THESIS

ANALYSIS OF LOW PROBABILITY OF INTERCEPT (LPI) RADAR SIGNALS USING CYCLOSTATIONARY PROCESSING

by

Antonio F. Lima, Jr.

September 2002

Thesis Advisor: Phillip E. Pace
Thesis Co-Advisor: Herschel H. Loomis

Approved for public release; distribution is unlimited
Title: Analysis of Low Probability of Intercept (LPI) Radar Signals Using Cyclostationary Processing

Abstract: LPI radar is a class of radar systems possessing certain performance characteristics that make them nearly undetectable by today’s digital intercept receivers. This presents a significant tactical problem in the battle space. To detect these types of radar, new digital receivers that use sophisticated signal processing techniques are required.

This thesis investigates the use of cyclostationary processing to extract the modulation parameters from a variety of continuous-wave (CW) low-probability-of-intercept (LPI) radar waveforms. The cyclostationary detection techniques described exploit the fact that digital signals vary in time with single or multiple periodicity, owing to their spectral correlation, namely non-zero correlation between certain frequency components, at certain frequency shifts. The use of cyclostationary signal processing in a non-cooperative intercept receiver can help identify the particular emitter and aid in the development of electronic attack signals. LPI CW waveforms examined include Frank codes, P1 through P4, Frequency Modulated CW (FMCW), Costas frequencies as well as several frequency-shift-keying/phase-shift-keying (FSK/PSK) waveforms. This thesis show that for signal-to-noise ratios of 0 dB and –6 dB, the cyclostationary signal processing can extract the modulation parameters necessary in order to distinguish between the various types of LPI modulations.
THIS PAGE INTENTIONALLY LEFT BLANK
ANALYSIS OF LOW PROBABILITY OF INTERCEPT (LPI) RADAR SIGNALS USING CYCLOSTATIONARY PROCESSING

Antonio F. Lima, Jr.
Captain, Brazilian Air Force
B.S., Brazilian Air Force Academy, Brazil

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author: Antonio F. Lima, Jr.

Approved by: Phillip E. Pace
Thesis Advisor

Herschel H. Loomis
Thesis Co-Advisor

Dan C. Boger
Chairman, Information Sciences Department
ABSTRACT

LPI radar is a class of radar systems that possess certain performance characteristics that make them nearly undetectable by today’s digital intercept receivers. This presents a significant tactical problem in the battle space. To detect these types of radar, new digital receivers that use sophisticated signal processing techniques are required.

This thesis investigates the use of cyclostationary processing to extract the modulation parameters from a variety of continuous-wave (CW) low-probability-of-intercept (LPI) radar waveforms. The cyclostationary detection techniques described exploit the fact that digital signals vary in time with single or multiple periodicities, because they have spectral correlation, namely, non-zero correlation between certain frequency components, at certain frequency shifts. The use of cyclostationary signal processing in a non-cooperative intercept receiver can help identify the particular emitter and can help develop electronic attacks. LPI CW waveforms examined include Frank codes, polyphase codes (P1 through P4), Frequency Modulated CW (FMCW), Costas frequencies as well as several frequency-shift-keying/phase-shift-keying (FSK/PSK) waveforms. It is shown that for signal-to-noise ratios of 0dB and –6 dB, the cyclostationary signal processing can extract the modulation parameters necessary in order to distinguish among the various types of LPI modulations.
TABLE OF CONTENTS

I. INTRODUCTION ..1
 A. LPI RADARS ...1
 B. PRINCIPAL CONTRIBUTIONS ...2
 C. THESIS OUTLINES ...3

II. LPI WAVEFORMS DESCRIPTION ..5
 A. BACKGROUND ..5
 B. FSK/PSK COMBINED USING A COSTAS-BASED FREQUENCY-HOPPING (FH) TECHNIQUE ...6
 C. FSK/ PSK COMBINED USING A TARGET-MATCHED FREQUENCY HOPPING...15

III. CYCLOSTATIONARY SIGNAL PROCESSING ALGORITHMS AND TUTORIAL ...21
 A. CYCLOSTATIONARY THEORY ..21
 B. DISCRETE TIME CYCLOSTATIONARY ALGORITHMS27
 1. The Time-Smoothing FFT Accumulation Method (FAM):27
 2. Direct Frequency-Smoothing Method: ...31
 3. GUI Implementation: ..33
 C. PROCESSING TUTORIAL ...35
 1. Test Signals: ..35
 2. BPSK: ..37
 3. FMCW: ...40
 4. P4: ..43
 C. CHAPTER SUMMARY ..46

IV. DESCRIPTION OF LPI SPECTRAL PROPERTIES AND CYCLOSTATIONARY PROCESSING RESULTS ...47
 A. TEST SIGNALS ...48
 1. Description ...48
 2. Spectral Properties and Results (T_1_7_1_s and T_12_7_2_s)48
 B. BPSK ...50
 1. Description: ..50
 2. Spectral Properties and Results (B_1_7_7_1_s).................................51
 C. FMCW ..59
 1. Description ...59
 2. Spectral Properties and Results (F_1_7_250_20_s)...........................60
 D. P1 ...68
 1. Description ...68
 2. Spectral Properties and Results (P1_1_7_16_1_s).............................69
 E. P2 ...75
 1. Description ...75
 2. Spectral Properties and Results (P2_1_7_16_1_s).............................76
LIST OF FIGURES

Figure 1 a) FSK/PSK Costas LPI Generator MATLAB® [4] code block diagram and, b) general FSK/PSK signal containing N_f frequency hops with N_p phase slots per frequency. ..7

Figure 2 PSD plot for a Costas FH waveform with no phase modulation. ...8

Figure 3 Time domain plot for a Costas FH waveform with no phase modulation.9

Figure 4 PSD for FSK/PSK Costas FH phase modulated with a Barker-11 sequence and 1 cpp. ...10

Figure 5 Phase plot for FSK/PSK Costas FH phase modulated with a Barker-11 sequence.11

Figure 6 PAF contour plot for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for all frequencies in one Costas sequence). ...11

Figure 7 PAF delay axis cut for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for all frequencies in one Costas sequence). ...11

Figure 8 PAF Doppler axis cut for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for all frequencies in one Costas sequence). ...11

Figure 9 PAF contour plot for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for one frequency in the Costas sequence). ...11

Figure 10 PAF delay axis cut for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for one frequency in the Costas sequence). ...11

Figure 11 PAF Doppler axis cut for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for one frequency in the Costas sequence). ...11

Figure 12 Block diagram of the MATLAB® [4] implementation of FSK/PSK target matched waveform. ..16

Figure 13 FSK/PSK target 64 complex points radar range simulated response. ...17

Figure 14 FSK/PSK target frequency probability distribution of 64 frequency components. ..17

Figure 15 FSK/PSK target 64 frequency components histogram with number of occurrences per frequency for 256 frequency hops. ...18

Figure 16 PSD for FSK/PSK target with 64 frequency components, 256 frequency hops, random phase modulation and 5 cpp. ..18

Figure 17 PAF contour plot for FSK/PSK target with 64 frequency components, 256 frequency hops, random phase modulation and 5 cpp. ..19

