Award Number: DAMD17-01-1-0129

TITLE: New Approaches for Early Detection of Breast Tumor Invasion or Progression

PRINCIPAL INVESTIGATOR: Yan-gao Man, M.D., Ph.D.

CONTRACTING ORGANIZATION: American Registry of Pathology
Washington, DC 20306

REPORT DATE: August 2002

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.

Reproduced From
Best Available Copy

Copies Furnished to DTIC
Reproduced From
Bound Originals

20030214 136
New Approaches for Early Detection of Breast Tumor Invasion or Progression

Yan-gao Man, M.D., Ph.D.

American Registry of Pathology
Washington, DC 20306

E-Mail: man@afip.osd.mil

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

To assess interactions between epithelial (EP) and myoepithelial (ME) cells in association with breast tumor progression and invasion, consecutive sections were immunostained with antibodies to estrogen receptor (ER), smooth muscle actin (SMA), and other biomolecules, and then microdissected for LOH and microsatellite instability (MI) assessments. Focal losses of ER expression in EP cells and disruptions of subjacent ME layers are correlated events in ER (+) tumors, whereas focal alterations of p27 expression in EP cells and disruptions of subjacent ME layers are correlated events in ER (-) tumors, suggesting that progression or invasion of these tumors may be regulated by different mechanisms. Cells inducts with disrupted ME cell layers showed a substantially higher proliferation rate, and a vast majority of ER (-) cells overlying disrupted ME cell layers showed a marked higher frequency and different pattern of LOH and MI, compared to adjacent ER (+) cells within the same duct. These findings are in agreement with our hypothesis that ER (-) cells overlying disrupted ME cell layer represent a more aggressive clone, and that simultaneous assessments of the immunohistochemical and genetic profiles of EP and ME cells could be a more sensitive approach for early detection of breast tumor progression or invasion.

breast cancer, early detection of breast tumor invasion and progression, epithelial-myoeptithelial cell interactions

Unclassified

Unclassified

Unclassified

Unlimited

23

Unlimited
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>1</td>
</tr>
<tr>
<td>SF 298</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4-5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>6</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>Conclusions</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>Appendices</td>
<td>9</td>
</tr>
</tbody>
</table>
Introduction

To assess interactions between epithelial (EP) and myoepithelial (ME) cells in association with breast tumor progression and invasion, a double immunostaining technique with antibodies to smooth muscle actin (SMA) and estrogen receptor (ER) was used to elucidate both the ME and EP cells in mammary tissues harboring ductal carcinoma in situ. Single or clusters of EP cells with a marked diminution or a total loss of ER expression were found immediately overlying focally disrupted ME cell layers, in contrast to the dominant population of ER (+) cells within the same duct that showed no associated ME cell layer disruptions (1). This study attempted to confirm our previous findings on a larger number of cases, and to compare the immunohistochemical and molecular biological profiles of the ER (-) cells overlying disrupted ME cell layers with those of adjacent ER (+) cells and surrounding stromal (ST) cells. Since ME cell layers are physical barriers protecting the microenvironment and integrity of EP cells, and the disruption of ME cell layers is an absolute pre-requisite for breast tumor invasion, the outcomes of this project could have significant values in early detection of breast tumor progression and/or invasion.

Body

Statement of work

A total of 7 tasks were listed in the Statement of Work of the original proposal:

Task 1. To repeat our previous studies and to identify epithelial (EP) cells overlying disrupted myoepithelial (ME) cell layers (months 1-6).
 a. Select 500 female cases of ductal carcinoma in situ (DCIS) from our files with detailed information regarding age, race, and follow-up data
 b. Retrieve paraffin and frozen tissue blocks, and make 6-8 serial sections for each case
 c. Stain the first and the last sections of each case with H & E for morphological assessment
 d. Immunostain 3-4 sections from each case with antibodies to estrogen receptor (ER) and smooth muscle actin (SMA)
 e. Observe stained sections to identify cells overlying disrupted ME cell layers
 f. Select the cases with cells overlying disrupted ME cell layers

Task 2. To compare the biological behavior of cells overlying a disrupted ME cell layer with that of adjacent cells within the same duct (months 6-9)
 a. Make 40-50 serial sections for each of the selected cases
 b. Immunostain sections with different bio-markers that have been found associated with more aggressive biological behavior

Task 3. To microdissect phenotypically different EP cells and the surrounding ME and stromal (ST) cells for molecular biological analyses (months 9-12)

Task 4. To compare the frequency and pattern of loss of heterozygosity (LOH) and clonality among EP, ME, and ST cells (months 12-20)

Task 5. To assess the gene expression pattern in cells from frozen section sections with cDNA expression array technique, and to generate probes based on sequences exclusively or mainly expressed in cells overlying disrupted ME cell layers (months 20-24)
Annual report for award number DAMD17-01-1-0129

Task 6. To apply the probes to both paraffin and frozen sections, to identify the gene expressing cells and their morphologic features (months 24-32)

Task 7. To correlate the laboratory findings with that of clinical following-up data (months 32-36).

Experimental procedures:

Consecutive sections were made from formalin-fixed, paraffin-embedded breast tissues from patients with various grades of ductal carcinoma in situ (DCIS), and double imunostained for ER and SMA. Cross sections of all ducts lined by ≥ 40 EP cells were examined for a focal ME cell layer disruption, defined as an absence of ME cells, resulting in a gap equal to or greater than the combined size of 3 EP or ME cells. A focal loss of ER expression was defined as marked diminution or a total loss of ER staining in cells immediately overlying a disrupted ME cell layer, in contrast to strong ER expression in adjacent cells within the same duct.

Consecutive sections were also immunohistochemically stained with different antibodies, as detailed in References 5-7, to assess the biologic behavior of cells associated with disrupted ME cell layers. In addition, after immunostaining for ER and SMA, cells overlying disrupted ME cell layers, adjacent ER (+) cells within the same duct, adjacent stromal (ST) cells, and other controls were microdissected for DNA extraction and assessments for loss of heterozygosity (LOH) and microsatellite instability (MI), using PCR amplification with different DNA markers at different chromosomes. The frequency and pattern of LOH and MI among samples were compared.

All above experimental procedures had been carried out according to the methods described in the proposal without any major modifications. Also, all the laboratory efforts have been strictly adhered to address the issues listed in “Objectives” and “Statement of Work” of the original proposal.

