Grateful Med; Pub Med; etc. Literature searches in all areas of the biomedical sciences): http://www.nlm.nih.gov/
National Cancer Institute (NCI): Cancer Trials; CancerNet™, NCI Event Calendar; Research at NCI;
Office of International Affairs, etc.; http://www.nci.nih.gov

OncoLink (University of Pennsylvania): http://oncolink.upem.edu/upcc/
UICC (International Union Against Cancer/Union Internationale Contre le Cancer): http://www.uicc.org

Tutorials
Flow cytometry in cell cycle analysis and apoptosis: An excellent tutorial is available at the Derek Davies Home Page (Imperial Cancer Research Fund (ICRF), London:
http://www.lif.icnet.uk/axp/facs/davies/annexin2.gif
Can be accessed through BioMedLink: http://biomedlink.com

About Apoptosis, by P. Henkart, NIH
A Brief Introduction to Apoptosis by L. W. Browder
Apoptosis, Radiosensitivity and the Cell Cycle, by W Gillies McKenna, M.D., Ph.D. in OncoLink
Can be accessed through http://www.apopnet.com/
References:

25. Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., Mattmann, M.,
Burns, K., Bodmer, J-L., Schröter, M., Scaffidi, C., Krammer, P.H., Peter, M.E., and Tschopp, J.
(1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors.
Nature 386, 517-521.

of NF-κB. Science 274, 784-787.

BIOLOGY OF RADIOTHERAPY

Raj Sridhar, Ph.D., graduate associate professor, Dept. of Radiation Oncology, Howard University Hospital.

Topics/Instructional Units
1. Types of radiation used in cancer therapy
2. Interactions of radiation with matter
3. Concept of radiation
4. Dose-response curves, cellular target for radiation damage
5. Repair of radiation damage
6. Fractionation of radiation dose
7. Normal tissue tolerance and radiation response of tumors
8. Goals of radiation therapy and multi-modality treatment of cancer
9. Radiosensitization, radioprotection and drug radiation interactions
10. Brachytherapy

References:
CHEMOPREVENTION AND CARCINOGENESIS
Joel Schwartz, D.M.D., D.M.Sc., Director of Research, College of Dentistry, Howard University
Department of Oral Maxillofacial Pathology, Rm. 2A-3, Laboratory, 2F-8. Fjones: (202) 806-0094; (202) 806-0345

Educational Objectives
Upon successful completion of this component, participants will have knowledge of:

1. The possible mechanisms for the prevention of cancer.
2. The interaction of nutrients with cellular processes.
3. The specific oxidative-redox features of nutrients that result in the modification of cellular processes.
4. The redox characteristics of tumor suppressor genes.
5. The redox features (describing features) of programmed cell death and DNA repair. (?)
6. Transcription response to redox molecules.
7. Alterations in the cell cycle as derivatives of chemopreventive actions.
8. Carcinogenesis described by molecular and histopathologic markers.

Topics/Instructional Units
1. Programmed cell death: the tumor suppressor and immune generated pathways: assays to assess chemopreventive modifications.
2. Laboratory methods to detect nutrient chemopreventive agents: animal and laboratory assays.
3. Laboratory methods to detect novel mutations in tumor suppressor genes and protocols to determine novel for early malignant transformation.
4. Focus on the interaction between nutrient chemopreventives, and/or diet and the process of oral carcinogenesis.

References:
CANCER GENETICS AND GENOMICS

Carolyn Whitfield Broome, Ph.D., Associate professor, Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, and
Rick Kittles, Ph.D., Human Genome Research Associate, Cancer center, Howard University.

Educational Objectives

Instructional Units/Topics

References:
The alteration of normal cells to benign tumors, to malignancies and subsequent metastasis involves a highly complex series of events. Proteolytic degradation is the currently accepted method by which metastatic cells abrogate the basement membrane and connective tissue matrix to gain access to the circulatory and lymphatic systems for dispersal. The goal of this study is to ascertain whether differential regulation occurs in genes encoding proteins of the basement membrane and extracellular matrix, and how this event contributes to the metastatic phenotype. Previous studies using slot blot and RT-PCR analyses of breast and colon cell lines have demonstrated altered transcriptional levels of decorin, type I collagen and osteonectin within (solid tumors-vs- ascites) and between cell types (breast-vs-colon). Since cells in culture may undergo regulatory events that alter the expression of matrix proteins, the next phase of this study must examine non-cultured clinical samples. Towards this end, DNA, RNA and protein will be isolated from clinical samples from African American, Caucasian and Korean women. RNA will be amplified and used in gene microarray analyses. Purified proteins from each sample will be assayed on 2-D protein array electrophoresis. DNA will be analyzed by Southern blot studies. Promoter regions of selected genes will be isolated and utilized in gel retardation studies for determination of regulatory mutations. This multivariate approach to the study of breast cancer may yield a molecular profile of the metastatic phenotype, and whether this phenotype is genetically similar in different ethnic/racial groups.