Figure 18 PAF delay cut for FSK/PSK target with 64 frequency components, 256 frequency hops, random phase modulation and 5 cpp. ..19
Figure 19 PAF Doppler cut for FSK/PSK target with 64 frequency components, 256 frequency hops, random phase modulation and 5 cpp.20
Figure 20 Pictorial illustration of the estimation of the time-variant spectral periodogram (adapted from [12, 17])...24
Figure 21 Sequence of frequency products for each short-time Fourier transforms (adapted from [12, 17]). ..25
Figure 22 Bi-frequency plane, frequency and cycle frequency resolutions on detailed area (adapted from [12, 17]). ...26
Figure 23 FAM block diagram (adapted from [3, 13]).28
Figure 24 Division of bi-frequency plane in channel pair regions (adapted from [3, 15]). ...29
Figure 25 Cycle frequency and frequency resolutions and the Grenander’s Uncertainty Condition (adapted from [3, 13]).30
Figure 26 DFSM algorithm block diagram (adapted from [3, 13])....................32
Figure 27 Cyclostationary processing GUI schematic tutorial.33
Figure 28 DFSM generated SCD bi-frequency for a test signal (1000Hz single carrier)..36
Figure 29 FAM generated SCD bi-frequency for a test signal (1000Hz single carrier)...36
Figure 30 Pictorial generic illustration of a BPSK signal SCD result....................37
Figure 31 Zoomed in pictorial generic illustration of a BPSK signal SCD result with estimation of BW, number of phases and code rate38
Figure 32 DFSM generated SCD plot for a BPSK signal (1000Hz single carrier and 11 bits Barker-code phase modulation) with estimated BW.39
Figure 33 Zoomed-in DFSM generated SCD plot for a BPSK signal (estimated code rate measurement). ...39
Figure 34 Pictorial generic illustration of a FMCW signal SCD result..................41
Figure 35 Pictorial generic illustration of a zoomed-in plot for a FCMW signal SCD. ..41
Figure 36 FAM generated SCD plot for a FMCW signal (1000Hz carrier and estimated modulation BW of 230 Hz). ..42
Figure 37 Zoomed-in FAM generated SCD plot for a FMCW signal (“delta” value of 25Hz). ...42
Figure 38 FAM-generated SCD plot for a P4 signal (1125Hz carrier and estimated BW of 1000Hz). ...43
Figure 39 Zoomed-in FAM-generated SCD plot for a P4 signal (with estimated code rate (f_c) of 66Hz). ...44
Figure 40 Zoomed-in FAM-generated SCD plot for a P4 signal (with estimation of BW and number of phases). ...45
Figure 41 PSD plots for both Test signals: a) 1000Hz single carrier and b) 1 and 2000Hz double carrier, no modulation ..48
Figure 42 DFSM generated estimated SCD for a Test signal (1000Hz and 2000Hz double carrier). ...49
Figure 43 Zoomed in DFSM generated estimated SCD for a Test signal (1000 and 2000Hz double carrier). ...49
Figure 44 Block diagram for BPSK modulation (from [5]).51
Figure 45 PSD for a Barker signal (1000Hz carrier, 7-bits Barker sequence and 1 NPBB)...52
Figure 46 Estimated FAM SCD contour plot for a BPSK real signal with 1000Hz carrier, Barker-7 code and 1 NPBB..52
Figure 47 Estimated FAM SCD contour plot for a BPSK real signal with 1000Hz carrier, Barker-7 code and 1 NPBB, with estimated carrier of 1000Hz and estimated BW of 1000Hz...53
Figure 48 Zoomed-in FAM SCD contour plot for a BPSK signal with 1000Hz carrier, Barker-7 code and 1 NPBB, with estimated f_b of 141 Hz..........................53
Figure 49 Estimated DFSM SCD contour plot for a BPSK signal with 1000Hz carrier, Barker-7 code and 1 NPBB, with estimated BW of 1000Hz..........................54
Figure 50 Zoomed-in estimated DFSM SCD contour plot for a BPSK signal with 1000Hz carrier, Barker-7 code and NPBB = 1, with estimated f_b of 142Hz...54
Figure 51 PSD for a Barker signal (1000Hz carrier, 7-bits Barker sequence, 1 NPBB and 0 dB SNR)..55
Figure 52 Estimated FAM SCD contour plot for a BPSK signal with 1000Hz carrier, 7-bits Barker code, 1 NPBB and 0 dB SNR, with estimated BW of 1000Hz...55
Figure 53 Zoomed-in estimated FAM SCD for BPSK with 1000Hz carrier, Barker-7 code, 1 NPBB, 0 dB SNR, with estimated f_b of 143Hz...........................56
Figure 54 Estimated DFSM SCD contour plot for BPSK with 1000Hz carrier, Barker-7 code, 1 NPBB, 0 dB SNR, with estimated BW of 1000Hz...........................56
Figure 55 Zoomed-in estimated DFSM SCD contour plot for a BPSK signal with 1000Hz carrier, Barker-7 code, 1 NPBB, 0 dB SNR, with estimated f_b of 144Hz...57
Figure 56 Graphic demonstration of detection effectiveness for the BPSK modulation..58
Figure 57 Linear Frequency Modulated Triangular Waveform and Doppler Shifted Signal [5]...59
Figure 58 PSD for an FMCW signal (1000Hz carrier, 250Hz modulation BW and 20ms modulation period, only signal)...61
Figure 59 Time X Frequency plot for an FMCW signal (20ms triangular modulation up-ramp period)...61
Figure 60 Estimated FAM SCD contour plot for an FMCW signal with 1000Hz carrier and estimated modulation BW of 230Hz. ..61
Figure 61 Zoomed-in estimated FAM SCD contour plot for an FMCW signal with an estimated “delta” value of 25Hz...62
Figure 62 Estimated DFSM SCD contour plot for an FMCW signal with 1000Hz carrier and estimated modulation BW of 235Hz. ..62
Figure 63 Zoomed-in estimated DFSM SCD contour plot for an FMCW signal with an estimated “delta” value of 21Hz...63
Figure 64 PSD for an FMCW signal (1000Hz carrier, 250 Hz modulation BW and 20ms modulation period, 0dB SNR)...64
Figure 65 Estimated FAM SCD contour plot for an FMCW signal with 1000Hz carrier, 0 dB SNR and estimated modulation BW of 200 Hz..........................64
Figure 66 Estimated FAM SCD contour plot for an FMCW signal with an estimated “delta” value of 26Hz. ...65
Figure 67 PSD for an FMCW signal (1000Hz carrier, 250 Hz modulation BW and 20ms modulation period, -6dB SNR). ..65
Figure 68 Estimated FAM SCD contour plot for an FMCW signal with 1000Hz carrier, -6 dB SNR and estimated modulation BW of 200 Hz..................66
Figure 69 Estimated FAM SCD contour plot for an FMCW signal with an estimated “delta” value of 27Hz. ...66
Figure 70 Graphic demonstration of detection effectiveness for the FMCW modulation. ...68
Figure 71 P1 code phase shift...69
Figure 72 PSD for a P1 signal (1000Hz carrier, 16 phases and 1 cpp, only signal).70
Figure 73 Estimated DFSM SCD contour plot for a P1 signal with 900Hz carrier and estimated BW of 1000Hz..70
Figure 74 Zoomed-in estimated DFSM SCD contour plot for a P1 signal with an estimated code rate (f_b) of 62Hz..71
Figure 75 PSD for a P1 signal (1000Hz carrier, 16 phases and 1 cpp, 0dB SNR). 71
Figure 76 Estimated FAM SCD contour plot for a P1 signal with 900Hz carrier and estimated BW of 1000Hz, with 0dB SNR......................................72
Figure 77 Zoomed-in estimated FAM SCD contour plot for a P1 signal with an estimated code rate (f_b) of 65Hz, with 0dB SNR............................72
Figure 78 PSD for a P1 signal (1000Hz carrier, 16 phases and 1 cpp, -6dB SNR).73
Figure 79 Estimated FAM SCD contour plot for a P1 signal with 850Hz carrier and estimated BW of 1000Hz, with -6dB SNR.................................73
Figure 80 Graphic demonstration of detection effectiveness for the P1 modulation......75
Figure 81 P2 symmetric phase relationship between the index in the matrix and its phase shift. ..76
Figure 82 PSD for a P2 signal (1000Hz carrier, 16 phases and 1 cpp, only signal).77
Figure 83 Estimated FAM SCD contour plot for a P2 signal with 1000Hz carrier and estimated BW of 950 Hz...77
Figure 84 Zoomed-in estimated FAM SCD contour plot for a P2 signal with an estimated code rate (f_b) of 65 Hz...78
Figure 85 PSD for a P2 signal (1000Hz carrier, 16 phases and 1 cpp, 0dB SNR). 78
Figure 86 Estimated DFSM SCD contour plot for a P2 signal with 1000Hz carrier and estimated BW of 850Hz, with 0dB SNR.78
Figure 87 Zoomed-in estimated DFSM SCD contour plot for a P2 signal with an estimated code rate (f_b) of 65Hz, with 0dB SNR..........................79
Figure 88 Graphic demonstration of detection effectiveness for the P2 modulation......81
Figure 89 P3 code phase shift...82
Figure 90 PSD for a P3 signal (1000Hz carrier, 16 phases and 1 cpp, only signal).83
Figure 91 Estimated FAM SCD contour plot for a P3 signal with 1100Hz carrier and estimated BW of 1000Hz...83
Figure 92 Zoomed-in estimated FAM SCD contour plot for a P3 signal with an estimated f_b of 62 Hz

