THESIS

AN ANALYSIS OF FACTORS PREDICTING GRADUATION AT UNITED STATES MARINE CORPS OFFICER CANDIDATES SCHOOL

by
Donald B. McNeill, Jr.
September 2002

Thesis Advisor: Samuel E. Buttrey
Second Reader: Lyn R. Whitaker

Approved for public release; distribution is unlimited.
All officers commissioned in the Marine Corps except those from the Naval Academy are required to successfully complete an intense screening program at Officer Candidates School (OCS). The Marine Corps is attempting to improve its officer selection process and reduce attrition at OCS by determining which candidates it should recruit and send to OCS. In late 2000, the Marine Corps Combat Development Command (MCCDC) commissioned a 67-question survey that has been given to all candidates entering OCS since fall of 2000. The results of this survey were used to build models to provide a probability of success of candidates based upon responses to the survey and other demographic data. One model created from this survey was used to build a computer desktop tool that officers may use to assist in selecting the candidates who have the highest probability of success at OCS and in preparing them for the rigors of OCS. This tool provides a probability of graduation for each candidate that is 99.8% correlated with the actual graduation rate of other candidates who have similar characteristics to the candidate whose probability of graduation was calculated.
AN ANALYSIS OF FACTORS PREDICTING GRADUATION AT UNITED STATES MARINE CORPS OFFICER CANDIDATES SCHOOL

Donald B. McNeill, Jr.,
Major, United States Marine Corps
B.S., United States Naval Academy, 1989

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author: Donald B. McNeill, Jr.

Approved by: Samuel E. Buttrey
Thesis Advisor

Lyn R. Whitaker
Second Reader

James N. Eagle, Chairman
Operations Research Department
ABSTRACT

All officers commissioned in the Marine Corps except those from the Naval Academy are required to successfully complete an intense screening program at Officer Candidates School (OCS). The Marine Corps is attempting to improve its officer selection process and reduce attrition at OCS by determining which candidates it should recruit and send to OCS. In late 2000, the Marine Corps Combat Development Command (MCCDC) commissioned a 67-question survey that has been given to all candidates entering OCS since fall of 2000. The results of this survey were used to build models to estimate the probability of success of candidates based upon responses to the survey and other demographic data. One model created from this survey was used to build a computer desktop tool that officers may use to assist in selecting the candidates who have the highest probability of success at OCS and in preparing them for the rigors of OCS. This tool produced estimates of graduation probabilities for a test set of candidates that were very highly correlated with the actual graduation rates.
THIS PAGE INTENTIONALLY LEFT BLANK
TABLE OF CONTENTS

I. **INTRODUCTION** .. 1
 A. **BACKGROUND** ... 1
 1. Commissioning Sources .. 1
 2. History of OCS ... 1
 3. OCS Programs and Requirements ... 2
 4. Candidate Recruiting and Training Prior to OCS ... 6
 B. **AREA OF RESEARCH** .. 7
 C. **OFFICER CANDIDATES SCHOOL SUCCESS RATES** .. 8
 D. **OBJECTIVES AND RESEARCH QUESTIONS** .. 9
 1. Scope of Thesis ... 10
 2. Thesis Methodology ... 10
 E. **SCOPE OF THESIS AND METHODOLOGY** ... 10
 1. Scope of Thesis ... 10
 2. Thesis Methodology ... 10
 F. **ORGANIZATION OF THESIS** ... 11

II. **LITERATURE REVIEW** .. 13
 A. **STUDIES IN EMPLOYMENT ATTRITION** ... 13
 B. **STUDIES IN ENLISTED ASSESSION ATTRITION** ... 13
 C. **STUDIES IN OFFICER CANDIDATE ATTRITION** .. 15

III. **DATA AND METHODOLOGY** .. 23
 A. **DATA** ... 23
 1. Database Used in Thesis ... 23
 2. Dependent Variable ... 26
 3. Independent or Explanatory Variables ... 26
 B. **METHODOLOGY** .. 26
 1. Initial Findings .. 26
 2. Analysis of Data Set Containing Only Officer Candidates Course Candidates 27
 3. Analysis of Complete Data Set Using All Commissioning Sources 33

IV. **MODEL DEVELOPMENT** .. 41
 A. **OFFICER SELECTION OFFICER RISK ESTIMATION TOOL** 41
 B. **OFFICER CANDIDATE SCHOOL ATTRITION PREDICTION MODEL** 44
 C. **MODEL VALIDATION** ... 44

V. **SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS** ... 47
 A. **SUMMARY** .. 47
 B. **CONCLUSIONS** .. 47
 C. **RECOMMENDATIONS** ... 48

vii
LIST OF FIGURES

Figure 1. Principal Components for OCC Numeric Data Frame................................. 32
Figure 2. Classification Tree with Fifteen Leaves Derived from Categorical Data Set
... 34
Figure 3. Predicted Probability of Graduation vs. Graduation Rate for Training Set 42
Figure 4. Predicted Probability of Graduation vs. Graduation Rate for Test Set......... 45
LIST OF TABLES

Table 1. Comparison of Predicted Probability of Graduation (Prob(Grad)) with Actual Graduation Rate (Pct(Grad)) for Bins in Training Set 43
Table 2. Comparison of Predicted Probability of Graduation (Prob(Grad)) with Actual Graduation Rate (Pct(Grad)) for Bins in Test Set 46
ACKNOWLEDGMENTS

Special thanks go to Professors Samuel E. Buttrey and Lyn R. Whitaker as my thesis advisor and second reader for their insight into techniques that were useful in the writing of this thesis. Your patience and guidance were most appreciated, and, without your assistance, it would not have been possible for me to complete this thesis. Additionally, I would like to thank Professor Nita Miller and Lieutenant Colonel Saverio Manago, United States Army, for their added help in looking at the problem from another angle. I would also like to express my particular gratitude and love for my beautiful wife Laura for her sacrifices over the past two years in pulling more than her fair share of the load around home and for my four beloved children Britton, Hannah, Bennett, and Heather for their patience and understanding when I often could not play or spend time with them because of school or was not as patient as I ought to have been. Most of all, I would like to express my eternal gratitude for the undeserved mercy of the Lord Jesus Christ, the grace He has given me, and the work He continues to do in me. This paper is dedicated to the glory of the risen Christ. *Soli Deo Gloria.*
EXECUTIVE SUMMARY

In order to determine predictors of success and failure at Marine Corps Officer Candidates School (OCS) and improve the process for commissioning Marine officer candidates, the Marine Corps Combat Development Command commissioned a 67-question survey to be given to all candidates attending OCS. The results from the survey were to be used to predict whether or not an individual would succeed at OCS and to ensure that only those candidates with a high probability of success are actually sent to OCS.

Over the past year, over two thousand Marine officer candidates from twelve separate companies have been given this survey. One company was removed from the database because of errors in the data, ten were used for the initial database, and the last company served as the test set for models that were created. Once the data was prepared for use, a variety of statistical analysis techniques including logistic regression, classification and regression trees, principal components, agglomerative and k-means clustering, correlation coefficient analysis, Bayesian networks, and bagging were applied. In some of the analysis, many of the questions were converted from categorical to numeric format in order to save degrees of freedom in the model.

Unfortunately, because of high dimensionality of the data set and the initial high proportion of candidates who graduated (78%), it was too difficult to predict whether or not a given individual would graduate from OCS. It was generally found that either the models did not have the required power to correctly predict success, or they tended to over-fit initially and then had high misclassification rates when the model was cross-validated. However, it was found that it is possible to predict success for groups of candidates. A logistic regression model that contained both categorical and numeric questions and some demographic data was determined to be the best overall model. From the results of this model, a spreadsheet was created in which a candidate’s responses to the survey could be entered. The spreadsheet then computes the model’s estimate of the probability of graduation. Then, using this model, a vector of probabilities of graduation for all candidates in the test set was produced, sorted in increasing order, and separated
into equal-sized bins. The average predicted probability of graduation for each bin was then calculated and compared with the actual graduation rate for each bin, providing a 99% correlation rate.

Consequently, it appears that, although it is not possible with this data set to predict whether or not individuals will graduate from OCS, it is possible to produce a probability of graduation for individuals based upon the results from this GLM. Modifications to the survey recommended in the conclusion to the paper may improve the possibility of correctly predicting whether or not individuals will graduate from Marine Corps OCS.
I. INTRODUCTION

A. BACKGROUND

1. Commissioning Sources

Commissioned officers in the United States Marine Corps come from several sources: the United States Naval Academy, civilian universities, and the enlisted ranks of the Marine Corps and other services. All of these officers except those who attend the Naval Academy are required to successfully complete a screening process at Marine Corps Base Quantico, Virginia, called Officer Candidates School (OCS). The mission of Marine Corps Officer Candidates School states that its charter is “To train, evaluate, and screen officer candidates to ensure that they possess the moral, intellectual, and physical qualities for commissioning and the leadership potential to serve successfully as company grade officers in the operating forces.” (http://www.ocs.usmc.mil/) One of the primary goals of OCS is to place candidates under stressful, pressure-filled situations in order to determine their ability to lead others while under stress (North and Smith, 1993, p. 9).

2. History of OCS

Prior to World War I, almost all officers in the Marine Corps came from either the Naval Academy or from the enlisted ranks of the Marine Corps. Marine Corps OCS had its true beginning during World War I, when it became necessary to commission more officers for the war. Because of its successes in World War I, the Marine Corps, maintained at a larger size than prior to the war, began to recruit more heavily at civilian universities through the Naval Reserve Officer Training Corps (NROTC) program. In 1934, to further build the pool of potential candidates, the Marine Corps developed the Platoon Leader’s Course (PLC) program for colleges with no NROTC program. Students selected for this program were commissioned as reserve officers after two six-week periods of instruction at either Quantico or San Diego. With concerns that America would soon be involved in another war, the Marine Corps added, in 1940, another program, the Officer Candidates Class. These programs have been expanded or reduced
in size as necessary over the past decades to meet the requirements for new commissioned lieutenants in the Marine Corps (http://www.ocs.usmc.mil/history.htm).

3. OCS Programs and Requirements

Currently, the major commissioning programs are the Officer Candidate Class (OCC), the Platoon Leader’s Class (PLC), Marine Corps Reserve Officers Training Corps (MCROTC), and the Marine Corps Enlisted Commissioning Program (MECEP). Their contracts state that those applying for the OCC and PLC programs agree to serve eight years as commissioned officers in the Marine Corps Reserve if they successfully complete the course (NAVMC 10462 (REV. 5-93)). Candidates from these programs receive different levels of financial support for college based upon the program for which they have been selected.

Generally recruited during their senior year of college, OCC candidates attend a ten-week training program after they have graduated from college. They receive nothing toward college costs. Some are recruited into this program after they have graduated and held jobs in the civilian sector. Two small programs for commissioning of enlisted Marines, the Enlisted Commissioning Program (ECP) and the Meritorious Commissioning Program (MCP), generally fall under the OCC program. Enlisted Marines applying for the ECP are required to have completed a baccalaureate degree on their own, usually during off-duty hours while in the Marine Corps, though some who already have degrees enlist and later apply for commissioning. The MCP is for exceptional Marines who have some college experience, usually an associate degree or 75 semester hours of college credit. These Marines without degrees must continue to pursue completion of their baccalaureate in order to be competitive for promotion and continued service (MCO1040.43A, paragraph 5b). ECP and MCP candidates who do not successfully complete OCS will be returned to a Marine Corps unit to complete their service obligation at their prior rank (ibid, paragraph 19). Because they have received no financial assistance, OCC candidates may leave OCS for any reason after their 7th week of training in Quantico and are not required to accept a commission upon graduation from OCS (Service Agreement, Officer Candidate (Ground), NAVMC 10462 (REV. 5-93)).
Typically, PLC candidates attend two separate and sequential six-week OCS classes in the summers prior to college graduation, classes known as PLC Juniors and PLC Seniors. PLC candidates usually sign up during their freshman year of college and currently may receive money each month toward college expenses from two separate programs: the Financial Assistance Program (FAP) (MCO 7220.43B) and the Tuition Assistance Program (TAP) (MCO 1560.33). Once a candidate in good standing has completed the first summer training period, he or she may apply from FAP that is distributed using a tiered system. During the first year, eligible candidates receive $300 per month for nine months, and $350 and $400 per month during the following two years (CMC letter, 8 November 2001). They may also receive from the TAP up to $5,200 per year in each of their last three years of college, totaling not more than $15,600 over a three-year period. Once candidates begin receiving this money, they are obligated to serve for a minimum of 48 months on active duty for the Financial Assistance Program or for eight years service, five of which must be on active duty, for the College Tuition Assistance Program. Those who do not complete PLC Seniors except due to medical reasons are required to reimburse the government for their financial assistance unless they agree to serve two years as enlisted Marines; those who have accepted tuition assistance may be required to serve for up to four years as enlisted Marines if they are not commissioned. Anecdotally, OSO’s are aware that it is often difficult to convince a candidate who has completed PLC Juniors to return for PLC Seniors: they find that, currently, it is necessary to recruit three candidates in order to commission one because many, after completing PLC Juniors, refuse FAP and CTAP and do not go on to PLC Seniors (conversation with Major Blake Wilson, Marine Corps Recruiting Command, 27 November 2001). A cursory look at this data set may support that assertion: since those candidates who choose the PLC Junior and PLC Senior route to commissioning attend in separate summers, generally following their freshman and junior years of college, the PLC Seniors in the data set likely attended PLC Juniors two summers ago, in the summer of 1998. It is noteworthy that there was only one company of 238 PLC Seniors but three companies of PLC Juniors totaling 698 candidates, indicating that many attending PLC Juniors may not continue in the program to PLC Seniors, through attrition either at OCS or in the intervening two years. During the summer of 1998, the summer in which most
of this year’s PLC Seniors would have attended PLC Juniors, there were 430 graduates of PLC Juniors from only two companies (phone conversation with Sergeant Kevin R. Scheaffer, Officer Candidates School, 16 September 2002). Although some may have either attended PLC Seniors in the summer of 1999 or were not able to attend in 2000 because of medical or other reasons, it appears that there was significant attrition in the intervening period between the end of PLC Juniors and the beginning of PLC Seniors: the total number of those starting PLC Seniors was only about 55% of the total that graduated from PLC Juniors two years ago. The discrepancy in these two numbers is not due to a significant change in the officer recruiting mission for the Marine Corps in that period, either, that might have necessitated an increase in officer quotas.

