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IV.  Reports

There are two Ph.D. graduate students (Emmanuel Agwu and Lisa Kinnard) and
three postdoctoral research associates (Yusuf Ali, Huafu Song and Renshu Zhang)
supported by this grant. Emmanuel Agwu is a 6™ yr MD/PhD student pursuing his Ph.D.
degree in Biochemistry. Lisa Kinnard is a graduate student from the Department of
Electrical Engineering. Yusuf Ali is a resident in the Department of Radiology. Renshu
Zhang is a radiologist by training. Huafu Song is a NMR/MRI specialist.

The trainees have rotated through the mammography service in the Department of
Radiology in the hospital to learn the mammography procedures. Besides attending the
weekly seminars in the Cancer Center, the trainees also have attended a special seminar
series on the breast imaging sponsored by this grant and the Department of Electrical
Engineering. The trainees have actively participated in several research projects. Based
on the experimental findings, one paper was published and three posters have been
presented in the national scientific meetings. Two graduate student trainees have passed
their comprehensive exams and have started research for their Ph.D. thesis. One
postdoctoral trainee has completed his radiology resident training. The PI has submitted a
NIH grant as a co-investigator.

Statement-of-Work Year 2:

e Take departmental comprehensive exams
Both Emmanuel Agwu and Lisa Kinnard have passed their comprehensive exams.

e Submit a five page pre-proposal 30 days before taking comprehensive exam
Both Emmanuel Agwu and Lisa Kinnard have submitted pre-proposals as required by
the Electrical Engineering Department and the Biochemistry Department.

e Write an expanded research proposal and defend the proposal
The proposals submitted by both students have been accepted.

e Once the student has passed the written and oral comprehensive exams, the
student is qualified as a Ph.D. candidate
Both students are Ph.D. candidates.

e Select a thesis committee
Emmanuel Agwu’s thesis committee members are: Drs. C. Coomes, J. Mack, A.
Rhoads, and P. Wang. The committee has met twice reviewing Emmanuel Agwu
progress.
Lisa Kinnard’s thesis committee members are: Drs. M. Chouikha, B. Lo, T. Gill, A.
Rubaai, and P. Wang. The committee has met three times reviewing Lisa Kinnard’s
progress.

e Start thesis project
Both students have started their Ph.D. thesis projects.

e Report to MD/Ph.D. committee and respective department on research progress
each semester
Both students have submitted written progress reports.

¢ Clinical preceptorship one half day per week
Lisa Kinnard has worked with Dr. Eva Duckett of the Howard University Hospital
Radiology department. During this internship, Dr. Duckett trained her in the




following areas: 1) Patient management, 2) Screening/Diagnostic procedure, 3)
Breast cancer image patterns, 4) Understanding of typical cases versus clinically
indeterminate cases, 5) Understanding of geometric distribution (physical locations of
tumors), 6) Image patterns of cysts, fibroadenomas, 7) Image pattern analysis of
masses vs. microcalcifications and 8) Biopsy procedures.

Emmanuel Agwu is in his 4™ medical school training, which is a clinical rotation for
the whole year.

Postdoctoral Student:

Year 2:

V.

Participate in weekly Cancer Center Seminars

All the postdocs and graduate students participated weekly Cancer Center seminars.
With the Electrical Engineering Department, the Biomedical NMR Laboratory started
series seminars on breast imaging. This seminar series is partially support by this
grant. A list of seminars is attached in the appendix.

Organize weekly research group meeting

The lab has a regular weekly group meeting discussing the progress of experiments.
Continue research project

The research associates have presented a poster in at the AACR Molecular Imaging
meeting.

Present progress report to the Executive Committee

The Executive Committee has reviewed and satisfied the progress of research.
Clinical preceptorship one half day per week

Ali Yusuf is a radiology resident. He has clinical responsibility everyday. RenShu
Zhang is a radiologist by training and she is familiar with mammography procedures.

Reportable Outcomes

Papers:

1. Kinnard L, Lo S-C.B, Wang P, Freedman MT, Chouikha M, Separation of
Malignant and Benign Masses in Mammography using Maximum-Likelihood
Modeling and Neural Networks. Proc. of SPEI Vol 4684: 733-741, 2002.

Abstracts:

1. Agwu EC, Zhou JW, Sridhar R, Wang PC. An Improved NMR Perfusion System
For Breast Cancer Cell Study. Association For Academic Minority Physicians
15™ Annual Scientific Meeting, October 12-14, Washington, DC. 2001.