Figure 93 Estimated DFSM SCD contour plot for a P3 signal with 1150Hz carrier and estimated BW of 1000Hz

Figure 94 Zoomed-in estimated FAM SCD contour plot for a P3 signal with an estimated f_b of 63 Hz

Figure 95 PSD for a P3 signal (1000Hz carrier, 16 phases, 1 cpp, and 0dB SNR)

Figure 96 Estimated FAM SCD contour plot for a P3 signal with 1050Hz carrier and estimated BW of 1000Hz, with 0dB SNR

Figure 97 Zoomed-in estimated FAM SCD contour plot for a P3 signal with an estimated f_b of 65 Hz

Figure 98 Estimated DFSM SCD contour plot for a P3 signal with 1050Hz carrier and estimated BW of 1000Hz, with 0dB SNR

Figure 99 Zoomed-in estimated DFSM SCD contour plot for a P3 signal with an estimated f_b of 66 Hz

Figure 100 Graphic demonstration of detection effectiveness for the P3 modulation

Figure 101 Phase shift for a P4-coded signal with $N_p=64$ phases

Figure 102 PSD for a P4 signal (1000Hz carrier, 16 phases and 1 cpp, only signal)

Figure 103 Estimated FAM SCD contour plot for a P4 signal with 1100Hz carrier and estimated BW of 1000 Hz

Figure 104 Zoomed-in estimated FAM SCD contour plot for a P4 signal with an estimated f_b of 67 Hz

Figure 105 Estimated DFSM SCD contour plot for a P4 signal with 1100Hz carrier and estimated BW of 1000 Hz

Figure 106 Zoomed-in estimated FAM SCD contour plot for a P4 signal with an estimated f_b of 65 Hz

Figure 107 PSD for a P4 signal (1000Hz carrier, 16 phases, 1 cpp, and 0dB SNR)

Figure 108 Estimated FAM SCD contour plot for a P4 signal with 1100Hz carrier and estimated BW of 1000 Hz, with 0dB SNR

Figure 109 Zoomed-in estimated FAM SCD contour plot for a P4 signal with an estimated f_b of 67 Hz, with 0dB SNR

Figure 110 Graphic demonstration of detection effectiveness for the P4 modulation

Figure 111 Frank modulation phase changes $N_p^2=16$

Figure 112 PSD for a Frank signal (1000Hz carrier, 16 phases and 1 cpp, only signal)

Figure 113 Estimated DFSM SCD contour plot for a Frank signal with 1150Hz carrier and estimated BW of 1000 Hz

Figure 114 Zoomed-in estimated DFSM SCD contour plot for a Frank signal with an estimated f_b of 61 Hz

Figure 115 PSD for a Frank signal (1000Hz carrier, 16 phases, 1 cpp, and 0dB SNR)

Figure 116 Estimated FAM SCD contour plot for a Frank signal with 1000Hz carrier and estimated BW of 1000 Hz, with 0dB SNR

Figure 117 Zoomed-in estimated FAM SCD contour plot for a Frank signal with an estimated f_b of 63 Hz and 0dB SNR

Figure 118 PSD for a Frank signal (1000Hz carrier, 16 phases, 1 cpp, and -6dB SNR)
Figure 119 Estimated FAM SCD contour plot for a Frank signal with 1100Hz carrier and estimated BW of 1000 Hz, with -6dB SNR. ...101
Figure 120 Zoomed-in estimated FAM SCD contour plot for a Frank signal with an estimated f_b of 65 Hz, and -6dB SNR. ...102
Figure 121 Graphic demonstration of detection effectiveness for the Frank modulation. ...103
Figure 122 PSD for a Costas signal (1, 2, 3, 4, 5, 6 and 7 kHz carriers, 10 cpf, only signal). ...105
Figure 123 Estimated FAM SCD contour plot for a complex Costas signal (1, 2, 3, 4, 5, 6 and 7000Hz carriers over $\gamma=0$ axis, cpf=10, only signal), with intermodulation products. ...105
Figure 124 PSD for a Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, 10 cpf and 0dB SNR). ...106
Figure 125 Estimated FAM SCD contour plot for a complex Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers over $\gamma=0$ axis, 10 cpf, 0dB SNR), with intermodulation products. ...106
Figure 126 PSD for a Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, 10 cpf and SNR of -6dB). ...107
Figure 127 Estimated FAM SCD contour plot for a complex Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers over $\gamma=0$ axis, 10 cpf, -6dB SNR), with intermodulation products. ...107
Figure 128 Graphic demonstration of detection effectiveness for the Costas modulation. ...109
Figure 129 PSD for a FSK/PSK Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, Barker-5 and 1 NPBB, only signal). ...110
Figure 130 Barker-5 phase sequence used inside each hop. ...110
Figure 131 Estimated FAM SCD contour plot for a complex FSK/PSK Costas signal (1, 2, 4, 5, 6 and 7kHz measured carriers). ...111
Figure 132 Zoomed-in estimated FAM SCD contour plot for a complex FSK/PSK Costas signal (4, 5 and 6kHz measured carriers and estimated BW of 1000 Hz for each frequency hop). ...111
Figure 133 Estimated f_b value of 200 Hz for the embedded Barker-5 BPSK modulation. ...112
Figure 134 PSD for a FSK/PSK Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, Barker-5 and 1 NPBB, 0dB SNR). ...112
Figure 135 Estimated FAM SCD contour plot for a complex FSK/PSK Costas signal (1, 2, 4, 5, 6 and 7kHz measured carriers, 0dB SNR)...113
Figure 136 Zoomed-in estimated FAM SCD contour plot for a complex FSK/PSK Costas signal (5, 6 and 7kHz measured carriers and estimated BW of 1000 Hz for each frequency hop, 0dB SNR). ...113
Figure 137 Estimated f_b value of 200 Hz for the embedded Barker-5 BPSK modulation. ...114
Figure 138 Graphic demonstration of detection effectiveness for the FSK/PSK Costas modulation. ...116
Figure 139 PSD for a FSK/PSK Target signal (4200Hz BW, random phase with length 5 and 5 cpp, only signal)..117
Figure 140 Random phase sequence of length 5 used inside each hop......................117
Figure 141 Frequency hops histogram after random firing order generator:118
Figure 142 Estimated FAM SCD contour plot for a complex FSK/PSK Target signal with an estimated BW of 4800Hz...118
Figure 143 Graphic demonstration of detection effectiveness for the FSK/PSK Target modulation. ..120
Figure 144 Estimated DFSM SCD contour plot for a Frank signal with 1150Hz carrier, BW of 1000 Hz, Np^2=16 and cpp=1...121
Figure 145 Estimated DFSM SCD contour plot for a P1 signal with 900Hz carrier, BW of 1000 Hz, Np^2=16 and cpp=1...121
Figure 146 Estimated DFSM SCD contour plot for a P2 signal with 1050Hz carrier, BW of 950 Hz, Np^2=16 and cpp=1...122
Figure 147 Estimated DFSM SCD contour plot for a P3 signal with 1150Hz carrier, BW of 1000 Hz, Np=16 and cpp=1...122
Figure 148 Estimated DFSM SCD contour plot for a P4 signal with 1150Hz carrier, BW of 1000 Hz, Np=16 and cpp=1...123
THIS PAGE INTENTIONALLY LEFT BLANK
LIST OF TABLES