Key research accomplishments

All the laboratory procedures for Tasks 1, 2, and 3 had been completed; for Task 4 had been partially completed before July 22, 2002. Also, a majority of the completed experimental materials had been analyzed before July 22, 2002.

Reportable outcomes

Two abstracts that summarized the immunohistochemical findings and the principal molecular techniques for Tasks 1 to 4 were accepted for slide and poster presentations at two major international conferences, and published in Med-Line listed journals (2-3).

Six abstracts that addressed the issues listed in Tasks 1 to 4 of “Statement of Work” have been accepted for poster presentation at Era of Hope, The Department of Defense Breast Cancer Research Program Meeting, to be held in Orlando, Florida, September 25-28, 2002 (4-9).

One additional abstract addressing the issues listed in Tasks 1 to 4 of “Statement of Work” has been sent to 25th Annual San Antonio Breast Cancer Symposium to be held in San Antonio, TX this December (10).

The corresponding manuscript for each of the 9 abstracts is under preparation, and will be sent for publication before the end of the year 2002.

In addition, the author has contributed to 12 published or submitted articles during 2001-2002 (11-22)
Conclusions

1. Of 220 ER (+) cases with a total of 5,698 duct cross sections examined so far, 94 (42.7%) contained disrupted ME cell layers with a total of 405 focal disruptions. Of these disruptions, 350 (86.4%) were subjacent to cells with focal losses of ER expression, while only 55 (13.6%) were associated with cells showing a strong ER expression (3-4). These findings are consistent with those of our previous studies (1), suggesting that focal losses of ER expression in EP cells and disruptions of subjacent ME cell layers are correlated events in ER (+) tumors.

2. Of 100 cases with various grades of ER (-) tumors evaluated so far, focal disruptions of ME cell layers were found in about a half of the cases. These focal ME cell layer disruptions, however, appeared to correlate with either a focal loss or elevation of p27 expression (5), suggesting that the progression and/or invasion of ER (-) tumors might differ from those of ER (+) tumors.

3. Several tumor suppressor gene products have been found co-expressed in ME cell layers, and a diminution or absence of these proteins correlated with an increased frequency of ME cell layer disruptions (6-7). A substantially higher cell proliferation rate was seen in ducts with disrupted ME cell layers than ducts with intact ME cell layers (6-7), suggesting that EP cells overlying disrupted ME cell layers may have a more aggressive biologic behavior.

4. As previous studies have shown that it is difficult or impossible to utilize immunostained tissues pre-treated with antigen unmasking methods for molecular analyses, an innovative antigen retrieval protocol that satisfies both immunohistochemical and subsequent molecular assessments has been developed in our laboratory (8). This protocol allows us to microdissect double immunostained cells for LOH and MI assessments, to assess the possible correlation between immunohistochemical and genetic alterations.

5. A vast majority of the ER (-) cells overlying disrupted ME cell layers showed a substantially higher frequency and different pattern of LOH and MI, compared to adjacent ER (+) counterparts within the same duct (9). In a small proportion of cases, however, ER (-) cells showed a substantially lower frequency of LOH and MI than adjacent ER (+) cells, or even displayed no distinct genetic changes (9). These findings are largely in support of our hypothesis that ER (-) cells overlying disrupted ME cell layers represent a more aggressive clone, while also suggest that a few of these cells might belong to a population involving in a normal replenishment or expansion of ducts.

References

3. Man YG, Shekitka KM, Saenger JS, Tai L, Brathauer GL, Chen PY, Tavassoli FA. Focal loss of estrogen receptor (ER) expression in ER-positive ductal intraepithelial neoplasia is associated with disruptions of the immediate subjacent myoepithelial cell layer. Accepted for poster presentation

16. Man YG. The repairing kit to a heart-broken friend (a classic poem). Submitted to New World Times

17. Man YG. Forever memory to the past - A visit to The West Mount temple (a classic poem). Submitted to New World Times

18. Man YG. Three funning stories initiated by word to word translation of Chinese into English. Submitted to New World Times

ABSTRACTS ARE DUE JUNE 1, 2002.

Use typewriter or pen to fill in the blanks.

1. PRESENTER NAME & ADDRESS:

Man Yan-gao MD, Ph.D.

Last Name First Name Middle Initial Degree
Circ. Class: () Prof. () Mrs. () Ms. () M.D.
Acct. No. Department: () Gynecology & Breast Pathology
Institution & Department: 6825 16th St., NW

Address Washington, DC 20306-6000
City State or Province, Postal ZIP Code USA
COUNTRY 202-782-1621 Telephone No. (including country & city codes)
202-782-3937 Fax No. (including country & city codes)
Man@afip.osd.mil E-Mail Address [Please list FAX number or E-MAIL is required]

2. PRESENTATION PREFERENCE:

() Poster () Slide () No preference
() Please withdraw my abstract if my preference cannot be accommodated.

3. SUBJECT CATEGORY [Required]: Insert appropriate subject category number here. (See page 5.)

54

4. PERMISSION TO REPRODUCE PRESENTATION:

I have read Permission to Reproduce Pretentation on page 2 and agree as follows:
() I agree to all recording and reproduction described.
() I decline all recording and reproduction described.
() I consent to the following ONLY:
() Audio/Video recording
() Audio recording ONLY
() Poster reproduction on paper and/or CD-ROM

5. ASTRAZENECA SCHOLARS PROGRAM

[See P. 7: Trainees only):

I am a scientist-in-training and/or a physician-in-training. My application (form page 7) is enclosed with this abstract in order to be considered for the award. () Yes () No

6. THIS PORTION MUST BE COMPLETED AND SIGNED ON BEHALF OF ALL THE AUTHORS:

PRESENTER DISCLOSURE DECLARATION (Required with EACH abstract): It is the policy of The University of Texas Health Science Center at San Antonio Medical School to ensure balance, independence, objectivity, and scientific rigor in all its sponsored educational programs. The presenters must disclose any real or apparent conflict of interest that may have a direct bearing on the subject matter of the program. This pertains to relationships with pharmaceutical companies, biomedical device manufacturers, or other corporations whose products or services are related to the subject matter of the presentation topic. The intent of this policy is merely to identify openly any potential conflict so that listeners may form their own judgments about the presentation with full disclosure of the facts.

