Report Title: "Technical Papers"

Performing Organization:
- **Name:** Air Force Research Laboratory (AFMC)
- **Address:** AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048

Sponsoring/Monitoring Agency:
- **Name:** Air Force Research Laboratory (AFMC)
- **Address:** AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048

Distribution/Availability Statement:
Approved for public release; distribution unlimited.

Security Classification:
- **Report:** Unclassified
- **Abstract:** Unclassified
- **This Page:** Unclassified

Number of Pages: 62
MEMORANDUM FOR IN-HOUSE PUBLICATIONS

FROM: PROI (TI) (STINFO)

Jeff Sheehy “Theoretical Investigations of HEDM” HEDM Conference Presentation (Statement A)

30 Apr 98
Theoretical Investigations of HEDM

Jeffrey A. Sheehy

Propulsion Sciences Division
USAF Phillips Laboratory
10 E. Saturn Blvd.
Edwards AFB, CA 93524-7680

E-mail: sheehy@helium.ple.af.mil

Contributors: Jerry A. Boatz
Jeffrey D. Mills
Hi-Young Yoo
Peter W. Langhoff

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited
Present HEDM Theory and Computations

- Structure, stability, and spectroscopy of prototype HEDM-doped cryogenic matrices
 - Spectral theory of chemical binding
 - Applications to sodium- and aluminum doped rare-gas clusters and solids: NaAr$_n$, AlAr$_n$

- Structure, stability, and spectroscopy of candidate cryogenic HEDM dopant species
 - Characterization of argon matrices seeded with small boron-carbon and pure carbon molecules: B$_x$C$_y$, $x,y = 1-6$; C$_n$, $n = 1-12$

- Properties of non-cryogenic new propellants and additives
 - Structures, spectra, and heats of formation for various newly synthesized and proposed fuels, oxidizers, and monopropellants: [$(N_3)_3C$]$^+$, [NCNNO$_2$]$^-$, C$_5$H$_8$O$_2$, C$_{17}$H$_{24}$N$_4$O$_8$
Potential-Energy Surfaces

- Spectral theory of chemical binding aims to provide accurate electronic potential-energy surfaces for aggregates of interacting atomic or molecular species
 - Provides a unified treatment of all types of physical and chemical binding
 - Gives a new foundation for a class of theories (AIM and DIM) that build potential surfaces from information related to component fragments
 - Diatomic-molecule calculations are the most demanding requirement from conventional quantum chemistry, and can be done once and for all
 - Potentially applicable to large systems (10^3 atoms)

- Accurate potential-energy surfaces yield information about structures, spectroscopy, stability, and reactivities of chemical systems
Diatomic-Molecule Calculations

- Due to the availability of experimental data from Mario Fajardo and others, alkali atoms in rare-gas matrices are studied as a prototype of atom-seeded solid H_2

- Potential-energy, dipole-moment, and transition-moment functions for the ground and lowest nine excited states of NaAr are calculated employing CASSCF/MRCI and EA-EOM-CC methodologies; lowest states are benchmarked using CCSD(T)

- Similar calculations for AlAr are in progress; preliminary results obtained employing CASSCF(0.05)/MRCI are available

- Data so obtained are used directly in computational implementations of the spectral theory and in ensuing cluster simulations ($\text{NaAr}_n\text{, AlAr}_n$)
AlAr_{12} Absorption Spectrum at $T = 30\ K$
Identification of Cyclic C_6 in Argon Matrix

- CCSD(T)/cc-pVDZ ground-state equilibrium structure (D_{3h} symmetry)

- First identification of a neutral small cyclic polycarbon
Vibrational Frequencies and Intensities of Cyclic C$_6$

<table>
<thead>
<tr>
<th>Mode</th>
<th>B3LYP/cc-pVDZ</th>
<th>CCSD(T)/cc-pVDZ</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_1(a_1')$</td>
<td>1222</td>
<td>1183</td>
<td>1183</td>
</tr>
<tr>
<td>$v_2(a_1')$</td>
<td>659</td>
<td>556</td>
<td>556</td>
</tr>
<tr>
<td>$v_3(a_2')$</td>
<td>1437</td>
<td>1371</td>
<td>1371</td>
</tr>
<tr>
<td>$v_4(e')$</td>
<td>1769 (404)</td>
<td>1736 (420)</td>
<td>1768</td>
</tr>
<tr>
<td>$v_5(e')$</td>
<td>1219 (1)</td>
<td>1178 (1)</td>
<td>1222</td>
</tr>
<tr>
<td>$v_6(e')$</td>
<td>633 (25)</td>
<td>576 (43)</td>
<td>337</td>
</tr>
<tr>
<td>$v_7(a_2'')$</td>
<td>419 (8)</td>
<td>380 (7)</td>
<td>380</td>
</tr>
<tr>
<td>$v_8(e'')$</td>
<td>519</td>
<td>492</td>
<td>492</td>
</tr>
</tbody>
</table>
Identification of Cyclic C_8 in Argon Matrix