Table 1. Comparison of the estimated time-smoothed Periodogram expressed in continuous and discrete time...28
Table 2. Recommended variables values for GUI users...34
Table 3. Test signal characteristics..35
Table 4. BPSK signal characteristics...37
Table 5. FMCW signal characteristics..40
Table 6. P4 signals characteristics...43
Table 7. List of signal examples analyzed in this thesis...47
Table 8. Comparison between measured and original characteristics for the Test signals...50
Table 9. B_1_7_7_1_s signal characteristics..51
Table 10. Comparison between measured and original characteristics for This BPSK signal..57
Table 11. Summary of all measurements for the BPSK modulation....................................58
Table 12. Detection effectiveness for the BPSK modulation...58
Table 13. F_1_7_250_20_s signal characteristics..60
Table 14. Comparison between measured and original characteristics for an FMCW signal..67
Table 15. Summary of all measurements for the FMCW modulation...............................67
Table 16. Detection effectiveness for the FMCW modulation..67
Table 17. P1_1_7_16_1_s signal characteristics...69
Table 18. Comparison between measured and original characteristics for a P1 signal....74
Table 19. Summary of all measurements for the P1 modulation..74
Table 20. Detection effectiveness for the P1 modulation..75
Table 21. P2_1_7_16_1_s signal characteristics...76
Table 22. Comparison between measured and original characteristics for a P2 signal....80
Table 23. Summary of all measurements for the P2 modulation..80
Table 24. Detection effectiveness for the P2 modulation..80
Table 25. P3_1_7_16_1_s signal characteristics..82
Table 26. Comparison between measured and original characteristics for a P3 signal....88
Table 27. Summary of all measurements for the P3 modulation..88
Table 28. Detection effectiveness for the P3 modulation..88
Table 29. P4_1_7_16_1_s signal characteristics..90
Table 30. Comparison between measured and original characteristics for a P4 signal..95
Table 31. Summary of all measurements for the P4 modulation..95
Table 32. Detection effectiveness for the P4 modulation..95
Table 33. FR_1_7_16_1_s signal characteristics..97
Table 34. Comparison between measured and original characteristics for a Frank signal..102
Table 35. Summary of all measurements for the Frank modulation...............................103
Table 36. Detection effectiveness for the Frank modulation..103
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>C_1_15_10_s signal characteristics</td>
</tr>
<tr>
<td>38</td>
<td>Comparison between measured and original characteristics for a Costas signal</td>
</tr>
<tr>
<td>39</td>
<td>Summary of all measurements for the Costas modulation</td>
</tr>
<tr>
<td>40</td>
<td>Detection effectiveness for the Costas modulation</td>
</tr>
<tr>
<td>41</td>
<td>FSK_PSK_C_1_15_5_1_s signal characteristics</td>
</tr>
<tr>
<td>42</td>
<td>Comparison between measured and original characteristics for a FSK/PSK Costas signal</td>
</tr>
<tr>
<td>43</td>
<td>Summary of all measurements for the FSK/PSK Costas modulation</td>
</tr>
<tr>
<td>44</td>
<td>Detection effectiveness for the FSK/PSK Costas modulation</td>
</tr>
<tr>
<td>45</td>
<td>FSK_PSK_T_15_128_5_s Signal characteristics</td>
</tr>
<tr>
<td>46</td>
<td>Comparison between measured and original characteristics for a FSK/PSK Target signal</td>
</tr>
<tr>
<td>47</td>
<td>Summary of all measurements for the FSK/PSK Target modulation</td>
</tr>
<tr>
<td>48</td>
<td>Detection effectiveness for the FSK/PSK Target modulation</td>
</tr>
<tr>
<td>49</td>
<td>Test matrix of LPI radar signals analyzed</td>
</tr>
<tr>
<td>50</td>
<td>Test matrix of LPI radar signals analyzed</td>
</tr>
<tr>
<td>51</td>
<td>Test matrix of LPI radar signals analyzed</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

I would like to thank Professor Phillip E. Pace and Professor Herschel H. Loomis for their constant guidance, support and patience during this research effort. I am also thankful for the very carefully conducted editing work of Professor Roy R. Russell.

I address special thanks to all my superiors of the Brazilian Air Force, COL Narcelio Ramos Ribeiro and Officers of the General Air Command Electronic Warfare Center (CGEGAR), and Dr. Jose Edimar Barbosa of the Aeronautics Institute of Technology (ITA) for their vision and support in making my study at the Naval Postgraduate School possible.

I would also like to thank my wife, Luciana, and my daughter, Marina, for their unconditional love, support, and understanding throughout our entire stay here in the United States and especially thank them for all the time I had to spend away from them in order to accomplish this work.
THIS PAGE INTENTIONALLY LEFT BLANK
EXECUTIVE SUMMARY

LPI radar is a class of radar systems possessing certain performance characteristics that make today’s digital intercept receivers virtually unable to detect them. This presents a significant tactical problem in the battle space. To detect these types of radar, the military requires new digital receivers that use sophisticated signal processing techniques.

This thesis investigates the use of cyclostationary processing to extract the modulation parameters from a variety of continuous-wave (CW) low-probability-of-intercept (LPI) radar waveforms. The cyclostationary detection techniques described exploit the fact that digital signals vary in time with single or multiple periodicity, owing to their spectral correlation, namely, non-zero correlation between certain frequency components, at certain frequency shifts. The use of cyclostationary signal processing in a non-cooperative intercept receiver can help identify the particular emitter and can help develop electronic attacks. LPI CW waveforms examined include Frank codes, polyphase codes (P1, P2, P3 and P4), Frequency Modulated CW (FMCW), Costas frequencies as well as several frequency-shift-keying/phase-shift-keying (FSK/PSK) waveforms. This thesis shows that for signal-to-noise ratios of 0dB and –6 dB, the cyclostationary signal processing can extract modulation parameters such as carrier frequency, chip rate, code rate and bandwidth, necessary in order to distinguish between the various types of LPI radar modulations.

Two computationally efficient methods of cyclostationary processing were implemented: Time Smoothing FFT Accumulation and Direct Frequency Smoothing. It is possible to verify that the time smoothing method is more computationally efficient than the frequency smoothing for signals with higher complexity (polyphase codes, Frank codes, Costas and FSK/PSK). The results from both methods were compared and discussed for various LPI modulation types.

The results due to variations of modulation characteristics are compared and the efficiency of both cyclostationary methods for each modulation is measured with relation
to the original parameters. This thesis also includes comments on which LPI radar signals were more suitable for cyclostationary analysis and suggestions for future classification systems for these signals, using combined techniques.
I. INTRODUCTION

A. LPI RADARS

Standard surveillance radars always faced the problem of being detected by third-party intercept receivers. To mitigate this problem, a low probability of interception has become a very common tactical requirement for new radars. The new task of these radars is essentially two fold: the radar must meet its specified detection performance with minimum radiated power and must measure target characteristics with a modulation that is difficult for an intercept receiver to identify. [1]

Because of their low power, wide BW (BW) and frequency variability, LPI radars make detection by modern intercept receivers difficult. The resulting basic definition is that LPI radars can detect targets at longer ranges than the modern intercept receivers detect the radars.

This main characteristic of LPI radars may be described by the sensitivity advantage (\(\delta\)), defined as the ratio between the signal power needed at the intercept receiver to that needed at the LPI radar, which can be expressed mathematically as [2]:

\[
\delta = \frac{P_{IR}}{P_{RT}} = \frac{4\pi}{\sigma_T} \left(\frac{G_I' G_I L_{IR}}{G_T G_R L_{IR}} \right) \left(\frac{R_T^2}{R_I^2} \right)
\]

(1.1.1)

where \(P_{IR}\) is the power required at the intercept receiver to detect a signal; \(P_{RT}\) is the power required at the LPI radar receiver to detect a target; \(\sigma_T\) is the target’s RCS (Radar Cross Section); \(G_I\) is the bore sight gain of the LPI radar’s directive transmit antenna; \(G_{I}'\) is the gain of the LPI radar’s transmit antenna side lobe in the direction of the intercept receiver; \(G_I\) is the gain of the intercept receiver’s antenna; \(G_R\) is the radar’s receive antenna; \(L_{IR}\) is the loss in the intercept receiver; \(L_{RR}\) is the loss between the radar’s antenna and receiver; \(R_T\) is the radar to target range and \(R_I\) is the radar to intercept receiver range. The sensitivity advantage (\(\delta\)) depends on the intercept receiver range.
characteristics and should be a high value, on the order of 50 dB, for a case where we have a simple receiver against an LPI radar.