I have a financial interest/arrangement or affiliation with one or more companies, named below, that could be perceived as a real or apparent conflict of interest in the context of this presentation. () Yes () No

If yes, list company names here:

Signature (REQUIRED) Yan-gao Man

Date May 28, 2002

For Credit Card Payments: () American Express () MasterCard () Visa

Card Number __________________________ Exp. Date (MM/YY) __________________________ Cardholder Name __________________________

Amount $ __________________________ for __________________________ abstracts @$35 each. Signature __________________________
FOCAL LOSSES OF ER EXPRESSION IN EPITHELIAL CELLS AND DISRUPTIONS OF SUBJACENT MYOEPITHELIAL CELL LAYERS ARE CORRELATED EVENTS IN ER (+) DUCTAL INTRAEPITHELIAL NEOPLASIA

Yan-gao Man, M.D., Ph.D., Lisa Tai, M.D., Ross Barner, M.D., Chang Y. Liang, M.D, Russell S. Vang, M.D., Jeffery S. Saenger, M.D., Kris M. Shekitka, M.D., Gary L. Bratthauer, M.S., M.T., Ping-yu Chen, and Fattanah A. Tavassoli, M.D.

Department of Gynecologic and Breast Pathology, American Registry of Pathology and Armed Forces Institute of Pathology, 6825 16th Street, NW, Washington, DC 20306

E-mail: man@afip.osd.mil

The purpose of this study was to assess the possible correlation between focal losses of estrogen receptor (ER) expression in epithelial (EP) cells and disruptions of subjacent myoepithelial (ME) cell layers. Consecutive sections were made from formalin-fixed, paraffin-embedded breast tissues from 220 patients with various grades of ductal intraepithelial neoplasia, and double immunostained for ER and smooth muscle actin. Cross sections of all ducts lined by ≥ 40 EP cells were examined for a focal ME cell layer disruption, defined as an absence of ME cells, resulting in a gap equal to or greater than the combined size of 3 EP or ME cells. A focal loss of ER expression was defined as a marked diminution or a total loss of ER staining in cells immediately overlying a disrupted ME cell layer, in contrast to strong ER expression in adjacent cells within the same duct.

Of the 220 ER (+) cases with a total of 5,698 duct cross sections examined, 94 (42.7%) contained disrupted ME cell layers with a total of 405 focal disruptions (7.1%). Of these disruptions, 350 (86.4%) were associated with a focal loss of ER expression, whereas 55 (13.6%) were subjacent to cells with a strong ER expression. The frequency of ME cell layer disruptions associated with ER (-) cells was significantly higher (p < 0.01) than that associated with ER (+) cells. The frequency and pattern of ME cell layer disruptions were generally independent of the size, length, and architecture of the ducts. The cells overlying disrupted ME cell layers were often architecturally and morphologically indistinguishable from adjacent cells within the same duct on routine H & E stained sections.

This study suggests that a focal loss of ER expression among a group of ER (+) cells and disruption of the subjacent ME cell layer might be correlated events. As the disruption of ME cell layers are an absolute pre-requisite for tumor invasion, these events are possibly associated with progression and/or early invasion of the mammary tumors.

This study was supported by the US Army Medical Research and Materiel Command under DAMD 17-01-1-0129 and DAMD17-01-1-0130 to Yan-gao Man, MD., Ph.D.
FOCAL ALTERATIONS OF P27 EXPRESSION AND SUBJACENT MYOEPITHELIAL CELL LAYER DISRUPTIONS ARE CORRELATED EVENTS IN ER (-) DUCTAL INTRAEPITHELIAL NEOPLASIA

Yan-gao Man, M.D., Ph.D., Jeffery S. Saenger, M.D., Brian Strauss, M.D., Ph.D., Russell S. Vang, M.D., Gary L. Brathauer, M.S., M.T., Ping-yu Chen, and Fatttaneh A. Tavassoli, M. D

Department of Gynecologic and Breast Pathology, American Registry of Pathology and Armed Forces Institute of Pathology, 6825 16th Street, NW, Washington, DC 20306

E-mail: man@afip.osd.mil

Our previous studies, using a double immunostaining technique with antibodies to smooth muscle actin (SMA) and estrogen receptor (ER), revealed that a focal loss of ER expression and disruption of a subjacent myoepithelial (ME) cell layer were correlated events in ER (+) ductal intraepithelial neoplasia (DIN). Focal disruptions of ME cell layers were also found in various grades of ER (-) DIN. This study intended to assess whether ME cell layer disruptions in ER (-) DIN may correlate with a deregulated expression of p27, a cyclin dependent kinase inhibitor that arrests cell division.

Consecutive sections were made from formalin-fixed, paraffin-embedded breast tissues from 100 patients with ER (-) DIN. Two adjacent sections were double immunostained with [1] p27 plus SMA, and [2] SMA plus a mixture of antibodies to Ki-67, Cyclin A and D3. Cross sections of all ducts lined by ≥ 40 EP cells were examined for focal ME cell layer disruptions and focal alterations of p27 expression, defined as a marked reduction or elevation of p27 staining in cells immediately overlying disrupted ME cell layers. The cell proliferation rates in ducts with an intact and with a disrupted ME cell layer were statistically compared.

Distinct p27 immunoreactivities were seen in a vast majority of the normal ductal and lobular cells. Although the overall level of p27 expression was generally reduced with the progression of lesions and increase of tumor histological grades, a marked reduction or total loss of p27 expression was occasionally seen in normal appearing ducts, and intense p27 immunostaining was seen in some malignant tumors. In contrast, the rate of focal alterations of p27 expression seemed to be linearly correlated with the frequency of ME cell layer disruptions in both normal appearing and neoplastic ducts. Ducts with a disrupted or no distinct ME cell layer displayed a significantly higher cell proliferation rate than ducts with an intact ME cell layer.

These findings suggest that focal alterations of p27 expression and elevated rates of ME cell layer disruptions and cell proliferation might be correlated events. Since the disruption of ME cell layer is an absolute pre-requisite for tumor invasion, elucidation of the dynamic relationship of these events and the underlying mechanism may have significant diagnostic and prognostic values.