Those who either enroll during their junior year of college or are unable to complete both PLC Juniors and PLC Seniors prior to graduation due to medical or other reasons may attend a single ten-week OCS class in one summer (MCO P1100.73B, paragraph 2001.3.a). This ten-week program, called PLC Combined, is virtually identical to the ten-week OCC course. A candidate in the PLC Combined program may receive tuition assistance and financial assistance once he or she has completed the ten-week program, and the requirement to accept a commission is the same as for a candidate from the PLC Junior and Senior program.

During the school year, those enrolled in the PLC program are required to spend time with their OSO to prepare them for OCS. If they successfully complete PLC Juniors, they are not required to continue with the program, as long as they have not accepted money from either the Financial Assistance Program or the College Tuition Assistance Program. Those who continue with the program but do not receive money are not required to complete PLC Seniors nor to accept a commission if they complete that program.

Of the four types of candidates, MCROTC candidates typically receive the most financial and tuition assistance. Most MCROTC candidates receive full college tuition, fees, textbooks, and a monthly stipend of $250 per month for freshmen and sophomores, $300 per month for juniors, and $350 per month for seniors (https://www.nrotc.navy.mil/scholarships_application.html). Some who do not have
scholarships also participate in the NROTC College Program and may be commissioned as reserve officers upon graduation from OCS and college (MCO P1100.73B, paragraph 3001). During their last two years, they may receive monthly stipends of $350 during their junior year and $400 during their senior year. Because of the great expense of the scholarship program, the Marine Corps has a great incentive to see all MCROTC candidates commissioned. Until the end of their sophomore year, the student may dis-enroll from the program for any reason with no requirement to reimburse the government. At the beginning of his or her junior year in college, he or she is required to sign a statement committing him or her to service as an officer in the Marine Corps for eight years upon graduation from college. Participants receiving MCROTC scholarships are required to serve four of those eight years on active duty, and non-scholarship candidates must serve three and a half years on active duty (https://www.nrotc.navy.mil/faqs.cfm). Those MCROTC candidates who fail at OCS except for medical reasons may be required to attend Marine Corps boot camp and serve for up to four years as enlisted Marines or may be required to repay the government for their tuition, fees, books, and their stipend, a great incentive for them to successfully complete the program (MCO P1100.73B, page 3-29). In a few cases, those MCROTC candidates who are unable to successfully complete OCS are given the opportunity to apply for commissions in the United States Navy and thus meet their service obligations without having to repay their college expenses.

Upon acceptance to the program, MECEP candidates are required to re-enlist for a period to cover their entire time at college and are required to pay for all tuition, books, and other expenses themselves at the civilian institution they attend (MCO P1100.73B, paragraph 3001). Upon commissioning, MECEP candidates are required to serve at least four years on active duty as commissioned officers. MECEP candidates who are found not suitable for officer programs because of failure at OCS will be removed from the college they are attending, returned to Marine Corps units, and required to complete their obligated service at their current enlisted rank (MCO 1560.15L).

Both MCROTC and MECEP candidates generally spend more time with their Marine Officer Instructor (MOI) than PLC candidates do with their OSO and receive
more instruction during the school year, taking actual classes in military science and receiving extracurricular instruction during the year. Consequently, MECEP and MCROTC candidates are required to attend only a single six-week program called “Bulldog” in one of the summers prior to college graduation. Because of the background of the enlisted Marines and the more extensive training of MCROTC students, this program does not spend as much time in indoctrination and basics of military life; consequently, their course in Quantico is quite a bit more compressed than the OCC or PLC programs.

4. Candidate Recruiting and Training Prior to OCS

The Marine Corps has a well-established recruiting program to ensure that its requirements for new officers are met each year, with regional Officer Selection Officers (OSOs), who recruit PLC and OCC candidates, and Marine Officer Instructors (MOIs) at each college that has an MCROTC program. An OSO’s responsibility usually lies along geographic lines. Each OSO has a certain geographic area, often covering thousands of square miles, and works at the colleges in that region to recruit candidates. Most MOIs work at a single university to oversee the MCROTC and MECEP candidates enrolled there. A few MOIs must cover the MCROTC programs at more than one university in a very small geographic region, such as the greater Atlanta area, which has several universities with ROTC units within the local area. While these OSOs and MOIs are responsible for training officer candidates in Marine Corps customs, doctrine and history and in preparing them for OCS, OSOs are required to spend much of their time recruiting new candidates, which reduces the amount of time they have available to train their candidates. Depending upon the year and the geographic region, each OSO is required to recruit several new officer candidates each month, which may require extensive travel over his or her region. Anecdotally, it is known within Marine Corps circles that recruiting duty is some of the most difficult duty in the Marine Corps, requiring much time for travel and extremely long work hours, both in recruiting enlisted personnel and officers. On the other hand, MOIs are required to do very little recruiting or traveling; they spend the majority of their time training their MCROTC and MECEP candidates for
OCS. It is extremely expensive to maintain this recruiting structure, and the Marine Corps would like to minimize the costs involved in recruiting and commissioning officers. In 2001, there were 72 OSOs and 63 MOIs spread across the United States. Each MCROTC unit also has a staff non-commissioned officer assigned as an advisor to the candidates, as well as the MOI (phone conversations with Master Sergeant Ricardo A. Hudson and Mrs. Tonya L. Durden, Marine Corps Recruiting Command, 16 August 2002).

B. AREA OF RESEARCH

The Marine Corps spends millions of dollars each year in recruiting officers. Historically, there has been about a 25% failure rate at Marine Corps Officer Candidates School. Each failure costs the Marine Corps valuable time and money. In addition to the tuition, stipends, uniforms, and books where applicable, there are many other expenses, such as transportation for candidates to and from OCS, training events, medical screenings including flight physicals for potential candidates, hotel lodging for candidates when they have to attend training or undergo medical screening away from home, automobile mileage for OSOs as they travel from college to college, and a whole host of other expenses (phone conversation with Major Timothy Kornacki, former OSO, 20 June 2002). For each failure at OCS, another officer candidate must be recruited, screened, and prepared for a later OCS class. In recent years, in order to get one successful candidate to finish OCS and accept a commission as a Marine Corps officer, it has been necessary to recruit three candidates (conversation with Major Blake Wilson, 27 November 2001). Candidates may not complete OCS for a variety of reasons. Many, after looking into the program, simply decide that they do not want to become Marine officers. Others do not have the mental, physical or moral aptitude or are required to leave OCS because of injuries sustained in training.

In an effort to minimize the number of failures among OCS candidates, the Marine Corps Combat Development Command’s (MCCDC) Studies and Analysis (S & A) Division commissioned, in late 2000, a 67-question survey that has been given to every candidate entering OCS since fall of 2000. The questions are broken into five basic
categories: General Demographic Information, General OCS Preparation, Physical Training Section, Health/Lifestyle Section, and Medical History Section. MCCDC would like to reduce attrition without changing its screening standards or reducing the quality of Marine Corps OCS candidates. Marine Corps S & A requested that research be done to identify ways to reduce candidate attrition at OCS by finding profiles that predict attrition at OCS. Additionally, they requested that two tools be developed for use by OSOs and MOIs. First, a computer-based model called the Officer Selection Officer Risk Estimation Model (OSOREM) would allow an OSO or MOI to enter parameters and then determine from a prediction of success or failure whether or not to send a candidate to OCS. The second tool, called the Officer Candidate Attrition Prediction Model (OCAPM), would be designed to identify levels of risk for candidates and predict the reason for failure should it occur so that the probability of it occurring may be minimized (Statement of Work). This thesis investigates the effect of these factors and combinations of factors on the success of a typical Marine Corps OCS candidate and whether factors indicating a higher than average probability of failure may be corrected by improved training prior to the candidate arriving at OCS.

C. OFFICER CANDIDATES SCHOOL SUCCESS RATES

Each program for officer candidates has different service-time requirements based upon the amount of support a candidate receives when he or she is attending college. Based upon the requirements placed on candidates, it seems that the OCC candidates would have the least motivation of the three groups to successfully complete OCS as well as the least opportunity for formal preparation for OCS. Many will know either from employment experience or from civilian recruiters’ visits to their colleges that they could easily find employment in the civilian sector that pays markedly more than service in the Marine Corps does, without the difficulty of OCS or the requirements of military service. Knowing that they may be forced to either repay their college costs or to serve as enlisted Marines should make PLC or MCROTC candidates more motivated to successfully complete OCS. This should be particularly true for MCROTC candidates, who would have to repay the government for their entire college education.
The officer-recruiting program is designed so that OSOs are required to provide a certain number of new candidates for OCS each month. The OSO does not receive a credit until the candidate successfully completes the inventory physical fitness test (PFT) given during the first few days of OCS. Failures do not negatively impact the OSO’s performance rating. Generally, all they need to do is ensure they have enough candidates to pass the PFT to meet their quota. Consequently, an OSO has little incentive to hold back a candidate who he or she believes has a low probability of success; the OSO’s only concern is getting the candidate to a condition in which he or she can successfully complete the PFT. This could weaken the pool of candidates attending OCS; the OSO sends as many as possible, weak or strong, to ensure that his or her quota is met.

D. OBJECTIVES AND RESEARCH QUESTIONS

The primary objective of this thesis is to predict success or failure of the typical Marine Corps OCS candidate, taking into account information gained from the 67-question survey given to OCS candidates over the past year, and to develop tools that will assist OSOs and MOIs in preparing their candidates for OCS. These tools should allow OSOs and MOIs to enter data into a desktop-based program that will produce a predicted probability of success at the candidate’s OCS class. They should, as well, be able to be updated periodically with new data as additional companies graduate from OCS.

The primary research question for this thesis is: “Are there any factors or combinations of factors which positively or negatively contribute toward successful completion of Marine Corps OCS?” The secondary question is: “Which factors or combinations of factors can be influenced by OSOs, MOIs and OCS staff in order to minimize the probability of failure and maximize the probability of success at OCS?” It would also be desirable to address whether or not success or failure can be predicted based upon a candidate’s responses to the survey.

The null hypothesis for the primary research questions is as follows:

\[H_0: \] None of the factors included in the survey is significant in predicting success of candidates from Marine Corps OCS.
Conversely, the alternative hypothesis for the primary research questions is as follows:

H₁: At least one of the factors included in the survey is significant in predicting success of candidates from Marine Corps OCS.

E. SCOPE OF THESIS AND METHODOLOGY

1. Scope of Thesis

Research done for this thesis applies to all officer screening programs in the military services, particularly programs that place applicants in high-pressure situations. For example, this may apply to the services’ officer candidate schools and officer training school, as well as the indoctrination period that freshmen undergo at the United States’ service academies. Additionally, many of the findings may apply to initial-entry training of enlistees in the services as well as to other organizations that screen applicants in similar fashion, such as police academies and the Federal Bureau of Investigation (FBI).

2. Thesis Methodology

The foundation of this thesis is the survey given to candidates at Marine Corps OCS. First, it was necessary to investigate the validity of all the questions and responses of the survey. Next, responses were checked for validity, and errors in the data set need to be removed. Then, once the survey results are transferred into a statistics package, statistical analysis techniques such as classification trees, regression, and linear models were used to identify factors or combinations of factors that point toward success or failure at OCS and fit models for the typical candidate at OCS. From that, a spreadsheet-based tool was created to assist OSOs, MOIs, and OCS staff in identifying those candidates who have a higher probability of failure than the average candidate in the whole OCS program and in the particular program for this candidate. This tool may provide guidance as to how to improve each candidate’s performance. Further potential applications include a means to create a means by which the data can be continually updated as additional classes complete OCS and the data set becomes larger. Finally, data
gathered from a class that graduated in March 2002 was used to validate the model and tools that have been developed.