The success of LPI radars depends on how hard it is for a receiver to detect the radars’ emission parameters. The processing capabilities of modern ES (Electronic Support) equipment are increasing, leading to more specific LPI requirements. On the receiver side, better results in spectral analysis, for non-cooperative detection and classification, may be obtained if these radar signals are modeled as cyclostationary.

All digitally modulated signals are cyclostationary, meaning that their probabilistic parameters vary in time with single or multiple periodicities. One property that extends from this is that digitally modulated signals have a certain amount of spectral correlation. In other words, the signal is correlated with frequency-shifted versions of itself (auto-correlation) at certain frequency shifts. Analyzing LPI radar waveforms using cyclostationary modeling is advantageous because non-zero correlation is exhibited between certain frequency components when their separation is related to the periodicity of interest (e.g., the symbol rate or carrier frequency). The value of that spectral separation is referred to as the cycle frequency.

Two main algorithms stand out as computationally efficient tools for cyclostationary signal processing. The first is the time smoothing Fast Fourier Transform (FFT) Accumulation Method and the other is the Direct Frequency Smoothing Method [3]. Both tools are implemented in MATLAB® 6.1 for this thesis. [4]

B. PRINCIPAL CONTRIBUTIONS

The objective of the research described in this thesis was to implement in MATLAB® [4], two computationally efficient cyclostationary algorithms known as the Time Smoothing FFT Accumulation Method and the Direct Frequency Smoothing Method, defined in [3] and investigate them as an ES receiver for processing LPI radar signals.

The first step was to generate the LPI signals in a standardized way. The code used was called the “LPI Signal Generator,” developed by Fernando Taboada [5], and also includes contributions by the author of this thesis. The generated modulations were
• BPSK (Binary Phase Shift Keying);
• FMCW (Frequency Modulated Continuous Wave);
• Polyphase Codes (P4, P3, P2 P1 and Frank Codes);
• Costas Codes (Frequency Hopping - FH);
• FSK/PSK (Combined Frequency Shift Keying and Phase Shift Keying) with a Costas frequency distribution; and
• FSK/PSK with a target matched frequency distribution.

Once the signal test matrix was completed, simulations to verify the implementation of each algorithm were performed in MATLAB® [4] and the results were compared with other receiver signal processing techniques, such as Higher Order Statistics [5], Quadrature Mirror Filter Banks [6] and the Wigner Distribution [7].

A Graphic User Interface (GUI) was developed in MATLAB® [4] to simplify the analysis of the simulation results. The output obtained from the cyclostationary signal models were then used to determine the various characteristics of each modulation in question.

Previous work has been done to analyze phase modulation techniques such as BPSK (Binary Phase-Shift Keying) and QPSK (Quaternary Phase-Shift Keying) using time-smoothing techniques [8, 9]. In this thesis, both frequency and time-smoothing techniques are used to analyze various LPI radar modulations and to evaluate the measurement of the modulation parameters.

C. THESIS OUTLINES

The purpose of this thesis is to document the software implementation of a non-cooperative cyclostationary receiver for LPI radar waveforms. The remainder of this thesis supports this purpose and is organized as follows.

Chapter II presents a brief description of Low Probability of Intercept (LPI) waveforms and their spectral properties. Two FSK and PSK-combined modulations are discussed and analyzed. BPSK, P4, FMCW and Costas Codes are described in depth in [5].
Chapter III presents the Cyclostationary signal processing algorithms, a brief description of the cyclostationary processor, the MATLAB® [4] tools and the extracted parameters description.

Chapter IV shows the analysis of the different modulation types, their parameters, as well as the simulation results.

Chapter V summarizes the results of this thesis and also makes recommendations for future research.

Appendix A contains the MATLAB® [4] M-files used for implementation of both algorithms from [3].

Appendix C contains a table of all LPI radar signals analyzed.
II. LPI WAVEFORMS DESCRIPTION

A. BACKGROUND

LPI radars are especially designed to oppose external third-party receivers that attempt to identify the system characteristics and emitter location. Modern electronic support (ES) receivers can easily detect the high peak power transmitted by pulsed radars. The use of CW (Continuous Wave) modulations and the ability to manage the transmitted power limiting emission to the minimum power required to detect typical targets, at the required range, make LPI radar signals much less detectable. [5] Besides power management, LPI radars modulate their transmissions spreading the energy in frequency so that the frequency spectrum of the transmitted signal is wider than required to carry the signal’s information. Spreading the signal energy reduces the signal-strength-per-information BW.

LPI waveforms investigated in this thesis include BPSK, FMCW, P4, P3, P2, P1, Frank Codes, Costas Codes, FSK/PSK with a Costas frequency distribution, and FSK/PSK with a target matched frequency distribution. Refer to Fernando Taboada’s [5] thesis work for a detailed description of the other LPI modulations analyzed in this thesis. The complete matrix of analyzed signals is shown in Appendix C. This thesis presents the analysis of one signal example per modulation type. The analysis of the rest of the signals is included in a Technical Report to be published. [10]

This chapter specifically discusses the two modulation types that combine frequency and phase-shift keying (FSK/PSK combined). One modulation type is a combination of a Costas frequency-hopping technique and binary phase modulation using Barker sequences of different lengths. The second is a frequency-hopping technique that uses the characteristic frequency distribution of a desired target, creating a matched FSK, which is then modulated with a random-phase keying.
B. FSK/PSK COMBINED USING A COSTAS-BASED FREQUENCY-HOPPING (FH) TECHNIQUE

This modulation technique is the result of a combination of frequency-shift keying based on a Costas frequency-hopping matrix and phase-shift keying using Barker sequences of different lengths. A thorough description of the implementation of a Costas frequency-hopping technique is in [5]. The purpose of this section is to describe briefly the phase encoding applied to a Costas signal, generating the FSK/PSK combined waveform.

In a Costas frequency-hopped signal, the firing order defines what frequencies will appear and with what duration. Since we are discussing CW radars, the usual terminology does not apply to this case. Instead of a “burst” of pulses, we have frequencies being continuously emitted during a defined period of time. This period may be divided into sub-periods, labeled T_F for each frequency. The length of each sub-period depends on the sampling interval. During each sub-period, the signal frequency (one of the N_F frequencies) is modulated by a binary phase sequence according to a Barker sequence of length five (+ + + - +), seven (+ + + - - + - -), or thirteen (+ + + + + - - + - - + - +). For example, the FSK/PSK signal defined by $S = 1^+, 1^+, 1^+, 2^+, 2^+, 2^+, 2^+, 2^+, 3^+, 3^+, 4^+, 4^+, 4^+, 4^+, 4^+, 5^+, 5^+, 5^+, 5^+$ represents a waveform comprised of $N_F = 5$ different frequencies, that are each subdivided into five phase slots, labeled T_P, according to the Barker sequence of length five (+ + + - +). The final waveform may be seen as a binary phase-shifting modulation within each frequency hop, resulting in 5 phase slots equally distributed in each frequency slot, giving a total of 25 phase slots.