2. Zhang RS, Li EC, Ali YD, Song HF, Fan KJ, Pirollo KF, Chang EH, Wang PC.
Dynamic Magnetic Resonance Imaging of Prostate Cancer in Mice. American
Association for Cancer Research Conference, Molecular Imaging in Cancer:
Linking Biology, Function, and Clinical Application In Vivo, January 23-27,
2002, Orlando, F1.




3.

Kinnard L, Lo S-C.B, Wang P, Freedman MT, Chouikha M, Separation of
Malignant and Benign Masses in Mammography using Maximum-Likelihood
Modeling and Neural Networks. SPEI Med Imaging, Feb. 2002, San Diego, CA.

Ph.D. Thesis Proposals:

1.

Emmanuel Agwu “In Vitro and in Vivo Characterization of MCF7 Sensitive
and MCF7 Multidrug Resistant Cell Metabolism Using Magnetic Resonance
Spectroscopy” Department of Biochemistry and Molecular Biology

Lisa Kinnard “Segmentation Classification of Malignant and Benign
Masses in Digital Mammography using Maximum-Likelihood Modeling and
Neural Networks.” Department of Electrical Engineering

Awards:

1.

The PI was chosen as a recipient of an AACR-HBCU Faculty Scholar Award in
Cancer Research for the AACR Special Conference entitled “Molecular Imaging
in Cancer: Linking Biology, Function, and Clinical Application In Vivo” held
January 23-27, 2002 Lake Buena Vista, F1.

Appendix

. The poster from the AACR Molecular Imaging Conference, “Molecular Imaging

in Cancer: Linking Biology, Function, and Clinical Application In Vivo”, January
23-27, 2002, Orlando, F1.
The paper published in SPEI Vol 4684: 733-741, 2002.

. A list of the “Breast Imaging” seminars.
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Separation of Malignant and Benign Masses using
Maximum-Likelihood Modeling and Neural Networks

Lisa Kinnard®®?, Shih-Chung B. Lo®, Paul Wang¢, Matthew Freedman®, Mohamed Chouikhal

aISIS Center, Department of Radiology, Georgetown University Medical Center,
Washington, D.C.
bDepartment of Electrical Engineering, Howard University, Washington, D.C., USA
Biomedical NMR Laboratory, Department of Radiology, Howard University,
Washington, D.C.

ABSTRACT

This study attempted to accurately segment the masses and distinguish malignant from benign tumors. The
masses were segmented using a technique that combines pixel aggregation with likelihood analysis. We found
that the segmentation method can delineate the tumor body as well as tumor peripheral regions covering typical
mass boundaries and some spiculation patterns. We have developed a multiple circular path convolution neural
network (MCPCNN) to analyze a set of mass intensity, shape, andtexture features for determination of the
tumors as malignant or benign. The features were also fed into a conventional neural network for comparison.
We also used values obtained from the maximum likelihood values as inputs into a conventional backpropagation
neural network. We have tested these methods on 51 mammograms using a grouped Jackknife experiment
incorporated with the ROC method. Tumor sizes ranged from 6mm to 3cm. The conventional neural network
whose inputs were image features achieved an A value of 0.66. However the MCPCNN achieved an A, value
of 0.71. The conventional neural network whose inputs were maximum likelihood values achieved an A, value
of 0.84. In addition, the maximum likelihood segmentation method can identify the mass body and boundary
regions, which is essential to the analysis of mammographic masses.

Keywords: Computer-assisted diagnosis, breast cancer, convolution neural networks, feature extraction

1. INTRODUCTION

While many breast cancer diagnostic systems have been developed, fully-automated mass segmentation continues
to be a major challenge in this area. Several investigators exploited methods using intensity values to decide if a
pixel should be placed in the region of interest (ROI) or background 14957, Petrick'? et al. developed the density
weighted contrast enhancement (DWCE) method which applies a series of filters to the image in an attempt
to extract masses. Li® et al. developed a competetitive classification strategy, which uses a combined soft and
hard classification method for deciding if segmented regions are true or false positives. Li7 et al. developed
a segmentation method that uses probability to determine segmentation contours. Most of these methods
are successful at segmenting the tumor body, however, they sometimes do not properly obtain the extended
boundaries of the tumor. While conventional region-growing is an excellent pixel-based segmentation method,
it may not suitable to use this method alone. It produces many segmentation contours for one tumor image,
but does not decide which segmentation contour is the best. Based on the above reasons, we have developed
a tumor segmentation method that combines region-growing with probability assessment to determine final
segmentation contours for various breast tumor images.