F. ORGANIZATION OF THESIS

Chapter I of this thesis has provided an introduction and background information on the problem as well as a basic description of the various OCS programs. Chapter II is a discussion of studies done on attrition in the workforce, primarily focused on military examples. Chapter III covers the data and methodology used in this problem and assumptions made in the study. Chapter IV discusses the development of the models from the data. Chapter V provides a summary of findings from this thesis, conclusions gained from the research, recommendations for further research and action by the Marine Corps.
II. LITERATURE REVIEW

A. STUDIES IN EMPLOYMENT ATTRITION

Over the years, there have been numerous studies aimed at determining success and attrition rates of people in various organizations. From academics to civilian employment to military service, researchers have determined that there are two basic groups of factors that serve as predictors of success for people in various organizations: individual factors and organizational factors. Individual factors involve such categories as demographics, motivations, expectations, and personality traits, while the organizational factors refer to the basic characteristics of the organization. Research has consistently shown that the individual factors of motivation, education level, and marital status best predict attrition in military units (Carroll and Cole, pp. 31-32).

Organizations that require a screening process in a high-pressure environment have many similarities with military indoctrination programs. Processes such as the introductory course at various police academies, fire academies, and the FBI, could be useful in providing more sources to study and use as references for potential predictors of success or failure at Marine Corps OCS. There do not appear to be any published studies on attrition of applicants to such programs.

B. STUDIES IN ENLISTED ASSESSION ATTRITION

Prior to the late 1970’s, most of the research on military attrition focused on individual factors rather than organizational ones. (Mobley, Hand, Baker, and Meglino, 1978, p. 2) Research in other fields suggested that individual intentions may be significant in predicting future behavior in employees (ibid, p.8). In the late 1970’s, the Center for Management and Organizational Research conducted a series of studies to determine predictors of attrition of enlisted Marine Corps recruits. One of these studies, published in 1978, was based on a survey given to 1,521 male, non-reservist recruits from three consecutive recruit-training companies in August 1976, at Marine Corps Recruit Depot Parris Island, South Carolina. This survey was given at the beginning of training;
12% of the recruits were not successful in completing recruit training. The study included demographic information attained from the Recruit Accession Management System (RAMS) along with results of questions in the survey that addressed pre-recruit training intentions, expectations, and attraction to civilian and military roles. Questions in the survey asked participants to rate how desirable certain role outcomes were and to give their expected probability that the Marine Corps and civilian employment would allow them to attain those outcomes (ibid, 1978, p. 13). For instance, recruits were asked how important a strong family life is to them and then were asked to rate how likely they expected both the military and civilian employment would help them to achieve that goal. The values were multiplied by expected probabilities for all questions in each category to give an overall utility value. Additionally, there was another survey given to recruits when they either graduated from recruit training or failed from the program, and other surveys were given to continue to track these Marines as they progressed through advanced training and on to other duty stations.

Researchers found several significant differences between those who graduated and those who did not. First, demographically, there were significant differences in education, marital status, and mental score. Those who graduated were more likely to have higher education and mental levels and less likely to be married. The education level difference was significant at the 0.01 level, and the other two were significant at the 0.05 level. Second, they found differences between the two groups’ intentions even before they started training. Questions addressing intentions indicated that graduates had significantly greater intention than non-graduates to complete their enlistment contract and to re-enlist, both significant at the 0.01 level. Again, even before they began recruit training, there were significant differences in expectations; those who eventually graduated had a higher expectation of graduating and had a lower expectation of being able to find a civilian job (ibid, p. 21). Responses to questions that addressed both attraction to recruits’ potential role as Marines and belief that becoming Marines would allow them to meet their goals indicated that, even before boot camp, subsequent graduates had a significantly greater desire to become Marines and expectation of completing their first-term enlistment than non-graduates. Interestingly, there were no
significant differences in attraction to civilian jobs or expectation of finding civilian employment between the graduate and non-graduate groups. Regarding overall satisfaction with the Marine Corps, those who subsequently graduated were significantly more likely to expect to be satisfied than non-graduates (ibid, p. 22). The authors also constructed a logistic regression model to predict recruit training attrition. The best predictor of attrition was the recruit’s expectancy of completion measured at the beginning of training. Other variables that contributed significantly in the equation were education, the sum of positive minus negative Marine role outcome expectancies, expectation of finding a civilian job (negative impact), intention to complete, age (negative impact), Marine force role, and expected overall satisfaction.

A second study of the turnover process among this group of enlisted Marines over their entire four-year enlistment term took a closer look at behavioral intentions of the Marines. The authors pointed out that turnover among new employees is often due to the employees seeing little utility in their present situation, having low satisfaction in their job, and having low motivation to remain. As was suggested in the first study, those who completed enlistment had significantly higher intention to complete their enlistment than those who did not. The results indicate that behavioral intentions can act as a predictor of employee turnover (Youngblood, Mobley, and Meglino, 1983). Such an indication may have implications on the success rates of Marine officer candidates: those who succeed may, in general, be those who simply have the highest motivation and desire to succeed at OCS.

C. STUDIES IN OFFICER CANDIDATE ATTRITION

In an effort to determine the causes for officer candidate attrition and consequently to minimize attrition, several military services have commissioned studies over the years using various methods. In the early 1980’s, researchers conducted a study of attrition among cadets at the United States Military Academy, West Point, New York, and candidates at Army Officer Candidate School, Fort Benning, Georgia, using the Miner Sentence Completion Scale (MSCS) (Form H) to determine if motivational propensities were significant in predicting graduation rates of cadets and candidates.
Previous research has determined that military training organizations may be viewed as hierarchical in nature. This test involves a survey given to participants who answer incomplete sentences that are intended to measure their opinions on the following seven subscales: Authority Figures, Competitive Games, Competitive Situations, Assertive Role, Imposing Wishes, Standing Out From Group, and Routine Administrative Functions. A positive score indicates that an individual is likely to fit in a hierarchical organization (Miner, 2000). The researchers’ underlying premise was that an individual is less likely to quit from a job when his or her motives correspond to the demands of the organization. Much research in the past has supported the concept that the military is a hierarchical organization. Thus, the researchers tested the hypothesis that turnover would be higher among cadets and candidates whose motives were not consistent with a hierarchical organization. Those more likely to attrite from a hierarchical organization could generally be characterized as less comfortable with authority, either in themselves or others; less competitive; and less desirous of distinguishing themselves.

The study of the West Point cadets may have applicability to this study because of the particularly intense training and evaluation conducted upon freshmen, called “plebes,” as well as the continued academic and military pressure on cadets through their four years of college instruction at West Point. Early in their freshman year, the cadets were given a survey whose results were used until the class graduated. The questionnaire had blanks in which cadets were required to write their answers, and, to minimize grading variance, a single evaluator scored all the surveys. The study of the West Point cadets, covering their four years there, did not include those who were forced to leave the academy; it is reasonable to assume that some of those who voluntarily left West Point would have eventually been forced out. The data set that was examined consisted of a randomly chosen set of 502 cadets, 36% of the class entering in 1972. In this group, 313 graduated, 53 were forced to leave, and 136 voluntarily left the academy. The graduation and resignation rates of this subset were consistent with rates for the entire class. Even though the study covered a long period during which attitudes may have changed in the cadets, the researchers still found significant differences between the group that graduated and the group that voluntarily left West Point in total scores, Assertive Role,
Imposing Wishes, and Routine Administrative Functions (Butler, Lardent, and Miner, 1983, pp. 496-499).

The study of Army OCS candidates was conducted over a much shorter period, the fifteen weeks of two OCS classes in late 1975 and early 1976, reducing the likelihood that the individual candidates would markedly change their attitudes toward their organization. This intense evaluation program was likely to be very similar to the focus of this study, Marine Corps OCS. Most of those attending Army OCS were superior performers among the enlisted ranks of the Army, so it is likely that they already had many of the attitudes and motivations consistent with Army hierarchical structure. Of 110 candidates with usable surveys in the first company, 91 graduated and 19 left prior to graduation. In the second company, surveys for 131 graduating and 10 separating candidates were usable. Combined, the two companies provided records of 222 graduates and 29 non-graduates, a 12% failure rate, substantially lower than the West Point attrition rate. Unfortunately, the surveys were given a little later in the training cycle for this company (training day thirteen instead of day three), so some of the candidates who left within the first few days of their class never took the survey. The OCS study used a multiple-choice measurement instead of the blanks used in the West Point study, reducing the possibility of scorer variability but likely skewing the responses to shed a more positive light upon participants. Researchers also used additional tests designed for use in a manufacturing environment. The results of the survey of OCS candidates indicated significant differences between graduates and non-graduates in total score, Competitive Games, Competitive Situations, and Assertive Role, as well as several categories in the manufacturing test and another test. The tests of OCS candidates indicated a stronger competitive nature among graduates than non-graduates. In summary, both studies supported the hypothesis that turnover among those training to become military officers tends to be higher among those who lack motives that are congruent with hierarchical systems, such as the military. Both motives and motivation appeared to be significant in predicting attrition among these groups. (Butler, Lardent, and Miner, 1983, pp. 500-505).
In 1993, two Air Force officers wrote a thesis addressing attrition of African-American officer candidates in the Air Force. Their study’s focus is somewhat different from that of this thesis because their focus was upon academic performance of cadets at the United States Air Force Academy (USAFA) and at U. S. Air Force ROTC units. Although both of these programs are much less intense and more academic than Marine Corps OCS, there are some similarities that bear scrutiny, particularly the USAFA’s indoctrination program for freshmen. Anecdotally, this program is not believed to be as intense as that used at West Point during the time of the previous study. Their study focused upon how much academic performance and area of high school attendance differed between African-Americans and other Air Force officer candidates (Carroll and Cole, 1993, p. 8). The officers concluded that academics had only a limited role in predicting success of these candidates, either at USAFA or at civilian universities in the AFROTC program (ibid, p. 82). More important, they determined, was the motivation level for each candidate (ibid, p. 50). At the end of their report, they commented that the importance of academic potential diminishes for USAFA cadets once they enter training, which is significant in this study because the indoctrination of first-year cadets at USAFA more closely resembles that of Marine OCS than does the experience of AFROTC candidates at civilian universities. They discussed the importance of the common bond that results from group activities, giving feelings of involvement for USAFA cadets (ibid, p. 98).

Closer to the focus of this thesis, in 1993, James H. North and Karen D. Smith of the Center for Naval Analysis produced a report that concerns the commissioning of officers in the Marine Corps. The purposes of this study were to determine if differences in performance in minority candidates and officers was due to discrimination, to assist recruiters in identifying those candidates who had the highest probability of success at OCS, and to determine the best mix of OCS classes (North and Smith, p. 1). Using data obtained from the Marine Corps’ Automatic Recruit Management System (ARMS) (ibid, p. 22), they determined that the most important factor in successful completion of OCS for males is prior service as a Marine (ibid, p. 3). Additional significant terms in their model are physical fitness scores, race and ethnicity, and gender. They recommended that
programs for enlisted commissioning be expanded because prior enlisted candidates had a 17% higher probability of success at OCS than those with no prior service as enlisted Marines. They also noted that a candidate with a 275-point PFT score was 6.6% more likely to graduate than a candidate with a 250 score (ibid, p. 30). All minorities had an 8% lower probability of success at OCS than white officers. Females had about a 20% higher attrition rate than males in this study, but it did not measure the gender performance gap because the two groups were analyzed separately. For females, the only statistically significant factor was the PFT score: a ten-point increase in PFT predicted a 3% decrease in attrition probability (ibid, p. 59). They further noted that candidates from more competitive colleges or schools with NROTC units had a higher probability of success and that more participation by the OSO in pre-OCS preparation seems to increase the probability of success in candidates (ibid, p. 5).

North and Smith took a close look at individual OCS programs. For OCC and PLC candidates, they determined that indicators of success at OCS were higher PFT scores, younger ages, being Caucasian, not having an Electronic Repair (EL) composite score waiver on the Armed Services Vocational Aptitude Battery (ASVAB), having prior service in the Marine Corps, studying engineering, and attending a college that had an NROTC unit. Those with an EL score waiver had a 4.5% higher probability of attrition than those without such a waiver (ibid, p. 30). Furthermore, those who attended historically African-American colleges had a higher attrition rate than others. They also determined that those attending either of the six-week PLC programs were more likely to graduate than those in OCC (ten-week program), and those with aviation guarantees or from the Enlisted Commissioning Program had a lower likelihood of attrition (ibid, pp. 27-29). In the NROTC program, they determined that younger candidates, candidates with higher PFT scores, and those from the MECEP program had a lower probability of attrition than other candidates. Interestingly, there was no significant difference for race or ethnicity in this group (p. 63).

Captain Cheryl L. Fitzgerald (1996), a Marine Corps officer, studied the attrition of females at Marine Corps Officer Candidates School, primarily in an effort to determine why the attrition rates of females historically has been higher than the rate for
males. Her research used both regression models and surveys as well as demographic data attained from the Automated Recruit Management System (ARMS) database maintained by Headquarters Marine Corps to help predict female attrition. On the whole, the regression models had little value in predicting attrition (Fitzgerald, 1996, p. 72). Her study further focused upon the results attained from surveys given to candidates before beginning OCS during the summer of 1995 and upon departing OCS, after either successfully completing the course or not completing it for any reason.