As illustrated in Figure 1, if we consider N_F as the number of frequency hops and N_P as the number of phase slots of duration T_P (Chip Period) in each frequency sub-period T_F, the total number of phase slots in the FSK/PSK waveform is given by:

$$N = N_F \times N_P$$

(2.1.1)
The block diagram in Figure 1 describes the MATLAB® [4] implementation. The user defines which sequence of Costas frequency hops to be used and also how long the Barker sequence is (5, 7, 11 or 13). The number of frequency hops is pre-defined to be “seven” and the user may select from two different frequency sequences, varying from 1kHz to 8kHz. The Costas matrix used in the implementation is the following:

- Costas Sequence 1 → \[
\begin{bmatrix}
4 & 7 & 1 & 6 & 5 & 2 & 3
\end{bmatrix}
\]
- Costas Sequence 2 → \[
\begin{bmatrix}
2 & 6 & 3 & 8 & 7 & 5 & 1
\end{bmatrix}
\]

Frequencies (kHz)

The Barker sequence is generated and the frequency-hopping signal is then phase-modulated accordingly. For example, if the first Costas sequence is selected, after a phase modulation using a Barker sequence of length 5, the final waveform becomes \(S = 4^+, 4^+ \),
4^+, 4^-, 7^+, 7^+, 7+, 7^+, 1^+, 1^+, 1^+, 1^-, 6^+, 6^+, 6^+, 6^+, 5^+, 5^+, 5^+, 5^+, 5^+, 2^+, 2^+, 2^+, 2^+, 3^+, 3^+, 3^+, 3^+, 3^+. Figure 2 shows the Power Spectral Density (PSD) plots that reveal the spread spectrum characteristic of these signals. The Costas sequence used in the following example is always the same and the seven frequency hops are 4, 7, 1, 6, 5, 2, and 3kHz. The sampling frequency was 15kHz, satisfying the minimum Nyquist rate \(fs >> 2*f \) for the largest frequency value. All plots were generated in MATLAB® [4] using the routines “fsk_psk_costas.m” and “PAF_FSK_PSK.m”; both listed in Appendix B.

![Figure 2 PSD plot for a Costas FH waveform with no phase modulation.](image)

Figure 2 PSD plot for a Costas FH waveform with no phase modulation.

Figure 3 shows the Costas frequency-hopping waveform time domain, before the phase modulation.
Figures 4 to 11 show the PSD, Periodic Ambiguity Function (PAF) and Phase Plots for the same frequency sequence as in Figure 2 but now with a phase modulation using a Barker-11 sequence. Other signals that may be generated are Costas Frequency-Hopping with Barker-5, Barker-7 and Barker-13 phase modulation. These signals are going to be analyzed later in Chapter IV.

The firing orders generated using Costas arrays are designated as optimum in reference to the side-lobe behavior of the PAF. As we increase the length of the Barker sequence (e.g. from five to eleven), we notice a decrease in the side-lobe level as well.

The waveforms generated are just examples and various combinations of frequency-shift keying and phase-shift keying may be applied to obtain similar results. Other examples of these kinds of waveforms are presented in [12].
The PAF plots were performed both for a complete period for all Costas frequencies in the sequence and for only one period in one frequency hop. Therefore, the Costas PAF characteristics as well as the BPSK PAF characteristics may be compared.

Figure 4 shows the PSD of the Costas sequence 1 but now with the phase modulation using a Barker-11 sequence and with one carrier cycle per phase \((cpp)\). We may verify the “flat top” characteristic of the spectrum of LPI signals and also the seven “frequency hops.”

![Figure 4](image)

Figure 4 PSD for FSK/PSK Costas FH phase modulated with a Barker-11 sequence and 1 \(cpp\).

The phase plot in Figure 5 reveals the Barker-11 sequence phase change. Figure 6, Figure 7 and Figure 8 show the PAF “thumbtack” [11] characteristic of these types of Costas signals. These PAF plots were generated for one period of the whole Costas sequence.
Figure 5 Phase plot for FSK/PSK Costas FH phase modulated with a Barker-11 sequence.

Figure 6 PAF contour plot for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for all frequencies in one Costas sequence).
Figure 7 PAF delay axis cut for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for all frequencies in one Costas sequence).

Figure 8 PAF Doppler axis cut for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for all frequencies in one Costas sequence).
Figure 9, Figure 10 and Figure 11 show the modulation for one period of one frequency hop of the Costas sequence used in Figure 2. Each frequency hop has similar PAF characteristics of a single carrier frequency BPSK signal. The plots of these Figures were done for the first carrier frequency of the first Costas sequence. Other modulation examples are analyzed later in Chapter IV.

Figure 9 PAF contour plot for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for one frequency in the Costas sequence).
Figure 10 PAF delay axis cut for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for one frequency in the Costas sequence).

Figure 11 PAF Doppler axis cut for FSK/PSK Costas FH phase modulated with a Barker-11 sequence (plot of one period for one frequency in the Costas sequence).
C. FSK/PSK COMBINED USING A TARGET-MATCHED FREQUENCY HOPPING

Instead of spreading the energy of the signal equally over a broad BW, this type of technique concentrates the signal energy in specific spectral locations of most importance for the radar and its typical targets. The signals have a pulse compression characteristic, and therefore they can achieve a low probability of intercept.

The implementation starts with a simulated-target time-radar response. The block diagram in Figure 12 describes the signal generation in detail. The target signature data is Fourier transformed and the frequency components, their correspondent magnitudes, and their initial phases are collected. A random selection process chooses each frequency with a probability distribution function defined by the spectral characteristics of the target of interest obtained from the Fast Fourier Transform (FFT). That is, the frequencies at the spectral peaks of the target (highest magnitudes) are transmitted more often. Each “frequency hop,” transmitted during a specific period of time, is also modulated in phase, having its initial phase value (from FFT) modified by a pseudo-random spreading-phase sequence code of values equally likely to be zero or \(\pi \) radians. [11] The matched FSK/PSK radar will then use a correlation receiver with a phase mismatched reference signal instead of a perfectly phase matched reference. This allows the radar to generate signals that can match a target’s spectral response in both magnitude and phase. [11] Only a single target test signal is generated and serves our purpose of testing the performance of a digital cyclostationary receiver against these kinds of signals.
Figure 12 Block diagram of the MATLAB® [4] implementation of FSK/PSK target matched waveform.

Figure 13 shows the 64 complex points target range radar response plot. Figure 14 reveals the 64 frequency components that will be selected randomly 256 times. Figure 15 illustrates the frequency firing order, Figure 16 illustrates the PSD and Figures 17, 18 and 19 illustrate the PAF properties of these signals. Figure 15 shows the histogram of the 64 frequency components and shows the number of occurrences of each frequency. Note that this is similar to the FFT output or probability distribution shown in Figure 14. The following figures show one signal example with 5 carrier periods per phase and 256 frequency hops. Figure 16 shows the PSD plots and reveals the highly spread-spectrum characteristics of this type of modulation. Note the noise-like behavior due to the random phase modulation.
Figure 13 FSK/PSK target 64 complex points radar range simulated response.

Figure 14 FSK/PSK target frequency probability distribution of 64 frequency components.
Figure 15 FSK/PSK target 64 frequency components histogram with number of occurrences per frequency for 256 frequency hops.

Figure 16 PSD for FSK/PSK target with 64 frequency components, 256 frequency hops, random phase modulation and 5 cpp.
Figure 17 PAF contour plot for FSK/PSK target with 64 frequency components, 256 frequency hops, random phase modulation and 5 cpp.

Figure 18 PAF delay cut for FSK/PSK target with 64 frequency components, 256 frequency hops, random phase modulation and 5 cpp.
Figure 19 PAF Doppler cut for FSK/PSK target with 64 frequency components, 256 frequency hops, random phase modulation and 5 cpp.

An extensive discussion regarding the PAF “thumbtack” characteristic of these types of waveforms, as shown in the last three Figures, are presented in Donohoe et al in [11].

In this chapter we discussed the implementation of two complex LPI Radar signals using FSK and PSK techniques combined. A brief theoretical and practical tutorial on cyclostationarity processing and its implementation using the FFT Accumulation Method and the Direct Frequency Smoothing Method is given in the next chapter.
III. CYCLOSTATIONARY SIGNAL PROCESSING
ALGORITHMS AND TUTORIAL

This chapter briefly explains the cyclostationary processes, the time-smoothing (FAM) and frequency-smoothing (DFSM) algorithms and how they were implemented. A thorough description on cyclostationarity and its properties may be found in [12], [13] and [14].