The most recognized obstacles in breast cancer diagnosis are (1) difficulties of diagnostic decision making in
calling back patient for further breast examination, (2) the large number of suspected lesions of which only part

Further author information: (Send correspondence to Lisa M. Kinnard)
Lisa M. Kinpard: E-mail: kinnard@isis.imac.georgetown.edu, Telephone: 1 202 687 5135
S8.C. Ben Lo: E-mail: lo@isis.imac.georgetown.edu, Telephone: 1 202 687 1659,
Address: ISIS, Georgetown University, 2115 Wisconsin Avenue, NW, Washington DC, USA

’éﬁedical Imaging 2002: Image Processing, Milan Sonka, J. Michae! Fitzpatrick,
ditors, Proceedings of SPIE Vol. 4684 (2002) © 2002 SPIE . 1605-7422/02/$15.00 733



of them are malignant lesions; and (3) missed diagnosis of breast cancer. The callback rates vary from 5% to 20%
in today’s breast cancer screening programs!**. At some medical centers, the positive predictive rate can be 30%
to 35%31while at others this rate can be as low as 10% to 15%. It is well known that effective treatment of breast
cancer calls for early detection of cancerous lesions (e.g.. clustered microcalcifications and masses associated
with malignant cellular processes)'®!!'!> Tumors can be missed because they are obscured by glandular tissue
and it is therefore difficult to observe their boundaries. We were motivated by this clinical obstacle and have
developed a computer-assisted diagnostic system attempted to tackle this issue as demonstrated in the following
sections.

2. METHODS

Computer-assisted breast cancer diagnosis is divided into three parts, namely, image segmentation, feature
calculation, and classification. The next several section will theoretically describe the methods used in the
study.

2.1. Segmentation

It is well known that lesion segmentation is one of the most important aspects of computer-assisted diagnosis
(CAD,) because one of the main characteristics of malignant tumors is ill-defined, and/or spiculated borders.
Conversely, benign tumors typically have well-defined, rounded borders. Segmentation is therefore extremely
important because the diagnosis of a tumor can strongly depend upon image features.

Pixel aggregation is an automated segmentation method in which the region of interest begins as a single
pixel and grows based on surrounding pixels with similar properties, e.g., grayscale level or texture.? It is a
commonly used method314%due to its simplicity and accuracy. The computer will use the maximum intensity
as the "seed point" -a pixel that is similar to the suspected lesion and is located somewhere inside the suspected
lesion. The next 4- or 8-neighboring pixel is checked for similarity so that the region can grow. If pixels in the
4- or &neighboring region are similar, they are added to the region. The region continues to grow until there
are no remaining similar pixels that are 4- or 8-neighbors of those in the grown region.

Our implementation of this method checks the 4-neighbors.of-the seed pixel and uses a graylevel threshold
as the similarity criterion. If a 4-neighbor of a pixel has an intensity value greater than or equal to a set
threshold, it is included in the region of interest. The 4-neighbors were checked instead of the 8-neighbors so
that surrounding tissue will not be included. The intensity threshold was used as a similarity criterion due to
its simplicity and effectiveness.

By using the same seed point with multiple intensity threshold values we obtained between 150 and 300 of
gray level change per lesion; however, the computer did not have the ability to choose the best partition. We
added a maximum-likelihood component to the region-growing algorithm. The algorithm can be summarized
in five steps. The image was first multiplied by a 2D shadow, whose size was approximately the same size as
the ROL We will henceforth refer to the image to which the 2D shadow has been applied as the "fuzzified"
image. We started the threshold value at the maximum intensity in the image and decreased the intensities in
successive steps. Consequently, we obtained a sequence of growing contours (S;), where intensity value was the
similarity criterion. There was an inverse relationship between intensity value and contour size, i.e., the lower
the intensity value, the larger the contour. Next, we calculated the composite probability (F;) for each contour
(S:):

P; = p(S;|pdf;) x ploutsideS;|ROI). (1)

where p(S;|pdf;) is the probability density function (pdf) of the ROI subject to the fuzzified image (see Fig. 1).
This pdf is calculated inside the contour, S;, where i is the thresholding step. The quantity p(outsideS;|ROI)
is the pdf of the ROI subject to the original image. This pdf is calculated outside the contour, S;. Next we
find the logarithm of the composite probability, P; in the following way:

log(P) = log(p(S;|pdf:)) + log(p(outsideS;|ROI)), (2)