Contrary to the study done by North and Smith, whose data indicated that higher PFT scores predict a lower probability of attrition (North and Smith, p. 59), Captain Fitzgerald’s results indicated that physical fitness scores did not have a significant effect upon completion rates at OCS. From her study, she determined that accession was the only significant factor in predicting successful completion of OCS. During that summer, those female candidates who were previously enlisted Marines or came from the NROTC program had a significantly higher probability of success at OCS (ibid, p. 46). Those candidates pursuing commissions via the MECEP, ECP, MCP, or NROTC programs had a 15% higher probability of success than candidates from other programs. Captain Fitzgerald further determined that, when the effect from commissioning source was removed from the model, the only other significant factor is the age of the candidate. Her research found that a candidate’s probability of success decreased 1% for each year older she was when she attended OCS. This finding, as well, contradicted the results of the North and Smith study, though the finding was not significant at the 0.05 level (ibid, p. 46). She recommended that Marine Corps recruiting efforts be focused on increasing accessions from the MECEP, ECP, MCP, and NROTC programs and that efforts be directed toward recruiting younger women for OCS (ibid, p. 73). Additionally, because of differences in male and female responses determined from the post-course and separation surveys, she recommended that the six-week pre-course physical training program for females be changed because the majority of successful and unsuccessful females recommended that they should do more hiking and walking with a pack to prepare for OCS (ibid, p. 76). She felt that preparation training for OCS might be more beneficial if it differed by gender; the majority of males felt that they could have been
better physically prepared if they had done more running prior to OCS (ibid, p. 35). Unfortunately, because of the anonymous nature of the surveys, the results of each survey were not tied to the participant’s social security number or other code that would identify each candidate, so the surveys did not provide as much information as they might have.
III. DATA AND METHODOLOGY

A. DATA

1. Database Used in Thesis

The data for this study has been collected over the period of a year. During the period from January 2001 to January 2002, 2,836 Marine officer candidates from twelve separate companies were given surveys whose responses were entered into the Marine Corps Automated Information System (MCAIMS). Four of the twelve companies were OCC companies, three were PLC Junior companies, one was a PLC Senior company, one was a PLC Combined company, one was a combined OCC and PLC Combined company because there were not enough of either group to justify separate companies, and two were combined MCROTC and MECEP “Bulldog” companies. The survey was given to all candidates from each company in a one-hour classroom setting during the first week of training at OCS. Although the survey was the primary database for use in building models for predicting success of candidates, demographic data stored in ARMS was also used because it was believed that additional predictors might be found in this data.

The first set of surveys, received from an OCC company designated as C-176, which had 241 candidates, had significantly more errors and missing values than later surveys because administrators of the survey learned points at which to clarify instructions as well as techniques to prevent candidates from making errors while filling out the survey. The last company to take the survey during this period, a 301-candidate OCC company designated as C-179, served as the test set for the models created. Of these, demographic data for one OCC company was not available, requiring its removal, as well, from the analysis. Consequently, two OCC companies, three PLC Junior companies, one PLC Senior company, one PLC Combined company, one company containing OCC and PLC Combined candidates, and two Bulldog companies were used for model development. 2,000 surveys had demographic data available and were usable. Additionally, many analysis techniques required that responses from any candidate with missing values be deleted, resulting in 245 more candidates being removed, which left only 1,755 usable surveys. Thus, there were 284 OCC candidates, 648 PLC Junior
candidates, 224 PLC Senior candidates, 284 PLC Combined candidates, 191 MCROTC candidates, and 124 MECEP candidates in resulting analysis. Some of the analysis allowed only questions whose responses could be converted to numeric values, reducing the number of questions used from 67 to 46.

The data from the survey was stored as a flat file in Microsoft Access® (Prague and Irwin, 1997, p. 3) with each response given the same letter that appears for each response in the survey. Between two and five sequential letters beginning with “A” were used for each question representing various responses, depending upon how many choices candidates had for each question. For situations in which either the candidate did not answer the question or the scanner could not read the response, the question was given an “X” value. These databases were later converted into S-Plus® (S-Plus 2000 User’s Guide, 1997, p. 12) data frames for analysis. In the process of conversion, social security numbers beginning with 0’s had to be corrected so that they could be read correctly. Additionally, in many cases, the data was not entered in a systematic and consistent manner: for example, demographic data may have been input into the Microsoft Access® database as either “True,” “Yes,” or “Y” or a combination of capital and lower-case letters with the potential for added blank spaces at the end of the typed response to create additional categories for essentially the same response. These had to be modified very carefully to ensure that the responses were aggregated properly. For example, in the “Religion” category from the demographic data, there were at least twenty variations for the response “Catholic,” most of which resulted from typographical errors but some from differences in use of capital letters in entering the data. For example, data for the same entries was often entered with one or more different keystrokes different or various typographical or spelling errors, resulting in the creation of different categories in S-Plus®. This problem would have been greatly reduced if a small macro were produced that would allow personnel entering demographic data to enter the majority of possible responses via pull-down menus with an option to enter other selections manually.

While consolidating the data, it was necessary to make several assumptions. First, for the “Married.Y.N” column in the demographic data, it was assumed all missing
values were “No” unless there were some other discriminator that might suggest that the candidate were married. Most Marine officer candidates are not married, so this is likely a valid assumption. Second, there were many inconsistencies in columns indicating whether or not a candidate had dependents and how many of them he or she had at the time of the OCS class. All those that indicated “Yes” but also showed “0” as the number of dependents were verified not to have dependents nor be married by OCS staff. Unfortunately, at the time of the analysis, OCS was unable to provide answers for the much larger set of candidates who indicated “No” in the column asking whether or not they had dependents but showed a number greater than 0 in the column of data giving the number of dependents. In attempting to correct for these discrepancies, it was necessary to make a few assumptions. First, those candidates who had named dependents were changed from “No” to “Yes” in the “Dependents.Y/N” column, and the “Number of Dependents” column was changed to reflect the number of listed dependents. Those who had no named dependents were more difficult to verify because of the potential for missing values there. Either the whole group could have been changed to “Yes” because they had other than a “0,” or only those with named dependents might have been changed. The latter option was chosen because the vast majority of OCS candidates have no dependents, and all those with “No” listed were given the number “0” as their number of dependents. When faced with other inconsistencies in this data, it was decided to go with a “majority rules” approach. For example, if data indicated that a candidate was single, had “No” dependents in the “Dependants: Y/N” column and “1” or more in the “Number of Dependents” column, the last number was changed to read “0”.

Repeat Appearances of Candidates at OCS. There were a few instances in which candidates appeared twice in the database; these involved a candidate who failed to complete the program and then returned for another class. In each case, the candidate again failed to complete the class. Both instances for all these candidates were left in the database.

Missing Data. Due to the large amount of missing data, it was necessary to make additional assumptions. As various tables of data were checked, many fields were noted to be empty. Again, using a “majority rules” approach, they were filled as best as
possible. A large number of fields indicating marital status were empty. The fields indicating whether or not the candidates had dependents and the number of dependents were used to impute these missing values.

Honesty. One of the big assumptions made in the analysis is that the candidates taking the surveys were honest in the answering of the questions. Several of the questions asked were potentially embarrassing or, in the case of questions addressing use of illegal drugs, could adversely impact the candidate’s future Marine Corps service or even open the possibility of military or civilian prosecution. Administrators of the survey assured candidates that the results were completely confidential and that no repercussions would come from any answers to the survey. Also, there is a tendency even in an anonymous survey for a participant to try to make himself or herself look better than is really true. This has been found to be true in surveys asking questions about convictions for drunk driving or for bankruptcy. There may be concerns among participants that even a small risk of improper disclosure is not worth providing truthful answers on questions that might embarrass them (Fowler, 1995, pp. 29-29). It was assumed that candidates answered truthfully in all questions.

2. **Dependent Variable**

The dependent variable in this problem is “Grad.Y.N” in S-Plus®, a binary variable to indicate whether or not a candidate successfully completed OCS. A “0” indicates a failure, and a “1” indicates success.

3. **Independent or Explanatory Variables**

The set of independent variables comes from the responses to the 67-question survey given to Marine Corps officer candidates over the past year and from demographic data obtained from ARMS. Questions from the survey had between two and five possible answers, and the database used an “X” to indicate that the candidate did not answer the question. Demographic categories had a large range of potential responses. (Appendix A.)

B. METHODOLOGY

1. **Initial Findings**
One of the first things to note with this data set is the overall success rate. The success rate for OCS for all candidates over the period in which the survey was given was 77.25% (1,545 graduates out of 2,000 total candidates). Thus, any model making predictions of graduation should do better than the naïve model in which all candidates are predicted to graduate. In such a case, the model would be wrong only 22.75% of the time. If a model does not do at least a little better than this consistently, it is not worth consideration.

An initial look at the data set and basic check of success rates indicates that there are statistically significant differences in success rates for the various commissioning programs. Those in the MECEP program had the best success rate, 93.70% (127/137), closely followed by the MCROTC candidates, who had an 88.63% success rate (187/211). The aggregated success rate of all three PLC courses (Junior, Senior, and Combined) was 77.83% (1,018/1,308). However, when the three courses were separated, there is a significant difference in the results. The PLC Junior success rate was 83.81% (585/698), and the PLC Senior success rate was 89.50% (213/238). However, the PLC Combined success rate was only 59.14% (220/372). This rate very closely matches the other ten-week program, the OCC program, which had a success rate of only 61.92% (213/344). Assuming that these 2,000 candidates represent a random sample of all OCS candidates, a Pearson’s chi-squared test, performed on the cross-tabulation of program versus graduation, produced a chi-squared value of 187 (on five degrees of freedom) and a p-value of 0, indicating significant differences in graduation rates between groups.

2. Analysis of Data Set Containing Only Officer Candidates Course Candidates

As was stated earlier in this paper, the initial desire in the creation of models was to build a model that would provide strong enough conclusions so that the Marine Corps could predict whether or not individuals would successfully complete OCS. Because of anecdotal knowledge that the sets of candidates from different commissioning sources performed differently and because other studies indicated that commissioning source is one of the most important predictors of success at OCS (North and Smith, 1993, and Fitzgerald, 1996), the large data set was broken into smaller sets that were homogeneous.
by commissioning source. It was also felt that building a model predicting success of a group that had a graduation rate lower than that of the entire group might be possible. In an attempt to remove variation from commissioning source at the outset of the analysis and to use a set on which it might be easier to predict success, candidates from the Officer Candidates Course were separated from the main data set for analysis. This data set, containing responses from 339 candidates, contained the results from the survey, as well as over forty questions from the demographic data gathered from ARMS. The overall success rate of candidates from this data set was 62.5% (212 out of 339). The data set contained such a large number of possible responses due to the demographic questions and the letter-based responses to the survey that analysis was extremely difficult due to limited degrees of freedom available. In order to correct this, many of the responses in demographic questions were aggregated as best as possible, and some demographic questions were excluded from the analysis. For example, there were initially over seventy different “Religion” fields, which were later reduced to four different categories: Catholic, Protestant, Other, and None.

The first technique attempted was the logistic regression, in which each candidate’s outcome is assumed to be a Bernoulli random variable with probability whose logit is a linear function of that candidate’s prediction variables (Hamilton, 1992, pp. 217-223). This model was then combined with an iterative function in S-Plus® that computes the Akaike Information Criterion (AIC) (Venables and Ripley, 1994). This function attempts to minimize the AIC, a score that represents a sum of the model’s total error plus a penalty function based upon the complexity of the model. The higher the model’s error and the more complex the model, the higher the AIC score. Thus, a low AIC score is a desirable trait in a model because the error is small and the model is not complex (Hand, et al, 2001, p. 225). Using only one-term interactions, the AIC score, decreased from 450.41 for an empty model with no terms, to 288.18 with 22 independent variables selected by S-Plus® for the model. In a later attempt to determine AIC from a data frame including only the 67 questions as independent variables and the “Grad.Y.N” dependent variable, only eight of the 67 questions were removed. This model is clearly worse than the previous one because it has more than twice as many terms as the
previous one. It is apparent from this analysis that, based upon the large number of terms in each of these models, the relationship between the available predictors and graduation is more complex than expected.

After looking at the AIC results, the next statistical analysis technique used on this data set was the classification tree algorithm (Breiman, Friedman, Olshen and Stone, 1984). Classification trees produced by this algorithm are one of the most important statistical modeling innovations over the past few decades. The tree model produces a hierarchy of binary decisions as to the best variable upon which to split the data set, attempting to create subsets that are as homogeneous as possible. If there are too many splits, the model will over-fit, while too few splits will result in insufficient predictive power in the tree. Splits from the algorithm are “greedy,” meaning that they are the best splits for the moment, possibly at the expense of later split decisions; they may not be the best ones for the global building of the tree. Trees produced by this algorithm are scored by a loss function in which each incorrect prediction adds a loss of one to the score, and each correct prediction adds a loss of 0. Cross-validation of the model is then necessary to ensure that a low initial misclassification rate is not due to over-fitting the model. In cross-validation, several subsets randomly generated from the training set are run through the proposed tree, and the overall misclassification rate is used to indicate how good the tree is. Ideally, the optimal classification tree size will minimize both the training set error rate and the test set error rate (Hand, et al, 2001, pp. 145-151).