A. CYCLOSTATIONARY THEORY

The cyclostationary theory for signal processing, as described by William A. Gardner [12], involves three main properties:

- Generation of spectral lines by quadratically transforming a signal;
- The statistical property called “second-order cyclostationarity,” namely the periodic fluctuation of the auto-correlation function with time;
- The correlation property for signal components in distinct spectral bands.

The cyclostationary attribute, as it is reflected in the periodicities of the second order moments of the signal, can be interpreted in terms of the generation of spectral lines from the signal by putting the signal through a quadratic non-linear transformation. This property explains the link between the spectral-line generation property and the statistical property called “spectral correlation”, corresponding to the correlation that exists between the random fluctuations of components of the signal residing in distinct spectral bands. The correlation integral is very important in theoretical and practical applications and may be defined as

\[h(x) = \int_{-\infty}^{\infty} f(u)g(x+u)du \] \hspace{1cm} (3.1.1)

Applying an FFT, it forms a Fourier transform pair given by:

\[\mathcal{F}\{h(x)\} = F(s)G^*(s) \] \hspace{1cm} (3.1.2)
If \(f(x) \) and \(g(x) \) are the same function, the integral above is normally called the **autocorrelation** function and called **cross-correlation** if they differ. The autocorrelation function is a quadratic transformation of a signal and may be interpreted as a measure of the predictability of the signal at time \(t + \tau \) based on knowledge of the signal at time \(t \). [13]

When considering a time series of length \(T \), the autocorrelation function becomes the time-average autocorrelation function given by

\[
R_x(\tau) \triangleq \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x\left(t + \frac{\tau}{2}\right)x^*\left(t - \frac{\tau}{2}\right)dt
\]
(3.1.3)

The non-zero correlation (second-order periodicity) characteristic of a time series \(x(t) \) exists, in the time domain, if the equation,

\[
R_x^\alpha(\tau) \triangleq \left\{ \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x\left(t + \frac{\tau}{2}\right)x^*\left(t - \frac{\tau}{2}\right)e^{-j2\pi\alpha t}dt \right\} \neq 0
\]
(3.1.4)

where \(\alpha \) is the cycle frequency. \(R_x^\alpha(\tau) \) is the cyclic auto-correlation function, also known as the “time-frequency limit autocorrelation function”. The derivation of (3.1.4) from (3.1.3) using a non-probabilistic approach is developed in [10]. Since (3.1.4) is a generalization of (3.1.3), when \(\alpha = 0 \), the DC component of (3.1.4) yields the time-average autocorrelation function of (3.1.3). Therefore, the process defined by (3.1.4) is able to extract more information from the signal than the process defined by (3.1.3). [13]

It is well known that the PSD may be obtained from the Fourier Transform of the autocorrelation function (3.1.3). [14]

\[
S_x(f) = \int_{-\infty}^{\infty} R_x(\tau)e^{-j2\pi f \tau}d\tau
\]
(3.1.5)

In the same manner, it is shown in [3] that the Spectral-Correlation Density (SCD), or Cyclic-Spectral Density, may also be obtained from the Fourier Transform of the cyclic autocorrelation function (3.1.4).
\[S^\alpha_x(f) \triangleq \int_{-\infty}^{\infty} R^\alpha_x(\tau) e^{-j2\pi f \tau} d\tau = \lim_{T \to \infty} \frac{1}{T} X^T_f \left(f + \frac{\alpha}{2} \right) \overline{X^T_f \left(f - \frac{\alpha}{2} \right)} \quad (3.1.6) \]

where \(\alpha \) is the cycle frequency and:

\[X^T_f(f) \triangleq \int_{-\frac{T}{2}}^{\frac{T}{2}} x(u) e^{-j2\pi f u} du \quad (3.1.7) \]

which is the Fourier Transform of the time domain signal \(x(u) \). The additional variable \(\alpha \) leads to a two-dimensional representation \(S^\alpha_x(f) \), in the bi-frequency plane or \((f, \alpha)\) plane. [12]

The spectral correlation exhibited by cyclostationary or almost cyclostationary processes is completely characterized by the cyclic spectra \(S^\alpha_x(f) \) or characterized equivalently by the cyclic autocorrelations \(R^\alpha_x(f) \). [12] In practice, the cyclic-spectral density must be estimated because the signals being considered are defined over a finite time interval \(\Delta t \), and therefore the cyclic-spectral density cannot be measured exactly. Estimates of the cyclic-spectral density can be obtained via time or frequency-smoothing techniques. In this work we will be able to compare both methods when analyzing LPI radar signals.

An estimate of the SCD can be obtained by the time-smoothed cyclic periodogram is given by [10]:

\[S^\alpha_x(f) \approx S^\alpha_x(t, f)_{M} = \frac{1}{\Delta t} \int_{t-M/2}^{t+M/2} S^\alpha_x(u, f) du \quad (3.1.8) \]

where

\[S^\alpha_x(u, f) = \frac{1}{T_w} X^T_{w}(u, f + \frac{\alpha}{2}) \overline{X^T_{w}(u, f - \frac{\alpha}{2})} \quad (3.1.9) \]

and \(\Delta t = \) total observation time of the signal, \(T_w = \) short-time FFT window length, and:
\[X_{T_w}(u, f) = \int_{t - \frac{T_w}{2}}^{t + \frac{T_w}{2}} x(u)e^{-j2\pi fu} du \] (3.1.10)

is the sliding short-time Fourier Transform, and is a viable solution for computing the SCD estimations. Using a graphical explanation, in Figure 20, for some signal \(x(t) \) the frequency components are evaluated over a small time window \(T_w \) (sliding FFT time length), along the entire observation time interval \(\Delta t \). [12] The spectral components generated by each short-time Fourier Transform have a resolution, \(\Delta f = \frac{1}{T_w} \). In Figure 20, \(L \) is the overlapping factor between each short-time FFT. In order to avoid aliasing and cycle leakage on the estimates, the value of \(L \) is defined as \(L \leq \frac{T_w}{4} \). [12]

Figure 20 Pictorial illustration of the estimation of the time-variant spectral periodogram (adapted from [12, 17]).
Figure 21 shows that the spectral components of each short-time FFT are multiplied, still providing the same resolution capability $\Delta f = \frac{1}{T_w}$, for the cyclic-spectrum estimates. Note that the dummy variable u has been replaced by the time instances t_1, \ldots, t_p. At each window (T_w), two components centered about some f_0 and separated by some α_0 are multiplied together and the resulting sequence of products is then integrated over the total time (Δt), as shown in (3.1.8).

![Figure 21 Sequence of frequency products for each short-time Fourier transforms (adapted from [12, 17]).](image)

The estimation $S^\alpha_x(f) \approx S^\alpha_{x_{t_1}}(t, f)$ can be made as reliable and accurate as desired for any given t and Δf, and for all f by making Δt sufficiently large, provided that equation (3.1.4) exists within the interval Δt and that a substantial amount of smoothing is carried out over Δt, which leads to the Grenander’s Uncertainty Condition $\Delta t \cdot \Delta f \gg 1$ [12]. This Uncertainty Condition means that the observation time (Δt) must greatly
exceed the time window \((T_w)\), which is used to compute the spectral components. A data taper window is also used to minimize the effects of cycle and spectral leakage (estimation noise), introduced by frequency component side-lobes. [12]

If we consider the fact that the cycle frequency estimate is \(\Delta \alpha \approx \frac{1}{\Delta t}\), it results that the estimation of some \((f_0, \alpha_0)\) represents a very small area on the bi-frequency plane as shown in Figure 22 and since one needs a significant number of estimates to represent the cyclic spectrum adequately, it follows that obtaining estimates may become very computationally demanding. [12]

![Figure 22 Bi-frequency plane, frequency and cycle frequency resolutions on detailed area (adapted from [12, 17]).](image)

\[
\Delta f = \frac{1}{T_w} \quad \Delta \alpha = \frac{1}{\Delta t}
\]
B. DISCRETE TIME CYCLOSTATIONARY ALGORITHMS

The computationally efficient algorithms for implementation of time and frequency-smoothing techniques are discussed in [3]. These are the FFT Accumulation Method (FAM) and the Direct Frequency-Smoothing Method (DFSM) as described below. The temporal and spectral smoothing equivalence is also addressed in [12]. The computationally efficient algorithms for implementation of time and frequency-smoothing techniques are extensively discussed in [3].