734 Proc. SPIE Vol. 4684



Figure 1: Figure (a) is used to calculate p(S;|pdf:). Figure (b) is used to calculate p(outsideS;|ROT)

Finally, we determine the likelihood that the contour repr&sents the tumor body by assessing the maximum
likelihood function:

argmaz(Log(F)), ®3)

Equation 3 intends to find the maximum value of the aforementioned likelihood values as a function of intensity
threshold. We assess (so as other investigators®) that the intensity value corresponding to this maximum
likelihood value is the optimal intensity for the tumor body contour. We also determine the likelihood that the
contour represents the tumor extended borders by assessing the maximum change of the likelihood function:

dlosh)) @

i.e., find the steepest jump on the aforementioned function. An intensity value between this jump and the
maximum value on the function produces the best contour of the tumor body and its extended borders.

argmaz(

-2.2. Feature Calculation

One extremely important task in the separation of malignant and benign tumors is feature selection and calcu-
lation. Benign tumors can be lucent at the center and can have well-defined borders; while malignant tumors
can have spiculated and/or fuzzy borders. We used the following features:

Global Features
1 TN ToleGh i) — 9GP

Skewness = (5)

¥ VN oleG i) - 9GP

where ¢(z, 7) is intensity value and g(i, j) is average intensity value.
4

Kurtosis = ;, b J—O[g(z 1) - 9. )) (6)

VIVl ) - 9

A
Circularity = -Xl, (7)
Proc. SPIE Vol. 4684
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where A is the area of the actual ROI; A; is the area of the overlapped region of A and the effective circle A,
which is defined as the circle whose area is equal to A and is centered at the corresponding centroid of A.

P
Compactness = - (8)
where, p=tumor perimeter and a=tumor area
perimeter = tumor perimeter. 9)

Local Features
These intensity features were calculated on the 10° ROl as it was divided into 10° sectors in the polar coordinate
system, therefore each tumor contained 36 sectors.

—_— 1=
oG =5 2 9. (10)
1,j=0

where Mean = g(3, ), N is the total pixel number inside the ROI

Contrast = X2 "P", (11)
Py

where Py is the average gray-level inside the ROI’s and P, is the average gray-level surrounding the ROL

o} = % i(g(i,j) -9, 1), (12)
=
where 0% = standard deviation, ~ T T v e
Area = tuﬁm area (13)
1 .
o= ;(m -7 (14)

where o, = Deviation of the Normalized Radial Length, N is the total number of pixels located on the boundary
of the ROI, 7; is the value of the normalized radial length from the boundary coordinate (24, y:) to the centroid
of the ROI; 7 is the mean of ;.

N, Ny

1 _ 1 A
Roughness = (5= >_(rs = 7)1 =[5 2 (re =12/ (15)
i=1 i=1
radial length = length of radius, (16)

where length of radius is the distance from the center of the tumor to its edge.

Given a second-order joint probability matrix Psg(i,7), where Pag(i,7) is the joint gray level distribution
of a pixel pair (i,j) with the distance d and in the direction 8, six texture features are defined as follows:

L L

Ed,o(i,j) = Z Z Pd,e(i9j)2v (17)

i=1 j=1
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where Eg4(i,j) = energy.

L L
Lig(i;5) = Y > (i = )*Pae(i, ), (18)
i=1 j=1
where I44(%, j) = inertia.
L L
E= Z Z Pd.O(iyj)1092Pd.0(i9 .7)’ (19)
i=1 j=1
where E = entropy.
P
IDMyp = Z; T (z 4604, 9), (20)

where, IDMg4¢ = Inverse Difference Moment.

n—1 n—1ln-1
DE49 = ~ Z Pz—y(k)log2px—y(k) Px—y(k) Z Z Py 0(7".7)’ (21)
k=0 i=0 j=0

for |t — jl = k,k=0,1,...,n —1 where, DE4 ¢ = Difference Entropy.