When the first tree using the entire data set was created, it used 31 variables and 39 terminal nodes and produced a misclassification rate of 9.44%. When cross-validated, this tree had a misclassification rate of 46%, a clear indication that the full tree over-fit the model. In an attempt to set a lower bound for the size of the tree, it was pruned to four leaves, which provided a misclassification rate of 35%, actually worse than the naïve model’s failure rate of 34.5%. A cross-validation function produced a misclassification rate of 42%, definitely worse than the naïve model. The tree of six leaves provided a misclassification rate of 31% for the training set, not much better than the naïve model’s failure rate and a cross-validated misclassification rate of 42%, as well. Additional attempts to prune the large tree to eight and ten leaves also produced trees with initial
misclassification rates close to the rate for the naïve model and extremely large cross-validated misclassification rates. Typically, the models had one or more terminal leaves with fairly large groups and extremely poor misclassification rates that greatly increased the model’s overall misclassification rate. For example, the eight-leaf tree has one terminal leaf with 123 candidates, over one-third of the entire data set, which predicts that all graduate, where only 41.5% of that group actually graduated from OCS. Without this one leaf, the misclassification rates for this model would have been considerably lower. Overall, it appears that, even though none of the classification trees appears to be very good, the best is the six-leaf tree, which has a misclassification rate of 32% and a cross-validated misclassification rate of 42%. All other trees have either a worse initial misclassification rate or considerably more leaves and virtually the same cross-validated misclassification rate. This further supports the assertion of complexity in this data set and indicates that it will be difficult to predict whether or not individuals will graduate from OCS.

One of the problems with building models from surveys using categorical responses is that a degree of freedom is used with each response in each question, thus making the analysis less powerful when large numbers of degrees of freedom are used. In numeric questions, only one degree of freedom is used regardless of the number of potential responses for the question. Based upon the lack of a definitive model predicting success of candidates and in order to save degrees of freedom, responses for 46 questions in the survey were converted from categorical to numerical responses. The responses to many questions, such as question two, which asked for the age of candidates, were written in an ascending order and were easily transformed. Other questions had responses that ascended from one extreme scale to another. An example of this transformation was question eleven, which asked the type of physical activity candidates had before coming to OCS. The responses went from sedentary work to very heavy manual labor, such as practiced by miners, laborers, and furniture movers.

Once this was complete, another generalized linear model was created using both categorical questions and questions whose responses were converted to numeric values. Then, a classification tree was produced on that same data frame. This tree, like the
previous ones, over-fits on the data, contains several large leaves that have a high
misclassification rate, and has a cross-validated misclassification rate higher than the
naïve model. When this tree was pruned to four, six, eight, and fifteen leaves, it produced
results much like the pruned trees produced with only categorical responses. The model
chosen by the AIC criterion proved of little value in prediction. In particular, the usual
chi-squared test for decrease in deviance (Hamilton, p. 237) fails to reject the null
hypothesis that none of the included terms has a non-zero coefficient in the population.

Since these models did not provide any particularly useful results, principal
components were applied to the data frame containing only the numeric categories.
Principal components attempts to simplify the analysis of large numbers of variables by
examining a smaller number of linear combinations of variables in the model, to find an
optimal linear combination of them, and to maximize the explained standard deviation of
the derived variables (S-Plus 2000 User’s Guide, 1997). Principal components analysis is
often conducted to reduce data, sometimes with regression. S-Plus® provides the standard
deviations of the principal components, the loadings, and the scores when this algorithm
is applied to a model. Ideally, in a good model, the principal components should indicate
one or two linear combinations of the variables with variances much higher than
subsequent components. Subsequent components should decrease rapidly, providing an
exponential look to the graph of variances by component. The graph below does not
indicate this desired marked difference in standard deviation from the first to second
component and so forth as would be expected in a good model. It also indicates at the top
of each bar the amount of deviance in the model explained by that bar and all the other
bars to the left of it. Thus, the first ten principal components in this model only explain
48.2% of the variance in the model, much less than is desired. Ideally, for a good model,
it would be desirable to see over 70% of the variance in the model explained in the first
three or four principal components. This result again indicates the multi-dimensional
nature of this data set.
Figure 1. Principal Components for OCC Numeric Data Frame

In another attempt to reduce the dimensionality of the data, the set of 46 numeric questions was clustered using the agglomerative nesting function in S-Plus® called “agnes.” This algorithm constructs a hierarchy of clusters in which each observation is its own cluster at the outset. During each period, the algorithm calculates the Euclidean distances between all clusters, and the two most similar clusters are merged. Eventually, all clusters merge into one cluster. The object was once again to find groups of questions that were quite similar in terms of their sets of responses. Such a set of questions would presumably contain much redundant information. The questions were divided into six clusters based on examination of the dendrogram. Once this algorithm was run on the numeric data frame, the single cluster was cut to the six most homogenous clusters. These clusters contained 22, 9, 12, 1, 1, and 1 questions each. A look at the groups of
questions does not seem to indicate any particular patterns in the grouping of the questions.

Attempts to look at individual factors from the demographic data in this data set also did not provide much in the way of strong predictors of success or failure. For example, an attempt to build a GLM which used the binary factor “Grad.Y.N” as the dependent variable and an aggregated “Religious Preference” column containing four categories (Catholic, Protestant, Other, and None) indicated no significant difference in any of the categories. Also, an attempt to build a classification tree using a model developed using only the questions addressing amount of time spent as prior-service military and the amount of time a candidate estimated it took for him or her to run a mile, both of which are anecdotally believed to be significant predictors of OCS success, resulted in a 36.3% misclassification rate. Attempts to do better with this model using AIC provided no better results.

Consequently, it was determined that attempts to build models on only the OCC candidates using logistic regression, AIC, classification trees, and principal components did not provide any worthwhile models for predicting graduation of individuals. However, it was determined that there does not appear to be much redundancy among questions.

3. Analysis of Complete Data Set Using All Commissioning Sources

Once it appeared that separating the data into groups by source of commissioning was not helpful in creating a model for predicting success, all sources of commissioning were aggregated to see if anything better could be determined. Initial models appeared to indicate the significance of the source of commissioning, as expected. Initial classification trees using all questions and categorical responses to all questions provided models not much better than those created only with candidates from the OCC program. Generally, the misclassification rates for these trees were approximately 20%, and cross-validated misclassification rates were about 22%. Plots of classification trees may provide hints of the importance of factors in the model in two ways: first, through the way the splits occur, and, second, by the vertical distance between a split and the splits
immediately below it. Plots of these trees for this model show that the first split occurred on the question asking the candidate’s commissioning source. Further, the distance between the first split on OCS Class Code and its “children” leaves is much larger than the vertical distance anywhere else in the tree. Note that the split for question 4 from the survey differentiates between OCC and non-OCC candidates and that question 4 does not separate PLC candidates into their three separate groups. Interestingly, when another tree was built using the separate PLC codes (Juniors, Seniors, and Combined) from the demographic data, the first split was on the OCS Class Code, and the split contained OCC and PLC Combined on one side and all other programs on the other side.

Figure 2. Classification Tree with Fifteen Leaves Derived from Categorical Data Set

Next, those questions that could be converted to numeric responses were changed in a new data frame. Trees created with this new data set provided approximately the same results as earlier trees. Akaike Information Criterion and principal components run
on a GLM based of this data set using binomial response variables provided roughly the same results as previously obtained using the same algorithms.

A look at the correlations between numeric questions, the numeric class code, and the response variable using Spearman’s rho on all 2000 of the candidates in the survey indicated that only 16 of 1178 pairs had a correlation coefficient greater than 0.4 or less than –0.4. For correlation coefficients either greater than 0.6 or less than –0.6, there were only five in this data set. This is an extremely low number of high correlations, especially for a questionnaire like this that contains so many questions that seem to be closely related on the surface, which indicates that the questions very rarely duplicated each other, even though many asked similar questions about similar topics. This finding further illustrates the high dimensionality of this data set.

When these methods did not provide particularly useful in predicting success of individual candidates, Bayesian networks were used to attempt to better predict success of individual candidates. Bayesian networks use Bayes’ rule for probabilistic inference and are closely related to influence diagrams, combining probability theory and graph theory. In Bayesian networks, a person with knowledge of the system prepares a data set for analysis through the creation of nodes and directed arcs that indicate relationships between factors and the response variable. Arcs are created between nodes if it is felt that one node influences another one. In this data set, the questions serve as nodes, some of which, based upon prior knowledge of what has been found to be true in similar data sets. Nodes may have more than one arc flowing into them and may flow out to either other nodes representing questions, to the response variable, or to both other questions and the response variable (Murphy, 2001). To prevent extremely long computing time, it is important to have, in a data set of this size, only five or so major nodes feeding into the response variable. In this data set, it was felt that, based upon previous studies, question 4, asking the candidate’s source of commissioning, influenced whether or not he or she graduated from OCS. It was also felt that question 9, addressing whether or not the candidate had any prior military experience, and question 10, addressing whether or not the candidate had family members in the military, influenced question 4, so arcs from 9 and 10 to 4 were added to the network prior to any computations being done. Bayesian
networks attempt to calculate probabilities and make predictions based upon the percentages of responses to each question. A more complex network with many nodes directly leading to the response variable greatly increases computation time for the model. The model created from this influence diagram provided an extremely low misclassification rate of 8%, but the cross-validated misclassification rate was much higher, 28%, indicating that this model was not better than previous ones.

Then Hartigan’s k-means clustering algorithm was used on the data set containing numeric questions. In k-means, data points are randomly assigned to one of a pre-designated number of clusters and then are reassigned to another cluster if the Euclidean distance to the center of that cluster is less than the distance to the current cluster’s center. K-means provides a score for each cluster. A small score indicates that the Euclidean distances from the cluster center to all points in the cluster are small and that, thus, the cluster is good. Unfortunately, the clusters from this model were quite large, which indicates that the clusters were not very good (Hand, et al, 2001, p. 303). Additional analysis of k-means using techniques recommended in S-Plus® recommend that 17 is the best number of clusters for this data set, again supporting the difficulty of breaking this data set into small, distinct groups.

Finally, a technique called bagging (Breiman), was used on the data set including categorical responses. In bagging, a classification tree previously produced is used with cross-validation to produce an estimate of the error rate for the model. An estimate using all candidates without missing values in their responses and all survey questions with three trees provided a misclassification rate of 28%, more than the rate for the naïve model. An estimate using 101 trees provided a misclassification rate of 22.3%, about the same as the overall failure rate. Thus, the result from this technique is no better at predicting success than the naïve model.

Due to the relatively high success rate in this model, it is difficult to predict with any accuracy whether or not candidates will graduate from OCS. Also, other than the predicted probability of graduation often produced, most models do not indicate whether a candidate is a strong “Graduate” or “Don’t Graduate” or very close to going either way. Thus, one source suggests that there may be data points that fall in the region of extreme
difficulty in making correct predictions. For instance, these may be the points discussed earlier on the trees that have terminal leaves with relatively balanced graduation and failure rates. Hand recommends that there may be times in which it is best to simply delete these points with certain characteristics from the data set and not attempt to predict them, which will likely greatly reduce the misclassification rate. It may be necessary to accept the fact that it is impossible to accurately predict candidates who meet these criteria (Hand, 1981, pp. 190-197).