This study was supported by the US Army Medical Research and Materiel Command under DAMD 17-01-1-0129 and DAMD17-01-1-0130 to Yan-gao Man, MD., Ph.D.
CO-EXPRESSİON OF MAsPIN AND WİLMS' TUMOR 1 PROTEINS IN MAMMARY MYOEPİTHELİAL CELLS—IMPLİKATİON FOR TUMOR PROGRESSION AND INVASİON

Yan-gao Man, M.D., Ph.D., Russell S. Vang, M.D., Jeffery S. Saenger, M.D., Brian Strauss, M.D., Ph.D., Gary L. Bratthauer, M.S., M.T., Ping-yu Chen, and Fattaneh A. Tavassoli, M.D

Department of Gynecologic and Breast Pathology, American Registry of Pathology and Armed Forces Institute of Pathology, 6825 16th Street, NW, Washington, DC 20306

E-mail: man@afip.osd.mil

Maspin and Wilms’s tumor 1 (WT-1) proteins have been suggested as products of tumor suppressor genes, as they display inhibitory functions on tumor progression in both tissue cultures and animal models. The expression pattern and functions of these two proteins in human mammary tissues, however, have not been established. This study attempted to address these issues with an emphasis on the correlation of the proliferation rate in mammary ductal cells with the expression of these two proteins in surrounding myoepithelial (ME) cells, and with the physical integrity of ME cell layers.

Consecutive sections were made from formalin-fixed, paraffin-embedded mammary tissues from 100 patients with various grades of ductal intraepithelial neoplasia. Three adjacent sections were double immunostained with [1] smooth muscle actin plus Ki-67, [2] maspin plus Ki-67, and [3] WT-1 plus Ki-67 antibodies. The expression status of maspin and WT-1 in the same cells of each case was compared to determine the extent of co-expression of these proteins. The proliferation rates of epithelial (EP) cells in ducts with and without maspin or WT-1 expression, as well as with and without an intact ME cell layer were statistically compared.

Distinct immunostaining and the co-localization of maspin and WT-1 proteins were seen in most morphologically definable ME cells in sections from each of the 100 patients, while they were barely seen in EP or stromal cells. The expression of these proteins were closely correlated with the morphology of ME cells, but were generally independent of the size, length, or architecture of the ducts. Both morphologically normal appearing and neoplastic ducts with a reduced maspin or WT-1 expression in surrounding ME cells, or ducts with focally disrupted or no ME cell layers displayed a significantly higher cell proliferation rate than ducts with a normal maspin or WT-1 expression, and with an intact ME cell layer.

These findings suggest that maspin and WT-1 proteins may possess inhibitory functions on EP cell growth and consequently suppress progression or invasion of mammary tumors, and that maspin and WT-1 proteins might also impact the functions of ME cells. Since ME cell layers are physical barriers protecting the microenvironment and integrity of EP cells, and preventing an in situ lesion from invasion, quantitative assessments of the expression of maspin and WT-1 proteins in ME cells might have significant diagnostic and prognostic values.

This study was supported by the US Army Medical Research and Materiel Command under DAMD 17-01-1-0129 and DAMD17-01-1-0130 to Yan-gao Man, MD., Ph.D.
MORPHOLOGICALLY SIMILAR STROMAL CELLS ASSOCIATED WITH BENIGN AND MALIGNANT MAMMARY EPITHELIAL TUMORS DISPLAY DIFFERENT IMMUNOHISTOCHEMICAL AND MOLECULAR PROFILES

Fattaneh A. Tavassoli, M. D, Yan-gao Man, M.D., Ph.D., Brian Strauss, M.D., Ph.D., Russell S. Vang, M.D., Gary L. Bratthauer, M.S., M.T., and Ping-yu Chen.

Department of Gynecologic and Breast Pathology, American Registry of Pathology and Armed Forces Institute of Pathology, 6825 16th Street, NW, Washington, DC 20306

E-mail: tavassoli@afip.osd.mil

Our previous studies on paraffin embedded tissues from patients with mammary and cervical carcinomas revealed high frequencies of independent and concurrent loss of heterozygosity (LOH) in microdissected epithelial (EP) tumor cells and adjacent or distant stromal (ST) cells. To confirm previous findings on a larger scale and wider spectrum, the current study attempted to compare the immunostaining pattern and the genetic profile in EP and ST cells microdissected from infiltrating syringomatous adenomas and tubular carcinomas, which are two different pathological entities, but with similar reactive background stroma.

Serial sections were made from formalin-fixed, paraffin-embedded mammary tissues from patients with above lesions, and immunostained with a panel of different antibodies. The immunostaining patterns in both the EP and ST components between two lesions were compared. Morphologically similar EP and ST cells in these lesions were microdissected for DNA extraction and assessments for LOH and microsatellite instability (MI), using PCR amplification with a panel of DNA markers at 6 different chromosomes. The frequency and pattern of LOH and MI in samples of two lesions were compared.

The cells from these two lesions displayed a substantially different immunostaining pattern to a majority of the antibodies tested, including those to tumor suppressor gene products, blood vessel components, extracellular matrix molecules, and proliferation-associated proteins. Also, both the EP and ST cells from these lesions displayed a substantially different frequency and pattern of LOH and MI at multiple chromosomal loci, including 3p, 11p, 13p, 13q and 16q. There was no distinct LOH or MI with multiple DNA markers at chromosome 17p in the ST cells of either lesion, however.

These findings suggest that morphologically comparable ST cells associated with the benign and malignant EP lesions are bio-functionally and genetically different, but closely related with those in their EP counterparts. These findings also suggest that the functions of ST cells in both lesions are not directly subject to regulation by the p53 gene.

This study was supported by the US Army Medical Research and Materiel Command under DAMD 17-00-1-0676 to Fattaneh A. Tavessoli, MD, and DAMD 17-01-1-0129 and DAMD 17-01-1-0130 to Yan-gao Man, MD., Ph.D.
AN ANTIGEN RETRIEVAL PROTOCOL THAT SATISFIES BOTH IMMUNOHISTOCHEMICAL AND SUBSEQUENT MOLECULAR ASSESSMENTS
Yan-gao Man, M.D., Ph.D., Ana Burga, M.D., Ping-yu Chen

Department of Gynecologic and Breast Pathology, American Registry of Pathology and Armed Forces Institute of Pathology, 6825 16th Street, NW, Washington, DC 20306

E-mail: man@afip.osd.mil

Molecular analysis on DNA extracts from selected areas of immunohistochemically stained sections is a useful approach for studying the direct correlation between genetic and biochemical alterations. Immunohistochemical analyses of a variety of gene products in formalin-fixed, paraffin-embedded tissues, however, require a prior antigen unmasking treatment with enzymes or a high temperature using a microwave oven or a pressure cooker, which are found to substantially damage DNA and RNA structures, making subsequent genetic analyses difficult or impossible. This study attempted to develop a protocol that satisfies both immunohistochemical and genetic assessments.