2.3. Classiﬁers

We used a conventional backpropagation neural network for two of the three studies described in this paper.
It is comprised of an input layer, one hidden laver, and one output. We used the multiple circular path neural
network® for the third study described in this paper. It is comprised of 3 input layers, one hidden layer and
one output. The first input layer is fully connected, i.e., all inputs connect to all hidden nodes. The second
input layer is called a self correlation path, i.e., each node on the layer connects to a single set of the 18 image
features for the fan-in and fully connects to the hidden nodes for fan-out. The third input layer is called a
neighborhood correlation path, i.e., each node on the layer connects to the input nodes of adjacent sectors for
the fan-in and fully connects to the hidden nodes for fan-out. Our study used 18 hidden layer nodes. A more
detailed explanation of the MCPCNN can be found the work done by Lo et. al.8.

3. EXPERIMENT

The image samples were chosen from several databases compiled by the ISIS Center of the Georgetown University
(GU) Radiology Department and the University of Florida’s Digital Database for Screening Mammography
(DDSM).® They are a mixture of "obvious" cases and "not obvious" cases. The "obvious" cases contain tumors
that are easily identifiable as malignant or benign while the "not obvious" cases are those that radiologists find
difficult to observe and/or classify. Forty malignant and forty benign tumors were tested during this experiment.
The GU films were digitized at a resolution of 100um using a Lumiscan digitizer. The DDSM films were digitized
at 43 and 50 pm’s using both the Lumiscan and Howtek digitizers. We compensated for this difference in
resolution by reducing the DDSM images to half their normal sizes. The images were of varying contrasts and
the tumors were of varying sizes. There were 28 malignant cases and 23 benign cases.

The experiment was subdivided into three studies as shown in table 1 below.

Experiments 1 and 2 used 6 global and 12x36 sector features to yield a total of 438 image features per tumor.
There were 18 hidden nodes and 1 output for both the BP and MCPCNN classifiers. The training and testing
method used was the jackknife method. Experiment 3 used 19 likelihood feature values per tumor. There were
15 hidden nodes and 1 output for the BP classifier. The training and testing method used was the jackknife
method. The results were analyzed using the LABROC4 program.®
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Experiment Features Neural Network
1 Image Features Conventional NN
2 Image Features MCPCNN
3 ML-curve as features | Conventional NN

Table 1: This table summarizes the studies presented in this paper.

4. RESULTS

Here are two examples of segmentation results for both malignant (see Fig. 2) and benign (see Fig. ) cases.
Each example gives the segmentation result produced by the maximum likelihood value on the curves described
in section 2.1.

The following is a table, which gives the A, values produced by the neural network.

Experiment Features Neural Network | Az
1 Image Features Conventional NN | 0.66
2 Image Features MCPCNN 0.71
3 ML-~curve as features [ Conventional NN | 0.84

Table 2: Results from Experiments 1-3.

5. CONCLUSION AND DISCUSSION

In analyzing-the-segmentation results we drew several conclusions. We discovered that there was a marked
difference between the likelihood functions in malignant cases and the likelihood functions in benign cases.
The likelihood function in the bénign case often experiences a sharp drop, while the likelihood function in the
malignant case is often smoother. In the image, a sharp drop value in the likelihood function represents an
abrupt change in the area as well as likelihood value. We observed thatin benign cases, the likelihood function
sharp changes are much more evident because benign tumors usually have well-defined borders. Conversely, in
many malignant cases, the likelihood functions are smoother because many of their the borders are ill-defined. In
analyzing the likelihood functions for malignant cases we recognized that those curves with very sharp changes
were produced from tumors with well-defined borders and vice versa; i.e., there were malignant tumors that
could be mistaken as benign and vice versa.

The maximum likelihood curves used as inputs to the BP neural network produced the best performance
overall. The image features used as inputs to the MCPCNN produced the second best performance. The image
features used as inputs to the BP produced the worst performance. Since we received the best results by using
the likelihood functions as features, we expect that the MCPCNN may improve the overall results by giving
the likelihood functions in every sector.
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Figure 2. The segmentation results for a malignant tumor. Part (a) shows the segmentation result produced by the
maximum likelihood change intensity choice, part (b) shows the original image, and part (¢) shows the segmentation
result produced by the maximum likelihood intensity choice.
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Figure 3. A likelihood function with respect to threshold values for all segmentation steps (malignant case) shown in

Fig. 2.
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Figure 4. The segmentation results for a benign tumor. Part (a) shows the segmentation result produced by the
maximum likelihood change intensity choice, part (b) shows the original image, and part (c) shows the segmentation
result produced by the maximum likelihood intensity choice.
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