Once all these statistical analysis techniques had been examined, it was determined that it was not possible to predict individual candidates’ success with any degree of accuracy any better than the naïve model because of the heterogeneity of this data set. In particular, in all but the model discussed in Chapter IV, greater than half of the individuals has predicted probability of success between 40% and 80%. For such individuals the chance of misclassification is greater than 20%. It is clear that, with the information given in the survey, the overall misclassification rates cannot be reduced below the 27% that the naïve model produces. Consequently, the next attempt was to find the best model created to date and to see if it would at least be possible to accurately estimate the probability of success of groups of candidates. After some analysis, it was determined that the following model containing a mix of both categorical and numeric questions was the best one.
glm(formula = Grad.Y.N ~ OCS.Class.Code + Q23 + Q21 + Q1 + Q66 + Q29 + Q9 + Q2 + Q56 + Q43 + Q58 + Q34 + Q32 + Q40 + Q52 + Q46 + Q10 + Q3 + Q14 + Q54, family = binomial, data = all.numeric.surveys.x)

Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-4.255</td>
<td>1.020</td>
</tr>
<tr>
<td>OCS.Class.CodeNROTC</td>
<td>-0.161</td>
<td>0.476</td>
</tr>
<tr>
<td>OCS.Class.CodeOCC</td>
<td>-1.068</td>
<td>0.460</td>
</tr>
<tr>
<td>OCS.Class.CodePLCComb</td>
<td>-1.317</td>
<td>0.454</td>
</tr>
<tr>
<td>OCS.Class.CodePLCJr</td>
<td>-0.077</td>
<td>0.461</td>
</tr>
<tr>
<td>OCS.Class.CodePLCSr</td>
<td>0.263</td>
<td>0.485</td>
</tr>
<tr>
<td>Q23</td>
<td>0.336</td>
<td>0.081</td>
</tr>
<tr>
<td>Q21</td>
<td>0.214</td>
<td>0.078</td>
</tr>
<tr>
<td>Q1</td>
<td>-0.582</td>
<td>0.205</td>
</tr>
<tr>
<td>Q66</td>
<td>0.192</td>
<td>0.077</td>
</tr>
<tr>
<td>Q29</td>
<td>0.274</td>
<td>0.099</td>
</tr>
<tr>
<td>Q9</td>
<td>0.315</td>
<td>0.080</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.311</td>
<td>0.096</td>
</tr>
<tr>
<td>Q56</td>
<td>0.208</td>
<td>0.081</td>
</tr>
<tr>
<td>Q43B</td>
<td>0.520</td>
<td>0.171</td>
</tr>
<tr>
<td>Q43C</td>
<td>0.822</td>
<td>0.364</td>
</tr>
<tr>
<td>Q43D</td>
<td>0.200</td>
<td>0.225</td>
</tr>
<tr>
<td>Q43E</td>
<td>0.558</td>
<td>0.307</td>
</tr>
<tr>
<td>Q58B</td>
<td>0.317</td>
<td>0.161</td>
</tr>
<tr>
<td>Q58C</td>
<td>-0.084</td>
<td>0.266</td>
</tr>
<tr>
<td>Q58D</td>
<td>0.978</td>
<td>0.426</td>
</tr>
<tr>
<td>Q58E</td>
<td>-1.043</td>
<td>1.652</td>
</tr>
<tr>
<td>Q34</td>
<td>-0.231</td>
<td>0.069</td>
</tr>
<tr>
<td>Q32</td>
<td>0.197</td>
<td>0.077</td>
</tr>
<tr>
<td>Q40</td>
<td>-0.129</td>
<td>0.076</td>
</tr>
<tr>
<td>Q52</td>
<td>0.172</td>
<td>0.115</td>
</tr>
<tr>
<td>Q46B</td>
<td>0.132</td>
<td>0.169</td>
</tr>
<tr>
<td>Q46C</td>
<td>-13.137</td>
<td>14.428</td>
</tr>
<tr>
<td>Q46D</td>
<td>-1.194</td>
<td>1.673</td>
</tr>
<tr>
<td>Q46E</td>
<td>0.294</td>
<td>1.190</td>
</tr>
<tr>
<td>Q10B</td>
<td>-0.200</td>
<td>0.250</td>
</tr>
<tr>
<td>Q10C</td>
<td>-0.117</td>
<td>0.272</td>
</tr>
<tr>
<td>Q10D</td>
<td>0.139</td>
<td>0.252</td>
</tr>
<tr>
<td>Q10E</td>
<td>-0.101</td>
<td>0.744</td>
</tr>
<tr>
<td>Q3B</td>
<td>-0.292</td>
<td>0.274</td>
</tr>
<tr>
<td>Q3C</td>
<td>-0.433</td>
<td>0.232</td>
</tr>
<tr>
<td>Q3D</td>
<td>0.367</td>
<td>0.337</td>
</tr>
<tr>
<td>Q3E</td>
<td>0.547</td>
<td>0.439</td>
</tr>
<tr>
<td>Q14</td>
<td>0.092</td>
<td>0.059</td>
</tr>
<tr>
<td>Q54</td>
<td>0.066</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Degrees of Freedom: 1755 Total; 1711 Residual
Residual Deviance: 1478.543
This GLM was built by starting with all 67 questions and deleting terms according to the AIC. The data frame contained only those candidates who had no missing values in their responses to the survey, and the resulting model contained only 20 terms. It also used numeric responses for all questions that could be converted to numeric answers, to save degrees of freedom. The intercept coefficient is an aggregate for all the responses for what the model determines to be a baseline candidate. In other words, the baseline candidate in this model is in the MECEP program and is assumed to have answered “A” to all the questions that could not be converted to numeric responses. The contribution to the estimated logit of a candidate’s probability of success for a question with numeric responses is calculated by multiplying the candidate’s numeric response to that question by the question’s coefficient. For example, if a candidate answered “D” for question 21, the 4 times the coefficient value for the question (0.214) would be added to the logit. For a question with individual coefficients for each possible response, the coefficient for the chosen response is added to the logit. The candidate’s probability of graduation is calculated by adding the intercept coefficient, the coefficient of his or her OCS Class Code if not from MECEP, the coefficients from all questions with numeric responses, and coefficients from the answers to questions with non-numeric responses that the candidate did not answer as “A.” This number provides the logit or log odds estimated by the model. The relationship between the logit and the probability of graduation is

\[\text{logit} = \log\left(\frac{p}{1-p}\right). \]

Solving for p gives

\[p = \frac{1}{1 + e^{-\text{logit}}}. \]
IV. MODEL DEVELOPMENT

A. OFFICER SELECTION OFFICER RISK ESTIMATION TOOL

The Officer Selection Officer Risk Estimation Tool (OSOREM) was intended to be a computer desktop tool that an OSO or MOI could use to help determine whether or not a candidate is ready for OCS. Now that a model was selected, it was necessary to determine how good that model is at estimating the probability of success for groups of candidates. In order to do that, the responses for the 1755 candidates in the model were run through the model to produce a vector of probabilities of success in a continuous range from 0 to 1. These were then sorted from the smallest predicted probability of success to the largest and were then binned into 26 separate groups of 65 candidates, and the means of the predicted probabilities of success in each bin were calculated and stored as a separate vector. The actual percentages of graduates for these same 26 groups were then calculated and stored. The graph below indicates that the model created does a very good job in estimating the probability of success for groups of candidates in this data set (Appendices B and C).
The correlation between the predicted probability of graduation and the actual graduation rate for this set of candidates is 99.82%. The following table indicates the predicted probability of each bin, the graduation rate for that bin, and the absolute value of the difference in the predicted probability of graduation and actual graduation rate for that group.
<table>
<thead>
<tr>
<th>Bin</th>
<th>Prob(Grad)</th>
<th>Pct(Grad)</th>
<th>Prob(Grad) – Pct(Grad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1729</td>
<td>0.2524</td>
<td>0.0795</td>
</tr>
<tr>
<td>2</td>
<td>0.4000</td>
<td>0.4129</td>
<td>0.0129</td>
</tr>
<tr>
<td>3</td>
<td>0.4925</td>
<td>0.4943</td>
<td>0.0018</td>
</tr>
<tr>
<td>4</td>
<td>0.5587</td>
<td>0.5598</td>
<td>0.0011</td>
</tr>
<tr>
<td>5</td>
<td>0.6092</td>
<td>0.6103</td>
<td>0.0011</td>
</tr>
<tr>
<td>6</td>
<td>0.6487</td>
<td>0.6490</td>
<td>0.0003</td>
</tr>
<tr>
<td>7</td>
<td>0.6867</td>
<td>0.6854</td>
<td>0.0013</td>
</tr>
<tr>
<td>8</td>
<td>0.7259</td>
<td>0.7254</td>
<td>0.0005</td>
</tr>
<tr>
<td>9</td>
<td>0.7588</td>
<td>0.7600</td>
<td>0.0012</td>
</tr>
<tr>
<td>10</td>
<td>0.7844</td>
<td>0.7846</td>
<td>0.0002</td>
</tr>
<tr>
<td>11</td>
<td>0.8053</td>
<td>0.8062</td>
<td>0.0009</td>
</tr>
<tr>
<td>12</td>
<td>0.8246</td>
<td>0.8237</td>
<td>0.0009</td>
</tr>
<tr>
<td>13</td>
<td>0.8433</td>
<td>0.8445</td>
<td>0.0013</td>
</tr>
<tr>
<td>14</td>
<td>0.8593</td>
<td>0.8595</td>
<td>0.0001</td>
</tr>
<tr>
<td>15</td>
<td>0.8732</td>
<td>0.8735</td>
<td>0.0003</td>
</tr>
<tr>
<td>16</td>
<td>0.8853</td>
<td>0.8859</td>
<td>0.0005</td>
</tr>
<tr>
<td>17</td>
<td>0.8977</td>
<td>0.8982</td>
<td>0.0005</td>
</tr>
<tr>
<td>18</td>
<td>0.9086</td>
<td>0.9084</td>
<td>0.0002</td>
</tr>
<tr>
<td>19</td>
<td>0.9172</td>
<td>0.9176</td>
<td>0.0004</td>
</tr>
<tr>
<td>20</td>
<td>0.9267</td>
<td>0.9276</td>
<td>0.0009</td>
</tr>
<tr>
<td>21</td>
<td>0.9352</td>
<td>0.9353</td>
<td>0.0000</td>
</tr>
<tr>
<td>22</td>
<td>0.9429</td>
<td>0.9427</td>
<td>0.0002</td>
</tr>
<tr>
<td>23</td>
<td>0.9503</td>
<td>0.9507</td>
<td>0.0004</td>
</tr>
<tr>
<td>24</td>
<td>0.9585</td>
<td>0.9582</td>
<td>0.0002</td>
</tr>
<tr>
<td>25</td>
<td>0.9682</td>
<td>0.9671</td>
<td>0.0011</td>
</tr>
<tr>
<td>26</td>
<td>0.9865</td>
<td>0.9838</td>
<td>0.0027</td>
</tr>
</tbody>
</table>

Table 1. Comparison of Predicted Probability of Graduation (Prob(Grad)) with Actual Graduation Rate (Pct(Grad)) for Bins in Training Set

The only cases in which the predicted probability of graduation differed from the actual graduation rate by more than 1% were the first and second bins, on the extreme end of the data set. Even then, the most that the two differed was by 8%, which indicates that this is likely a good estimation tool.

Once it was apparent from this graph that the model was adequately estimating the probability of success of groups of candidates, the coefficients from this model and responses to the questions were then input into a Microsoft Excel® data sheet and Visual Basic® was used to create a tool that OSOs and MOIs could use to estimate the
probability of success for each candidate. By answering all the questions that the model finds to be important to estimate the probability, the OSO or MOI receives an estimate of the probability of graduation for each candidate. Thus, the OSO or MOI could compare the candidate’s probability of success with historical probabilities of success and help determine if he or she feels that the candidate is ready for OCS.

B. OFFICER CANDIDATE SCHOOL ATTRITION PREDICTION MODEL

The intent for the Officer Candidate School Attrition Prediction Model was for a model that would provide an indication of the likely areas in which a candidate might have difficulties at OCS and a way in which the OSO or MOI might better prepare the candidates by indicating the areas in which the candidate could best improve his or her probability of success at OCS (Statement of Work, 16 October 2001). This same desktop tool meets the requirements for the second tool, as well. Once the OSO or MOI has entered the responses to the twenty questions that are required, he or she may then change any of the question responses to see how the candidate’s probability of success would change with those new responses. Coefficients from the responses appear on the “Model” page of the spreadsheet. The larger each coefficient and, thus, the sum of the coefficients, the higher the probability of graduation is. Those responses that have the highest coefficients will have the greatest impact upon the predicted probability of graduation for a candidate. Each failure to answer a question will result in a comment directing the person entering the data to fill in the blank. Such missing responses make the model less accurate in predicting success for the candidate in question.

C. MODEL VALIDATION

Once it was determined that the model performed well with predicting success of groups of officer candidates, the method for determining the predictive power of the model was applied to the test set, C-179, an OCC company that completed OCS on March 29, 2002, after all the other companies in the training set had completed OCS. This data set had 287 candidates once those with missing values were removed. A predicted probability of graduation was calculated for each candidate in the test set using
the same GLM as for the training set. These probabilities were then sorted from lowest to highest and then divided into ten sets with either 28 or 29 predictions in each. The means of these predictions and the actual percentages of graduates in each group were calculated and graphed against each other as indicated below:

![Graph showing Predicted Probability of Graduation vs. Graduation Rate](image_url)

Figure 4. Predicted Probability of Graduation vs. Graduation Rate for Test Set

The code generated in S-Plus® to do this is contained in Appendix E. As can be seen in this graph, there is, again, a very high correlation between the predicted probability of success and the actual percentage of success for the candidates. In other words, the predicted probability of success of each group of candidates is very close to the actual percentage of graduates in the group. Thus, the model does a very good job in predicting success in candidates, validating the work done with the training set. This graph further supports the assertion that this model is likely a good one for use in predicting success for subsequent candidates. The correlation between the predicted probabilities and the actual
percentages is 99.88%, clearly indicating success in predicting graduation percentages. As in the previous table, the following table indicates the predicted probability of each bin, the graduation rate for that bin, and the absolute value of the difference in the predicted probability of graduation and actual graduation rate for that group.

| Bin | Prob(Grad) | Pct(Grad) | | Prob(Grad) – Pct(Grad) |
|-----|------------|-----------|-----------------|
| 1 | 0.0000 | 0.0000 | 0.0000 |
| 2 | 0.0000 | 0.0000 | 0.0000 |
| 3 | 0.0532 | 0.0267 | 0.0266 |
| 4 | 0.1498 | 0.1534 | 0.0036 |
| 5 | 0.2426 | 0.2525 | 0.0099 |
| 6 | 0.3336 | 0.3360 | 0.0024 |
| 7 | 0.4323 | 0.4272 | 0.0051 |
| 8 | 0.5489 | 0.5480 | 0.0009 |
| 9 | 0.6593 | 0.6541 | 0.0053 |
| 10 | 0.8239 | 0.7846 | 0.0392 |

Table 2. Comparison of Predicted Probability of Graduation (Prob(Grad)) with Actual Graduation Rate (Pct(Grad)) for Bins in Test Set

The table above indicates that in no case does the predicted probability of graduation differ from the actual graduation rate of a bin by more than 4%, and, even then, as with the training set graph, the greatest difference in predicted probability of graduates and actual percentage of graduates is at an extreme, which is to be expected. This confirms that the model for predicting probability of graduation is valid for use.
V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A. SUMMARY

It was originally thought that this survey and data set might allow for the prediction of whether or not individuals would graduate from Marine Corps OCS. Even removing the variability from commissioning source by doing analysis on only OCC candidates did not prove any better than the naïve model at predicting success or failure. However, by doing logistic regression on the data, it was possible to produce a generalized linear model that could be used to produce a value that estimates the graduation rate for groups of candidates. This model has proven to be extremely robust in both initial model building and in model testing done on a separate data set. The model performed well on a test set, never being off by more than 4% from the actual graduation rate. The correlation between the predicted probabilities and actual percentages was more than 99% for the test set, indicating that this is a good model for providing an estimated probability of graduation for groups of candidates at Marine Corps OCS.