Consecutive sections were made from formalin-fixed, paraffin-embedded breast tissues, and four adjacent sections were treated for antigen unmasking with [1] microwave irradiation; [2] pressure cooker incubation; [3] our modified protocol; [4] untreated. After immunostaining for a variety of cytoplasmic and nuclear antigens, comparable amounts of cells were microdissected from the same area in each of the four sections pretreated with the above four methods. Microdissected cells were subjected to DNA extraction and PCR amplification with a variety of DNA markers. Amplified PCR products among samples were semi-quantitatively compared.

Compared to other antigen unmasking methods, our protocol appeared to possess the following advantages: [1] better preservation of the morphological details; [2] a substantial reduction of the detachment of tissues from slides; [3] effectiveness on all antibodies tested; [4] consistently higher PCR yield; [5] ability to yield PCR products with higher molecular weights. The PCR efficiency in tissues treated with our protocol was comparable to those of both untreated and non-immunostained tissues. This protocol has been successfully used for the detection of over 30 different proteins that are known to require a prior antigen-unmasking treatment for their elucidation, the in situ detection of estrogen receptor mRNA, as well as both double immunohistochemical staining and subsequent molecular analyses.

This study was supported by the US Army Medical Research and Materiel Command under DAMD 17-01-1-0129 and DAMD17-01-1-0130 to Yan-gao Man, MD., Ph.D.
GENETIC ALTERATIONS IN ER (-) MAMMARY EPITHELIAL CELLS OVERLYING FOCALLY DISRUPTED MYOEPITHELIAL CELL LAYERS

Yan-gao Man, M.D., Ph.D., Brian Strauss, M.D., Ph.D., Jefferly S. Saenger, M.D., Lisa Tai, M.D., Gary L. Bratthauer, M.S., M.T, Ping-yu Chen, and Fattaneh A. Tavassoli, M.D.

Department of Gynecologic and Breast Pathology, American Registry of Pathology and Armed Forces Institute of Pathology, 6825 16th Street, NW, Washington, DC 20306

E-mail: man@afip.osd.mil

To observe the dynamic alterations of myoepithelial (ME) cells in association with mammary tumor progression, a double immunostaining technique with antibodies to smooth muscle actin (SMA) and estrogen receptor (ER) was used to elucidate the ME and epithelial (EP) cells in mammary biopsies harboring ductal carcinoma in situ. Single or clusters of EP cells with a marked diminution or a total loss of ER expression were found immediately overlying focally disrupted ME cell layers, in contrast to the dominant population of ER (+) cells within the same duct that had no associated ME cell layer disruptions. This study intended to test a hypothesis that these ER (-) cells may represent a more aggressive clone that genetically differs from adjacent ER (+) cells within the same duct.

Consecutive sections were made from formalin-fixed, paraffin-embedded mammary tissues from 220 patients with various grades of ductal intraepithelial neoplasia, and double immunostained for ER and SMA. The cross sections of ducts lined by ≥ 40 EP cells were examined to identify ducts with focal ME cell layer disruptions. The cells overlying disrupted ME cell layers, adjacent ER (+) cells within the same duct, adjacent stromal (ST) cells, and other controls were microdissected for DNA extraction and assessment for loss of heterozygosity (LOH) and microsatellite instability (MI), using PCR amplification with 18 DNA markers at 6 chromosomes. The frequency and pattern of LOH and MI among samples were compared.

The ER (-) cells overlying disrupted ME cell layers and the adjacent ER (+) cells displayed distinct LOH and MI in each of the 18 DNA markers, with highest frequencies at chromosomes 11p and 16q. A vast majority of the cells overlying disrupted ME cell layers showed a substantially higher frequency and different pattern of LOH and MI, compared to adjacent ER (+) counterparts within the same duct. In a small proportion of cases, however, ER (-) cells showed a substantially lower frequency of LOH and MI than adjacent ER (+) cells, or even displayed no distinct genetic changes. Overall, ER (-) cells overlying disrupted ME cell layers among different foci and cases displayed a more homogeneous genetic profile than their ER (+) counterparts within the same duct.

These findings are largely in support of our hypothesis that ER (-) cells overlying disrupted ME cell layers represent a more aggressive clone, while also suggest that a few of these cells might belong to a population involving in a normal replenishment or expansion of the duct.

This study was supported by the US Army Medical Research and Materiel Command under DAMD 17-01-1-0129 and DAMD17-01-1-0130 to Yan-gao Man, MD., Ph.D.
monoclonal antibody for AR. Majority of the tumors, except lobular carcinoma of breast [21] and bronchiocarcinomas of lung (10) were moderately to poorly differentiated. Tumor immunoreactivity for >10% of nuclei was considered AR-positive in the cytoplasm was interpreted as negative.

Results: 50% (17/36) mammary carcinoma and 20% (2/10) adenocarcinoma of ovary were positive in AR. The other neoplasms did not show nuclear immunoreactivity for AR in >10% nuclei; however, several of them (72%, 50/71) showed variable cytoplasmic immunoreactivity.

Conclusions: The expression of AR in more than 10% nuclei in a metastatic tumor with unknown primary in a female favors mammary carcinoma; however, a remote possibility of ovaria primary cannot be ruled out.

162 Relative Susceptance of Androgen Receptors Compared to Estrogen and Progestosterone Receptors in Mammary Carcinoma

Background: Immunoreactivity for androgen receptors (AR) is preserved more frequently than estrogen/progesterone receptors (ER/PR) in mammary carcinomas. This may be of particular value when evaluating ER/PR negative metastatic adenocarcinoma of unknown origin. The present study was undertaken to evaluate this phenomenon.

Design: We compared the prevalence of AR and ER/PR in mammary carcinoma. Formalin-fixed paraffin-embedded tissue sections from 34 cases of breast carcinoma (19 infiltrating ductal carcinoma (IDC), 14 invasive ductal carcinoma in situ (DCIS)) were evaluated by immunohistochemistry for AR, ER, and PR with monoclonal antibodies. Immunoreactivity of >10% nuclei for AR, ER, and PR respectively were considered positive. Immunoreactivity only in the cytoplasm was interpreted as negative.