- B3LYP/cc-pVDZ ground-state equilibrium structure (C_{4h} symmetry)

- Identified for the first time in the argon matrices containing cyclic C_6 and various other linear and cyclic C_n compounds ($n = 3,4,\ldots,12$)
Approach To Propellant Ingredient Modeling

- Employ various methods to solve the molecular electronic Schrödinger equation from quantum mechanics:

- Potential energy surfaces -- energy profiles associated with all possible arrangements of the atoms in a chemical system -- yield synthetic routes and decomposition pathways

- Structures and certain spectra (e.g., IR) are obtained from evaluating derivatives of the energy with respect to nuclear coordinates

- Other properties, (e.g., NMR spectra) are obtained from evaluating energy derivatives with respect to other quantities (e.g., magnetic field)

- Thermodynamic properties obtained from relative energetics of reactants, intermediates, and product species
Payoffs From Propellant Ingredient Modeling

Several benefits to propellant synthesis programs are derived from theory and modeling work:

- Focus laboratory efforts by predicting characteristics of candidates
 - Stabilities
 - Energy content
 - Propellant performance

- Reduce the number of experiments required to synthesize candidates
 - Suggest synthetic routes
 - Eliminate "blind alleys" and "dead ends"

- Aid in identification of unknown molecules
 - Calculate properties (e.g., spectra) for comparison with measurements

- Generally substitute relatively inexpensive modeling for comparatively expensive laboratory work
Triazidocarbenium Cation

- Energetic cation for dinitramide or perchlorate salts
- Computed infrared, Raman, and NMR spectra
- Heat of formation of \([(N_3)_3C]^+ [N(NO_2)_2]^-= +252 \text{ kcal/mol}\)
2,6-dioxaspiro[3.3]heptane

- Partially oxidized "hydrocarbon" fuel
- $\Delta H_f = -30.2$ kcal/mol; lsp (neat with LOX) = 296 sec
Tetra(nitromethyl)spirotriskadecane

- Calculations on thermodynamic properties of this molecule are in progress
Summary

- All aspects of the research and development program in new propellant ingredients at AFRL are supported by theory and modeling.

- The theory and modeling effort serves to limit the number of experiments that must be carried out through substantial screening of target systems, providing efficiency and cost savings to the program.

- The interaction between theoreticians and experimenters facilitates the accomplishment of program goals that could not otherwise be accomplished.

- Theory and modeling provides vital directional signposts along the road to developing new energetic propellants, which are essential to meeting several IHRPRT performance objectives.
Theory and Computations in Propellants Research

<table>
<thead>
<tr>
<th>Area of Interest</th>
<th>Type of Model</th>
<th>Impact of Modeling</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of new propellant ingredients</td>
<td>Calculations of stationary points on potential surfaces</td>
<td>Exploration of efficient synthetic routes and dissociation pathways</td>
<td>Cubane (C8H8), pentaprismane (C${10}$H${10}$)</td>
</tr>
<tr>
<td>Stabilities of proposed and synthesized new propellants</td>
<td>Calculations of structures, spectra, properties</td>
<td>Effective screening of proposed compounds; determine which merit experimental study</td>
<td>[(N$_3$)C]$^+$, [NCNNO2]$^-$, C$_5$H6O2, C${17}$H${24}$N$_4$O$_8$</td>
</tr>
<tr>
<td>Discovery and characterization of new cryogenic HEDM additives</td>
<td>Calculations of infrared frequencies and intensities; spectral modeling</td>
<td>Predict whether candidate molecules can be isolated; aid in data analysis</td>
<td>Li$_x$B$_y$, Li$_x$C$_y$, Si$_x$C$_y$ (x,y = 1,2,3); cyclic C$_6$ and C$_8$</td>
</tr>
<tr>
<td>Characterization of doped cryogenic solid propellants</td>
<td>Spectral theory of chemical binding in conjunction with molecular dynamics simulations</td>
<td>Predict structures, densities, dopant concentrations, and stabilities of cryogenic HEDM propellants</td>
<td>Na/Ar$_n$, Al/Ar$_n$ (prototypes); Li/H$_2$, B/H$_2$, LiB/H$_2$, B/H2/He${G}$</td>
</tr>
</tbody>
</table>

Snapshots of AlAr$_n$ Clusters
Application to Aluminum-Argon Clusters

- Structures and absorption spectra of Al(Ar)$_n$ clusters with $n = 1, 6, 12,$ and 54 have been studied; results are compared with data from Mitchio Okumura (Caltech).

- Simulations employ Metropolis Monte-Carlo method combined with a generalized Balling and Wright or spectral theory treatment of the potential functions.

- Makes use of AlAr diatomic potential-energy, dipole-moment, and transition-moment functions involving all states of spectroscopic interest (generalized Balling and Wright) or all states calculated (spectral theory).

- Analogous studies of NaAr$_n$ clusters and solids are in progress, utilizing the new potential curves and recent developments in implementation of the spectral theory.