B. CONCLUSIONS

It was more difficult to predict graduation for individuals from this data set than originally expected. The survey does not contain the information needed to reduce misclassification rates below the 27% naïve model rate. However, the best model and the analysis done on it indicate that, although it is not possible to predict whether or not an individual candidate will graduate with accuracy, it is possible with a high level of confidence to estimate the probability of success for groups of candidates attending Marine Corps Officer Candidates School.

Additionally, it is apparent from the models created that the source of commissioning is significant in estimating the probability of success of candidates at Marine Corps OCS. In every classification tree created as well as most of the GLM’s, it appears that commissioning source is important.
C. RECOMMENDATIONS

Data management. The large number of errors from typographical errors greatly increased the time required to process information for this study. Data appeared in different formats, and much of the demographic data had been manually typed into the Microsoft Access® database. This form of data entry resulted in hundreds of typographical errors that required much time to correct. The building of a macro with a pull-down menu including the main categories for each question would dramatically reduce the number of errors of this type and likely markedly reduce the amount of time required to enter the data, as well. Such a macro could, as well, have a category titled “Other” that, when selected, would open another entry line that the person entering data could use to manually enter categories not appearing in the pull-down menu.

Likewise, the survey is written in such a way that, in numerous questions, data is artificially aggregated from the start. This makes analysis of the data more difficult because those who write the survey may not know the correct way to aggregate the data before anyone has taken the survey. Once the data is aggregated in this manner, it is often impossible – or at least very difficult – to separate the data again. An example of this artificial aggregation is in question 2, which asks the candidate’s age. Candidates could select any of five ranges, each of which is at least two years in length. It would be better if candidates could respond along a continuous range, which is not difficult to implement with the proper scanning equipment. Another example of a question whose responses should be separated is question 4, which asks the candidate’s commissioning source. Certainly, given findings in this paper, the PLC candidates should be separated into their separate groups (Junior, Senior, and Combined), and additional insight may be attained through adding ECP and MCP as options in this question. This may show nothing significant, but it will provide the ability to easily separate, notably for PLC Combined, which has an attrition rate similar to that of OCC, not to those of other PLC classes.

Survey Modifications. Results from this study and from the literature review indicate that Marine Corps Studies and Analysis Division may want to add a few questions to this questionnaire in order to gain better insight into factors that may be significant. Other questions may provide better results if they are modified in various
ways. For example, the question regarding the classification of knee types (number 64) should be re-worded so that answers follow an ascending scale from one extreme to another.

Analyses of recruit training attrition conducted by Mobley and others indicate that intentions, expectations and role attraction aided in predicting attrition of Marine recruits from initial training (Mobley, Hand, Baker, and Meglino, 1978, p.22). Additional research by Butler, Lardent, and Miner (1983) indicates that this was true for a group training to become Army officers at West Point and at Army OCS. The survey in its current form does not directly address these issues. Indirectly, questions 21 and 22 ask the candidate’s level of preparedness for OCS’s mental challenges. Questions that address candidates’ confidence of successfully completing OCS, successfully completing their obligated service, and serving longer than their required service obligation, and their general attitudes toward the Marine Corps and becoming Marine officers may help predict attrition at OCS.

Feeder Questions. In some instances, the survey includes questions that act as “feeders.” Several questions addressing an issue appear, and they are then summarized by another question, such as with questions 21 and 22 that address the issue of mental preparedness for OCS. In this example, it appears that question 22 feeds into question 21. Addition of other feeder questions may allow summaries of several other questions and may likely predict much of the variance from the many questions without using up many degrees of freedom from so many questions. The feeder questions provide a means, as well, to indicate several questions influencing the feeder, several of which may feed into the “Grad.Y.N” variable in a Bayesian network or other statistical analysis technique. For example, there are already a number of questions addressing the work-out habits of candidates (numbers 23 through 39), and it may be useful to have a feeder question that asks how prepared the candidate feels he or she is for the physical challenges of OCS.

PFT Scores. The study by North and Smith indicated the significance of PFT scores in predicting the success of candidates, but no such data has been maintained in the OCS demographic database. In order to further pursue whether or not the inventory PFT score is a significant factor in predicting success of OCS candidates, this should be
maintained in either the permanent demographic database or as a question in the survey that asks the candidate to record his or her most recent PFT score.

Survey Composition. Although the survey is useful in its current form, there is room for improvement in it. Many of the questions are not written as well or clearly as they should. Although there is much debate as to the correct number of responses to use in surveys, it appears that the consensus is between five and nine levels. Most studies indicate that an odd number is better than an even number (O’Muircheartaigh, Krosnick, and Helic, 2000). Anecdotally, many believe that questions in surveys should not be written with only five possible responses because people tend not to favor the extremes in surveys; they are not likely to give either the first or last response in questions when those questions span two extremes. Consequently, the answers to the question tend to be grouped fairly tightly in the center, effectively producing only three responses that the survey participant is likely to answer rather than the five that the survey writer intends. Thus, it is recommended that responses to the questions be changed so that, for appropriate questions, each have seven responses according to Likert scaling, which will likely spread out the responses to the questions and may help better differentiate between groups of candidates.
Directions: The Studies and Analysis Division of the Marine Corps Combat Development Command is conducting this survey. The data collected from this questionnaire is for analytical purposes only. The company staff will not have access to any individual answer sheets, and your responses will be kept in the strictest of confidence.

The purpose of this survey is to assist in identifying the contributing factors of successful candidates in order to help Officer Selection Officers and Marine Officer Instructors prepare candidates in the future.

Answer each question by filling in the “bubble” corresponding to the appropriate number on the answer sheet. For all questions, please fill in only one response per question.

GENERAL DEMOGRAPHIC SECTION: This section will attempt to capture your general background information. This information will be used to determine how best to tailor pre-OCS training to the background of the candidate.

1) I am:
 a) Male
 b) Female

2) My age is:
 a) 18-21
 b) 22-24
 c) 25-27
 d) 28-29
 e) over 29

3) I consider myself:
 a) Caucasian
 b) African American
 c) Hispanic
 d) Asian
 e) Other
4) Commissioning program:
 a) OCC
 b) PLC
 c) ROTC
 d) Other

5) Did you come to OCS under a waiver?
 a) No
 b) Yes, academic waiver (GPA, GT, EL score, etc)
 c) Yes, moral waiver (moving violations, drugs, arrest record, etc)
 d) Yes, physical waiver
 e) Yes, multiple waivers (of one kind or combined)

6) Which statement best describes the climate in which you trained to prepare for OCS?
 a) Very cold (typically below 20 deg F)
 b) Cold (20-40 deg F)
 c) Moderate (40-60 deg F)
 d) Warm (60-80 deg F)
 e) Very Warm (80+ deg F)

7) Choose the geographical region where you prepared for OCS (if you came from outside CONUS, choose the best approximation by climate):
 a) Southeast (FL, AL, MS, GA, SC, NC, TN, LO, AR, KY, VA, WV, MD, DE)
 b) Northeast (NJ, PA, NY, MA, CT, RI, NH, VT, ME)
 c) Midwest (OH, IN, IL, MO, IO, MN, WI, KS, MI, OK, NE, ND, SD)
 d) Northwest (MO, UT, ID, WA, OR, WY, CO)
 e) Southwest (TX, NM, AZ, CA, NV)

8) In which range does your cumulative undergraduate Grade Point Average fall?
 a) <2.0
 b) 2.0-2.5
 c) 2.6-3.0
 d) 3.1-3.5
 e) >3.5

9) Do you have any prior military experience?
 a) No
 b) Yes, less than 1 year
 c) Yes, 1-4 years
 d) Yes, 5-8 years
 e) Yes, more than 8 years
10) Has anyone from your family ever been a member of the United States Armed Forces?
 a) No
 b) Yes, but not immediately family (grandparent, uncle, etc)
 c) Yes, immediate family (parents and/or siblings)
 d) Yes to b & c

11) Which description best matches your most recent job/school activity level, prior to coming to Officer Candidates School?
 a) Sedentary Work (Mostly sitting with some walking or standing such as secretarial, typing, bookkeeping, student)
 b) Light Work (Much walking, standing, or use of arms and hands such as retail sales, waiter or waitress, gas station attendant)
 c) Medium Work (Frequent lifting and carrying up to 25 pounds, such as a machinist, bricklayer, carpenter, cook)
 d) Heavy Work (Frequent lifting or carrying of 25 to 50 pounds, such as jackhammer operator, yard work, frame carpenter, pipe fitter)
 e) Very Heavy Work (Frequent lifting or carrying of more than 50 pounds, such as miner, laborer, furniture mover)

12) Choose the statement that best describes your highest level of participation in organized sports/athletics?
 a) None
 b) Intramural teams: Non-varsity organized sports such as (including competitive activities like basketball, football, running, or weight lifting)
 c) Inter-collegiate athletics (JV, Varsity, Club sport)

13) Classify your general body type:
 a) Ectomorph (tendency to be thin)
 b) Endomorph (tendency to be fat)
 c) Mesomorph (tendency to be muscular)
 d) Combination a & c
 e) Combination b & c
GENERAL OCS PREPARATION: The information in this section seeks to identify information about your general preparation for OCS and the help you may or may not have received in getting ready.

14) Which statement best describes when you were notified of your acceptance to OCS?
 a) I was notified 1-2 weeks prior to reporting
 b) I was notified 3-4 weeks prior to reporting
 c) I was notified 1-2 months prior to reporting
 d) I was notified 3-4 months prior to reporting
 e) I was notified 5 or more months prior to reporting

15) Did you receive military issue boots from your OSO/MOI office prior to reporting?
 a) No
 b) No, but he/she aided me in obtaining/purchasing military issue boots
 c) Yes

16) Which statement best describes when you purchased or received your boots?
 a) When I arrived at OCS
 b) 1-2 weeks prior to reporting to OCS
 c) 3-4 weeks prior to reporting to OCS
 d) 1 to 4 months prior to reporting to OCS
 e) 5 or more months prior to reporting to OCS

17) Which response best describes the information you may have received on breaking in your boots prior to reporting to OCS?
 a) Did not have my boots prior to reporting to OCS
 b) Received no information on breaking in my boots
 c) I was provided instructions and/or training from a source other than the OSO/ MOI office
 d) I was provided instructions from the OSO/ MOI office
 e) I was provided hands on training and/or instruction from the OSO/ MOI office

18) Describe the condition of your boots prior to arriving at OCS?
 a) Not applicable
 b) Not broken in at all
 c) Broken in some
 d) Well broken in
19) Which response best describes your access to the OCS website and your usage of it for information on the OCS program?
 a) I did not know the website existed
 b) I knew the website existed but I chose not to access it
 c) I knew the website existed and I was unable to access it
 d) Yes, I visited the site, but referred to the site/information infrequently
 e) Yes, I visited the site, and referred to the site/information frequently

20) Did you follow the training program provided on the OCS website?
 a) No, I never saw the information on the website
 b) No, I chose not to follow the training program on the website
 c) I followed the training program in parts but not in others
 d) I followed the training program with some modifications
 e) I followed the training program to the best of my abilities

21) On a scale of 1 to 5, with 1 being totally unprepared to 5 being most prepared, how ready do you feel for the mental challenges (stress, chaos, uncertainty, etc.) of the OCS environment?
 a) 1
 b) 2
 c) 3
 d) 4
 e) 5

22) On a scale of 1 to 5, with 1 representing nothing to 5 being the most possible, rate how much did your OSO/MOI do to prepare you for the mental challenges of OCS?
 a) 1
 b) 2
 c) 3
 d) 4
 e) 5
PHYSICAL TRAINING SECTION: This section is devoted to classifying the kind of physical training you did to get ready for OCS.