Results: 50% of mammary carcinomas were AR positive, although 37% of these were negative for ER/PR. All ILC showed AR positivity; however, 60% of these were ER/PR negative.

AR positive (50%, 10/20) (IDC, 48%, 14/29; ILC, 100%, 5/5)
AR negative (16%, 13/80) (IDC, 22%, 22/96; ILC, 0%, 0/5)
ER/PR Neg ER/PR PR Neg PR/ER ER/PR
both Neg 25% (4/16) 0% (1/10) 80% (12/15) 60% (12/20) 40% (8/20) 80% (12/15)
both Pos 0% (0/10) 0% (0/10) 80% (12/15) 80% (12/15)

Conclusions: AR expression is more frequently sustained than ER/PR in mammary carcinomas, especially in lobular variant. AR is potentially useful for the evaluation of metastatic tumor of unknown origin in women.

163 Focal Loss of Estrogen Receptor (ER) Expression in ER Positive Ductal Intratubular Neoplasia Is Associated with Disruptions of the Immediately Adjacent Myoepithelial Cell Layer

Background: Our previous study using double immunostaining with antibodies to ER and smooth muscle actin (SMA) revealed patchy disruptions in the myoepithelial (ME) cell layer immediately subjacent to ER negative epithelial (EP) cells in mammary ducts with ostensibly EP proliferation.

Design: To confirm this finding on a larger scale, the same protocol was used to assess the association between ER expression and disruptions of ME cell layers on paraffin tissue sections from 125 patients with various grades of ductal intratubular neoplasia. The disruption of ME cell layer is defined as widening of a ME cell layer gap equal in the diameter of at least 3 EP cells in the cross section of a given duct. Focal loss of ER expression is defined as a significant reduction or complete loss of ER expression in a cluster of EP cells immediately overlying the disrupted ME cell layer, compared to strong ER expression in the remaining nonepithelial cells within the same duct. The total number of the cross sections of ducts with proliferative changes was counted. All profiles with disrupted ME cell layers were photographed, and prints were made at a magnification of 400-800X for immunohistochemical and morphological assessments.

Results: Of the 125 cases, 62 (49.6%) showed disrupted ME cell layers; 246 (6.6%) disruptions were detected from 3,733 evaluated duct cross-sections. Of the 62 cases with disrupted ME cell layers, 40 (64.5%) contained less than 4 and 22 (35.5%) contained 4 or more disruptions. Of these disruptions, 225 (91.5%) from 59 cases were associated with focal loss of ER expression and 21 (8.5%) from 9 cases were subjacent to ER positive cells. The frequency and pattern of disruptions was generally independent of the size of ducts or the degree of neoplasia. The cells overlying the ME disrupting layer were generally morphologically indistinguishable from adjacent neoplastic cells within the same duct on routine H&E sections.

Conclusions: These findings suggest that focal loss of ER expression might play an important role in tumor progression and that double immunostaining with SMA and ER could assist in detection of incipient cancer invasion.

Acknowledgment: This study is supported by Congressionally Directed Medical Research Programs, The Idea Award (BC001187) and Career Development Award (BC001186) to Yen-kuo Man, MD, PhD.

ANNUAL MEETING ABSTRACTS

164 Pagetoid Spread in Ductal Carcinoma In Situ: Characterization and Computer Simulation

Background: Pagetoid spread of neoplastic cells in ducts adjacent to focal of ductal carcinoma in situ is frequently observed in breast biopsies. However, its risk implications are unclear. If this histologic finding actually represents the spread of ductal carcinoma in situ within ducts, then pagetoid proliferation might be useful as a marker of greater extent of ductal carcinoma in situ. Pagetoid proliferation may also be useful as an indicator of the functional characteristics of tumor cells that impact clinical events.

Design: Seventy cases designated as pagetoid spread of neoplastic cells in association with ductal carcinoma in situ were obtained from the Vanderbilt Breast Consultation Service and the lesions and associated findings were characterized. A cell automata model simulating the spread of ductal carcinoma in situ was used to study diffusion and proliferation as independent parameters to pagetoid extension.

Results: In approximately 60% of cases, the ductal carcinoma in situ was more than 1 cm in greatest extent or was described as "cohesive" and in less than 10% of cases was smaller than 5 mm. The vast majority of cases had a margin status was assessed and inadequate margins of resection with 44% having uncircumcised margins and 50% having a margin of less than 5 mm. All patterns of ductal carcinoma in situ were represented, although comedo subtype was uncommon. Computer simulations showed that pagetoid spread becomes extensive when diffusion rates are the multiple orders of magnitude greater than proliferation rates.

Conclusions: Ductal carcinoma in situ associated with pagetoid proliferation of neoplastic cells along the ducts was often extensive with positive or "pale" margins with circumcised biopsies. The computer simulation of pagetoid spread within ducts suggests that the diffusion to proliferation ratio must be high in order for ductal carcinoma in situ to extend in this fashion.

165 Ductal Carcinoma In Situ on Core Needle Biopsy: When Should One Recommend Excision?

Background: Core needle biopsy (CNB) is the preferred technique for evaluating breast masses and abnormal mammographic findings. The frequency of detection of noninvasive lobular lesions by CNB is increasing. Historically, the diagnosis of lobular carcinoma in situ (LCIS) has not been considered a risk factor for the development of invasive carcinoma, and treatment consisted of careful follow-up with or without tamoxifen. The purpose of this study was to review CNB material with the primary diagnosis of LCIS, atypical lobular hyperplasia (ALH), and lobular neoplasia (LN) in conjunction with clinical and radiologic findings to make recommendations as to when excision is merited.

Design: The M.D. Anderson pathology database was searched from 1995 to 2001 for CNB cases with LCIS, ALH, and LN as the primary diagnosis. Microcalcifications...
Primary bilateral breast cancers display different LOH and CGH profiles in both epithelial and stromal components.

Man YG, Moinfar F, Sheshtika KM, Stamatakos M, Lininger RA, Kuhl E, Brathauer GL, Tavassoli FA. Department of Gynecologic and Breast Pathology, Armed Forces Institute of Pathology and American Registry of Pathology, Washington, DC.