23) Choose the statement that best describes your degree of physical activity, whether vocational or elective, as it relates to your general fitness before being notified of your acceptance to OCS:
 a) Rarely if ever exercised or engaged in physical activity
 b) Occasional physical activity
 c) In decent shape but could do more (exercise and/or sports with some frequency)
 d) In good shape (regular, structured training program)
 e) In great shape (collegiate athletic level of fitness)

24) Did you consistently train as part of a group (formally or informally)?
 a) I did not train consistently in a group or on my own
 b) I trained mostly on my own
 c) I trained mostly with an informal group (friends, etc)
 d) I trained mostly with a formal group (NROTC, OSO/DOI, Semper Fi Club, etc.)

25) How many months prior to reporting did you commence physical training in preparation for OCS?
 a) None
 b) Less than a month
 c) 1-2 months
 d) 2-3 months
 e) More than 3 months

26) How often did you exercise or play sports (for a duration of 15 minutes or more), in the month prior to reporting to OCS?
 a) No exercise
 b) Once or twice a week
 c) Three or four times per week
 d) Five or six times per week
 e) Daily
27) Choose the statement that best describes the type of running or jogging you did in preparation for OCS:
 a) None
 b) Occasional slow runs (ran no more than once a week, 2-3 miles at time, 10 minute a mile or slower pace)
 c) Regular runs, of moderate distance, and/or easy pace (ran 2-3 times a week, 2-4 miles at a time, 8-10 minute a mile pace)
 d) Frequent running, with some runs of more than moderate distance, and/or faster than easy pace (ran 3-5 times a week, 3-6 miles at time, 7-9 minute a mile pace)
 e) Race training

28) On average, how many miles per week did you run or jog, in the month prior to reporting to OCS?
 a) None
 b) Less than 6
 c) 6 to 12
 d) 12 to 20
 e) More than 20

29) Estimate your usual pace while running or jogging?
 a) I am not sure what my pace is
 b) More than a 10 minute mile pace
 c) Between a 8:30 and 10 minute mile
 d) Between a 7 and 8:30 minute mile
 e) Less than a 7 minute mile

30) Prior to reporting to OCS, how many days per week did you do resistance training (i.e., free weights, universal, nautilus, pushups and pull-ups, etc.)?
 a) No exercise
 b) Once or twice a week
 c) Three or four times per week
 d) Five or more times per week

31) Describe the duration of these workouts:
 a) Not applicable
 b) Less than 15 minutes
 c) 15-30 minutes
 d) 31-45 minutes
 e) More than 45 minutes

57
32) Choose the statement that best describes the type of hiking or road marching you did in preparation for OCS:
 a) None
 b) A couple of long walks in non-issues shoes/boots with light or no gear
 c) A few moderate paced (easy walking speed) short hikes (3-6 miles) with light to moderate load (20-35 lbs) with combat boots
 d) A few hikes but either longer (>6 miles), and/or faster (fast/speed walking pace), and/or heavier load (35+ lbs)
 e) A regular hike training plan with increasing distance, load and/or pace on a weekly basis

33) How many miles per week did you hike in the month prior to reporting to OCS?
 a) None
 b) Less than 5
 c) 5 to 10
 d) 11 to 15
 e) More than 15

34) How many hikes did you conduct prior to reporting to OCS?
 a) None
 b) 1-2
 c) 3-4
 d) 5-6
 e) 7 or more

35) While hiking, did you carry a loaded pack?
 a) I did not hike in preparation for OCS
 b) I hiked but did not carry a loaded pack
 c) Yes, the pack weighed less than 20 pounds
 d) Yes, the pack weighed between 20 and 35 pounds
 e) Yes, the pack weighed more than 35 pounds

36) How frequently did you cross-train (do another form of training like swimming, biking, aerobics, martial arts, etc.)?
 a) Did not cross-train
 b) Once or twice a week
 c) Three or four times per week
 d) Five or more times per week
37) Choose the statement that best describes the focus of your OCS preparation training time:
 a) Running
 b) Strength training
 c) Hiking
 d) Cross-training
 e) Combination of the above

38) In your training preparation for OCS did you stretch your muscles prior to exercising?
 a) I did not exercise
 b) No
 c) Yes, sometimes
 d) Yes, most of the time
 e) Yes, every time

39) In your training preparation for OCS did you stretch your muscles after exercising?
 a) I did not exercise
 b) No
 c) Yes, sometimes
 d) Yes, most of the time
 e) Yes, every time

HEALTH/LIFESTYLE SECTION: This section gathers information on your lifestyle and health habits. Remember, none of this information will be revealed to the training staff or even related to you as an individual. The information will be used strictly for a statistical analysis of the OCS candidate population.

40) Which statement best describes your smoking habits?
 a) I have never smoked
 b) I quit smoking more than a year ago
 c) I quit smoking in the past year
 d) I currently smoke less than a pack per day
 e) I currently smoke more than a pack per day

41) Which statement best describes your use of smokeless tobacco (chewing, dipping or pinching)?
 a) I have never used smokeless tobacco
 b) I used smokeless tobacco in the past but quit
 c) I currently use smokeless tobacco infrequently (less than daily)
 d) I currently use smokeless tobacco a 1-5 times daily
 e) I currently use smokeless tobacco more than 5 times per day
42) Which statement best describes your alcohol consumption habits during the last year?
 a) I do not drink alcohol at all
 b) I consume between 1 and 5 alcoholic beverages a week
 c) I consume between 6 and 10 alcoholic beverages a week
 d) I consume between 11 and 20 beverages a week
 e) I consume more than 20 alcoholic beverages a week

43) Which statement best describes your alcohol consumption habits during the last year?
 a) I do not drink alcohol at all
 b) I drink beer or wine coolers mostly
 c) I drink wine mostly
 d) I drink mixed drinks mostly
 e) I drink liquor mostly

44) What statement best describes your use of illegal, recreational drugs (marijuana, cocaine, heroin, LSD, ecstasy, etc.) in the past year?
 a) I did not use illegal drugs
 b) I experimented with illegal drugs
 c) I used illegal drugs occasionally
 d) I used illegal drugs frequently

45) When was the last time you used an illegal, recreational drug?
 a) Within the last 90 days
 b) The last 180 days
 c) The last year
 d) 1-5 years ago
 e) Never

46) If you used illegal drugs, what kind of drug did you use primarily?
 a) Did not use drugs
 b) Marijuana
 c) Pills (uppers, downers, speed, etc)
 d) Cocaine, crack, heroin, opium
 e) LSD, PCP, ecstasy

47) During the past year, have you taken vitamin supplements with any regularity?
 a) No
 b) Yes, but not consistently
 c) Yes, regularly (1 to 4 times per week, most of the year)
 d) Yes, daily (5 or more times a week)
48) In the last year, have you taken calcium Supplements?
 a) No
 b) Yes, but not consistently
 c) Yes, regularly (1 to 4 times per week, most of the year)
 d) Yes, daily (5 or more times a week)

49) In the last year, have you taken nutritional supplements other than vitamins (i.e. protein drinks, energy supplements, creatine, weight gaining supplements, etc.)?
 a) No
 b) Yes, but not consistently
 c) Yes, regularly (1 to 4 times per week, most of the year)
 d) Yes, daily (5 or more times a week)

50) Did you anticipate being able to use vitamin and nutritional supplements during OCS training?
 a) No
 b) Yes

MEDICAL HISTORY SECTION: This section asks important questions about your medical history and your body. Answer with confidence as none of this information will be revealed to the training staff. It will strictly be used for statistical purposes.

51) Have you sustained an injury or accident that caused you to miss two days of school/work or more in the past:
 a) 90 days
 b) 180 days
 c) year
 d) 1-5 years
 e) Never

52) Have you had major surgery in the past:
 a) 90 days
 b) 180 days
 c) year
 d) 1-5 years
 e) Never

53) Have you been hospitalized overnight in the past:
 a) 90 days
 b) 180 days
 c) year
 d) 1-5 years
 e) Never
54) Have you sustained an exercise or sports related injury that caused you to decrease or quit exercise/training/practicing for a week or more in the past:
 a) 90 days
 b) 180 days
 c) year
 d) 1-5 years
 e) Never

55) Have you been treated or sought care for a mental health problem in the past:
 a) 90 days
 b) 180 days
 c) year
 d) 1-5 years
 e) Never

56) Where you sick in the two weeks prior to reporting to OCS?
 a) Sick the whole time - severe bronchitis, flu, etc.
 b) Sick for a couple of days - cold, cough, fever, etc.
 c) Had a minor ailment - mild cold, allergy, etc.
 d) No ailments - healthy

57) Choose the best statement with regards to your health insurance in the past year:
 a) Did not have health insurance - was denied care or did not seek care because of it
 b) Did not have health insurance - had no problems
 c) Was covered (whether through military, parents, employer, HMO, etc.)

58) How would you classify your feet?
 a) Flat
 b) Normal
 c) High arch
 d) I don’t know

59) Do you pronate or supinate?
 a) Pronate (sole of the foot faces laterally, turns out)
 b) Neutral
 c) Supinate (sole of the foot faces medially, turns in)
 d) I don’t know
60) Do you wear orthotics (arch support, shoe insert, etc.)?
 a) No, never had any reason to
 b) No, although I have been referred to use them
 c) Yes, although I have never been referred to use them
 d) Yes, I was referred to use them

61) Describe the type of shoes you wear the most?
 a) sneakers/running shoes (the same shoes I run/train with)
 b) sneakers/running shoes (different shoes than I run/train with)
 c) rubber-soled shoes (normal walking shoes, not athletic shoes)
 d) Leather-soled shoes (dress shoes)
 e) Boots

62) When did you most recently have a foot/ankle/lower-leg problem that caused you to limit any daily activities?
 a) I have one now
 b) In the past month
 c) 1-3 months ago
 d) More than 3 months ago
 e) Never

63) Choose the response that most accurately describes your most recent foot/ankle/lower-leg problem:
 a) Not applicable
 b) Hot spots, active or healing blisters, etc.
 c) Other foot pain (arches, stress fracture, sore heel, Achilles tendon pain, etc)
 d) Twisted/sprained/sore/weak ankle(s)
 e) Shin splint, calf sprain, lower-leg pain

64) How do you classify your knee type?
 a) Definitely Knock kneeed (knees point in)
 b) Definitely Bow legged
 c) Normal
 d) Slightly knock kneeed
 e) Slightly Bow legged (knees point out)

65) When did you most recently have a knee problem that caused you to limit any daily activities?
 a) I have one now
 b) In the past month
 c) 1-3 months ago
 d) More than 3 months ago
 e) Never
66) When did you most recently have a back problem that caused you to limit any daily activities?
 a) I have one now
 b) In the past month
 c) 1–3 months ago
 d) More than 3 months ago
 e) Never

67) When did you most recently have a shoulder problem that caused you to limit any daily activities?
 a) I have one now
 b) In the past month
 c) 1–3 months ago
 d) More than 3 months ago
 e) Never
The following screen shot provides an example of the first sheet in the Microsoft Excel® spreadsheet. In this sheet, an OSO, MOI, or candidate may enter responses to the twenty questions determined to be most important by the model.
The spreadsheet calculates coefficients based upon the responses to each of the questions that were input on the previous page. These coefficients indicated in blocks L11 to L50 are then added together to provide a logit in block L51. This number is then used to calculate a probability of graduation, which appears in block L52.
function()
{
 # Construct probability estimates.
 # all.numeric.glm.forward is a generalized linearized model
 # that was created and stored in S-Plus based upon a
 # particular data set.

 pred.numeric.glm <- predict(all.numeric.glm.forward, type =
 "response") #
 #
 # Divide predictions into 27 categories. Start by setting up
 # the categories' boundaries
 #
 boundaries <- quantile(pred.numeric.glm, c(seq(0, 1, length
 = 27)))
 categories <- cut(pred.numeric.glm, boundaries) #
 #
 # Compute within-group proportions
 #
 props <- tapply(pred.numeric.glm, categories, mean) #
 #
 # Compute mid-points of each group.
 #
 mid <- (boundaries[-1] + boundaries[- length(boundaries)])/
 2 #
 #
 # Draw picture, add line
 #
 plot(mid, props)
 abline(0, 1) #
 #
 # Compute correlation
 #
 cor(mid, props)
}
LIST OF REFERENCES

Commandant of the Marine Corps UNCLASSIFIED letter 7131: CMC to Commanding General, Marine Corps Recruiting Command, Subject: Subsistence Allowance for Platoon Leader’s Class (PLC), 8 November 2001.

Marine Corps Order (MCO) 1040.43A, Enlisted-to-Officer Commissioning Programs, 02 May 2000.

Marine Corps Order (MCO) 1560.15L, Marine Corps Enlisted Commissioning Program (MECEP), 16 August 1994.

Marine Corps Order (MCO) 7220.43B, Financial Assistance Program (FAP), 02 May 1991.

Marine Corps Order (MCO) 1560.33, Marine Corps Tuition Assistance Program (MCTAP), 04 May 2000.

NAVMC 10462 (REV. 5-93), Service Agreement (1100) (Series).

Telephone conversation between Sergeant Kevin R. Scheaffer, USMC, Officer Candidates School, and the author, 16 September 2002.

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

4. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
 Quantico, Virginia

 Camp Pendleton, California

7. Director, Studies and Analysis Division, MCCDC, Code C45
 Quantico, Virginia

 Manassas, Virginia