One of our previous studies revealed that morphologically similar cells from two sides of bilateral primary breast cancers displayed a different pattern and frequency of loss of heterozygosity (LOH), suggesting that these might be independent lesions. This study attempted to confirm previous findings.

Methods: The frequency and pattern of LOH and DNA copy numbers in microdissected epithelial (EP) and stromal (ST) cells from left and right lesions of 20 synchronous and metachronous breast cancers were compared, using PCR and comparative genomic hybridization (CGH) techniques. Results: A total of 147 LOH were detected in a total of 122 paired informative foci with a combination of 9 markers. Of 147 LOH, 82 (56%) were seen in the left and 65 (44%) in the right lesions. Of 122 paired foci, 97 (80%) showed unilateral and 25 (20%) displayed bilateral LOH. Of 42 paired, microdissected samples, 32 (76%) displayed more independent, while 4 (10%) showed more concurrent LOH. In 7 selected cases, CGH changes (gains or losses) were detected in the EP component in one side of three cases and in both sides of three cases, and loss of 1q was seen in the ST component in one side of two cases. CGH changes were distributed in 5 left and 4 right lesions, but none of cases that showed CGH changes displayed an identical pattern or frequency of changes in either EP or ST component of both breasts. Conclusions: These results are in favor of independent lesions in most primary bilateral cancers, and further suggest that ST cells are concurrently involved or even play initiating roles in development and progression of some breast cancers.
PUBLICATIONS

Allelic Losses at 3p and 11p are Detected in Both Epithelial and Stromal Components of Cervical Small-Cell Neuroendocrine Carcinoma. Yan-gao Man, M.D., Ph.D., Ciaran Mannion, M.D., Elizabeth Kuhls, M.D., Farid Moinfar, M.D., Gary L. Brathauer, M.S., M.T., Jorge Albores-Saavedra, M.D., and Fattaneh A. Tavassoli, M.D. Applied Immunohistochemistry & Molecular Morphology

Multiple Use of Slab Gels in Sequencing Apparatus for Separation of Polymerase Chain Reaction Products. Yan-gao Man, M.D., Ph.D., Elizabeth Kuhls, M.D., Gary L. Bratthauer, M.S., M.T., Farid Moinfar, M.D., and Fattaneh A. Tavassoli, M.D. Electrophoresis

An Improved Method for DNA Extraction for Paraffin Sections. Yan-gao Man, M.D., Ph.D., Elizabeth Kuhls, M.D., Gary L. Bratthauer, M.S., M.T., Farid Moinfar, M.D., and Fattaneh A. Tavassoli, M.D. Pathology Research and Practice

Contributions of Intercalated Duct Cells to the Normal Parenchyma of Submandibular Glands of Adult Rats. Yan-gao Man, M.D., Ph.D., William D. Ball, Luigi Marchetti, and Arthur Hand. The Anatomical Record

Combined E-Cadherin and High Molecular Weight Cytokeratin Immunoprofile Differentiates Lobular, Ductal, and Hybrid Mammary Intraepithelial Neoplasias. Gary L. Bratthauer, M.S., M.T., Farid Moinfar, M.D., Michael D. Stamatakis, LT COL, USAF, MC, Thomas P. Mezzetti, LCDR, MC, USNR, Kris M. Shekitka, COL, USAF, MC, Yan-gao Man, M.D., Ph.D., and Fattaneh A. Tavassoli, M.D. Department of Gynecologic and Breast Pathology, Armed Forces Institute of Pathology

Androgen and Estrogen Receptor mRNA Status in Apocrine Carcinomas. Gary L. Bratthauer, M.S., M.T., Rugh A Lininger, M.D., Yan-gao Man, M.D., Ph.D., and Fattaneh A. Tavassoli, M.D. Diagnostic Molecular Pathology

Morphofunctional Features of Intraductal Hyperplasia, Atypical Intraductal Hyperplasia, and Various Grades of Intraductal Carcinoma. Yan-gao Man, M.D., Ph.D., and Fattaneh A. Tavassoli, M.D. The Breast Journal
Assessing the value of p16 in the diagnosis of malignant melanoma
Ailing Li, MD, MS1, Marjorie Fowler, MD1, Yan-Gao Man MS, MD, PhD2,
Fleurette Abreo, MD1, Daniel Sanusi, MD1
1. Louisiana State University Health Sciences Center in Shreveport.
2. Armed Forces Institute of Pathology.

Background: The p16 (CDKN2A/MTS-1) gene, a member of the tumor suppressor gene family, encodes a protein that regulates the checkpoint of cell cycles from the G1 to the S phase. A mutation or deletion at the p16 locus has been found in about 36% of malignant melanomas. The diagnostic value of p16 expression in melanoma cells has not been investigated extensively.

Design: The expressions of p16 detected by immunohistochemical staining with the use of monoclonal antibody (p16inkta Ab-4, labvision.com) were compared in three types of cutaneous melanocytic tumors which were common melanocytic nevi (20 cases), atypical melanocytic nevi (16 cases) and malignant melanomas (15 cases). A cell proliferation rate marker, Ki67, was also evaluated in the study as a control marker (>10% as positive). Chi-square tests were used for statistical analysis.

Results: Positive p16 staining was found in 95% of common melanocytic nevi (19/20) and in 75% of atypical melanocytic nevi (12/16). However, no melanoma in-situ (0/4) and only 18% of melanomas were p16 positive (2/11). The difference in p16 expression among common melanocytic nevi, atypical melanocytic nevi and malignant melanomas was statistically significant ($\chi^2=26.1$, p<0.000001). Positive Ki67 staining was not found in common melanocytic nevi (0/20) or in atypical melanocytic nevi (0/16), but was seen in 40% of malignant melanomas (6/15). The difference in Ki67 expression among common melanocytic nevi, atypical melanocytic nevi and malignant melanomas was statistically significant ($\chi^2=16.8$, p=0.0003). It is interesting to note that when evaluating the samples with the two markers in combination all p16 positive specimens (33) were Ki67 negative, and 33% of p16 negative samples (6/18) were Ki67 positive.

Conclusion: p16 has a high specificity for distinguishing common melanocytic nevi (95%), a relatively high specificity for atypical melanocytic nevi (75%) and a relatively high sensitivity for diagnosing malignant melanomas (87%). Ki67 and p16 are inversely correlated. However, combining the two markers does not improve the sensitivity or specificity.

Discussion: The study suggests that p16 might be a useful molecular marker for aiding in the diagnosis of malignant melanoma. However, this is a small pilot study and this finding needs to be confirmed by larger studies.

Reference:
五言 题友人

1977年春游湖北武当山

镜一知己故友抱卷而依，随风化镜以感。

探花有何难？何处无花香！

牡丹呈锦簇，野菊遍山川。

合风夜随去，晓雾晨更香。

白花纵无残，吐芳有未果。

种梅邀友林，自有花仙伴。

垂钓清水平，携来乐天娇还！

注释：
①传说中佛祖如来之居所。
②传太公姜子牙曾於清江河畔以无饵直钩於距水面三尺处垂钓，并高吟：“愿者上钩来。”结果钓起买之娇子周武王及周朝数百年江山。

十言 西山怀古

1977年秋访湖北鄂城西山寺

湖北鄂城是西北有一高丘，名西山，山中有古寺。相传唐宋时寺中僧人逾百。宋代词人苏东坡任职黄州时曾到此与众僧人弹琴对点江山，激扬文字。然笔者造访时，此处已面目全非，一片凄凉。

寺门枯藤绕，
神案蛛网裹。
试问东坡何处去，
寺中鹦鹉舞。

灶台香古铸，
饮酒早干枯。
庭院香草突起处，
酒出人笑骨。
Excite”在英汉词典中的主要释意是：兴奋刺激，是日常生活用语中使用频率最高的单词之一。然而，十五年前我首次使用此词时却闹出了个至今仍令我羞得耳根发热的笑话。

此时，我以访问学者身份至Georgetown大学微生物系从事科研工作。此年圣诞节，导师Rosenthal教授夫妇邀我将妻到其家共进晚餐。导师与有且慷慨地备有中西佳肴若干盘及香酒十余种。导师与人客十余位男女亲朋好友。我奉陪4~5杯后即告小胜酒力，随向坐于身旁的师母索桔汁代酒。师母好客，一再劝我再喝几杯。我因酒后易烦躁不安，极难入睡而推辞：“No, I can not. If I drink too much, I will be very excited and not be able to sleep.” 导师与师母对我的托辞似十分好奇，两人不约而同地问道：“Really?”，我忙答道：“Yes! My wife can verify this.” 师待二人发问，我妻子已主动答道：“Yes! He is always very excited whenever he has a heavy drink, and will stay awake all night long.”

我们的交谈顷刻就吸引了屋中所有人的注意力。几对男女用颇感惊奇的眼光上下打量我与妻子，更多的人则对我们挤眉弄眼，作怪象。导师则起身离座站在我身后，双手搭在我肩上，用一种阴阳怪气的语调对我说：“Oh, man, do not worry, your wife is here.” 他的话音未落，众人哄堂大笑。约半数宾客甚至笑得前合后仰，接者肚子笑出声。

饭后，我私下问导师众人哄笑之因。导师解释：Excite一词有双重含义。在饮酒时用此词则意含说话人欲火喷射，性趣冲冲。导师的解释使我很快领悟到我与妻子语间言辞的确切英文会意竟是：我每次喝多酒后总是性欲暴增，与妻缠绵通宵达旦。
突然惊吓后，人们常会有心跳或心慌意。若事出意外，受害者会大呼：“你把我吓到心脏病了，我的心都快被吓碎了。”对于闻人这一表达方式，美国人似有截然不同的理解。下到本人十几年前在Howard大学医学院工作时一亲身经历为证。

一日我在实验室阅读组织切片，突然身后一声巨响。由于实验室位于地下室，一向极不安静，加之注意力高度集中，这突如其来的响声使我由周遭地从坐椅上一跃而起，心中怦怦直跳。回头一望，先是室中的女技术员把一个巨大的空玻璃瓶摔碎在地。比女世代居美，祖、父辈均为政府高级职员。某人持一条牌大学学士文凭，聪明伶俐，但做事极马虎。此刻，我曾数次因不循实验程序而受到警告。此事当日我先，便冲她大吼：“Being careful! You have almost broken my heart. ”。她以狐疑的眼光望着我，犹豫片刻后装作没听见。我见她始终无动于衷，一时未找出合适的话语，便随口说道：“Forget it”. 恰好她似甚为委屈地嘟囔：“I did not break your heart, maybe your girl friend did”. 一听此言，我本已基本平息的火气又陡然窜起。我伸手向她，责问她吼道：“Yes, you did. Check your pulse, my heart beats at least 100 times a minute”. 她望着我那恼怒的面神，伸了下舌头，做了个鬼脸便走开了。

十多分钟后，她主动找到我，很有礼貌地说：“Sir, Man, I am very sorry for what I did. But, you should have said that ‘you have scared me to death’ rather than ‘you have almost broken my heart’. ”。我问为何，她解释道：前句话意指你受到惊吓而感到不安。而后句则表示你对我举动不满，颇感不快。而我却根本不当回事。为此，你深感失意、愤怒。听完她解释，我顿觉脸上发烧，无地自容。她看出了这一点，忙说；“Sir, Man, you are a very nice and handsome young Man. I do love you”. 好吧她实在逗你作戏，但那温柔的话语，甜蜜的笑容已将我心中的不快一扫而净。
六、在日常生活语中，国人常将衣服（Clothing）一词泛指各类服装，如衬衫、外套、裤子等。美国人对此却分得较细。

若忽略此差异，则可转用英文译。

十二年前，美国朋友Kurt Nauss先生邀我到他家欢度圣诞节。因此时天寒地冻，我穿了一件厚重的外套。推开他家的门后，只见他与太太正忙于准备饭菜。我不忍让他放下手中的活计为我挂衣，便问道：“Kurt，may I take my clothing off and put in your closet?” Nauss先生闻言忙跑过来，低声对我说：“Sorry, you can not.” 我又问道：“室内温度比室外要低得多，为什么不脱脱衣？他便有礼貌地答道：’No matter how hot it is, it is a very bad idea to take off your clothing in front of people.’ 我们之间虽熟识，且常在他家相聚数次，但望着他那严肃认真的神情，我只好入境随俗，穿着大衣走向客室。

Nauss先生叫住我；”Mr. Man, although you are not allowed to take your clothing off, you are welcome to take your coat off.” 我忙答道：这正是我刚才所求的。他笑着说：你刚才根本没提出要脱（Coat），你所说的照我想是指，你想脱光衣服，一丝不挂。