1. The Time-Smoothing FFT Accumulation Method (FAM):

The time-smoothing FFT Accumulation Method was developed to reduce the number of computations required to estimate the cyclic spectrum. [3] This technique divides the bi-frequency plane into smaller areas called the channel-pair regions and computes the estimates a block at a time using the Fast Fourier Transform. Describing the estimated time-smoothed periodogram from Equations (3.1.8) and (3.1.9), in discrete terms, yields

\[
S_{x_n}^{\gamma}(n, k) = \frac{1}{N} \sum_{n=0}^{N-1} \left[\frac{1}{N'} X_N^{\gamma}(n, k + \frac{\gamma}{2}) X_N^{\gamma*}(n, k - \frac{\gamma}{2}) \right]
\]

(3.2.1)

where

\[
X_{N'}(n, k) = \sum_{n=0}^{N'-1} w[n] x[n] e^{-j2\pi kn/N'},
\]

(3.2.2)

is the Discrete Fourier Transform of \(x[n]\), \(w[n]\) is the data taper window (e.g. Hamming window) and the discrete equivalents of \(f\) and \(\alpha\) are \(k\) and \(\gamma\) respectively. Figure 23 represents a block diagram [13] used in the implementation of this method in MATLAB®. [4]
The algorithm consists of three basic stages: computation of the complex demodulates (divided into data tapering, sliding \(N' \) point Fourier transforming and base band frequency-downshift translation sections), then computation of the product sequences and smoothing of the product sequences. Making a parallel between the variables in equations (3.1.8), (3.1.9) and (3.2.1), we have:

<table>
<thead>
<tr>
<th>NAME</th>
<th>CONTINUOUS TIME</th>
<th>DISCRETE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCD</td>
<td>(S_{x_{np}}^\alpha (t, f)_\Delta t)</td>
<td>(S_{x_{np}}^\gamma (n, k)_{N'})</td>
</tr>
<tr>
<td>Short FFT Size</td>
<td>(T_w)</td>
<td>(N')</td>
</tr>
<tr>
<td>Observation Time</td>
<td>(\Delta t)</td>
<td>(N)</td>
</tr>
<tr>
<td>Time</td>
<td>(t)</td>
<td>(n)</td>
</tr>
<tr>
<td>Frequency</td>
<td>(f)</td>
<td>(k)</td>
</tr>
<tr>
<td>Cycle Frequency</td>
<td>(\alpha)</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>Grenander’s Uncertainty</td>
<td>(M = \frac{\Delta f}{\Delta \alpha} \gg 1)</td>
<td>(M = \frac{N}{N'} \gg 1)</td>
</tr>
</tbody>
</table>

Table 1. Comparison of the estimated time-smoothed Periodogram expressed in continuous and discrete time.
The parameter N represents the total number of discrete instances within the observation and N' represents the number of points within the discrete short-time sliding FFT. In the FAM algorithm, spectral components of a sequence, $x[n]$, are computed using (3.2.2). Two components are multiplied (3.2.1) to provide a sample of a cyclic spectrum estimate representing a finite area on the bi-frequency plane called a “channel pair region,” as shown in Figure 24. There are N^2 channel pair regions in the bi-frequency plane. Note the sixteen small channel pair regions corresponding to a value of $N = 4$ in Figure 24.

\[N = 4 \]

![Figure 24](image)

Figure 24 Division of bi-frequency plane in channel pair regions (adapted from [3, 15]).

A sequence of samples for any particular area may be obtained by multiplying the same two components of a series of consecutive short-time sliding FFT's along the entire length of the input sequence. After the channelization performed by an N'-point FFT sliding over the data with an overlap of L samples, the outputs of the FFT’s were shifted in frequency in order to obtain the complex demodulate sequences (see Figure 23). [3]
Instead of computing an average of the product of sequences between the complex demodulates, as in (3.1.8), they are Fourier transformed with a P-point (second) FFT. The computational efficiency of the algorithm is improved by a factor of L since only $\frac{N}{L}$ samples are processed for each point estimate. With f_s the sampling frequency, the cycle frequency resolution of the decimated algorithm is defined as $\gamma_{res} = \frac{f_s}{N}$ (compare to $\Delta \alpha = \frac{1}{\Delta t}$), the frequency resolution is $k_{res} = \frac{f_s}{N}$, (compare to $\Delta f = \frac{1}{T_w}$) and the Grenander’s Uncertainty Condition is $\frac{N}{N'} \gg 1$ (compare to $\Delta t \cdot \Delta f \gg 1$). Figure 25, clearly reveals that the estimates toward the top and the bottom (yellow areas) of the channel pair region do not satisfy the Uncertainty Condition.

Figure 25 Cycle frequency and frequency resolutions and the Grenander’s Uncertainty Condition (adapted from [3, 13]).

In order to minimize the variability of these point estimates, we can retain only those cyclic spectrum components that are within of $\gamma = \pm \frac{k_{res}}{2}$ from the center of the
channel pair region. [15] A solution to resolve the entire area of the channel pair region without leaving gaps is to apply a data taper window on the frequency axis to obtain better coverage. A Hamming window is applied in this implementation.

2. **Direct Frequency-Smoothing Method:**

Direct frequency-smoothing algorithms first compute the data frequency components and then execute spectral-correlation operations directly on the frequency components. Generally, the Direct Frequency-Smoothing Method (DFSM) is computationally superior to indirect algorithms that use related quantities, such as the Wigner-Ville Distribution. [12] But DFSM is normally less efficient than a time-smoothing approach.

Time and frequency-smoothing equivalence is discussed in details in [10] and derives from the fact that randomly fluctuating statistical spectra (in both time and frequency), such as \(S^\alpha_{x/f} (t, f)_{\text{df}} \) (compare to 3.1.8, where \(T_w = \frac{1}{\Delta f} \) and \(S^\alpha_{x/f} (t, f)_{\text{df}} \), converge in the limit \((\Delta t \to \infty, \Delta f \to 0)\) to the non-random limit spectrum \(S^\alpha_x (f) \) if the limit autocorrelation \(R^\alpha_x (\tau) \) exists. Employing discrete frequency averaging and following the same analogy as in the time-smoothed cyclic periodogram, the basis for the DFSM is the discrete time frequency-smoothed cyclic periodogram represented by

\[
S^\gamma_{x_N} (n,k)_{\Delta k} = \sum_{m} X^N (n,k + \frac{\gamma}{2}) X^*_{\gamma} (n,k - \frac{\gamma}{2})
\]

where

\[
X^N (n,k) = \sum_{n=0}^{N-1} w[n] x[n] e^{-j2\pi kn} \frac{1}{N},
\]

is the Discrete Fourier Transform of \(x[n] \), \(w[n] \) is a rectangular window of length \(N \) that is the total number of points of the FFT related to the total observation time \(\Delta t \), \(\gamma \) is the cycle frequency discrete equivalent, the frequency-smoothing ranges over the interval \(|n| \leq M/2 \) and \(\Delta k \approx M \cdot f_s / N \) is the frequency resolution discrete equivalent.[12] All
considerations made previously in Section A (Cyclostationary Theory) are still valid and, for $M \gg 1$, the frequency and time smoothing methods will yield very similar results. The block diagram on Figure 26 [13] illustrates the implementation of the “DFSM.m” MATLAB® [4] routine.

Equation (3.3.1) is computed along a line of constant cycle frequency spacing the point estimates by $\Delta k = M \cdot \frac{f_s}{N}$. This method is easier to implement and generally is used to validate the time-smoothing “FAM.m” code, but this method may become more computationally demanding, mainly in the last block in which the complex-demodulates product sequences are summed. Considerations on the parallel processing of both time and frequency algorithms are discussed in [13]. Combinations of both methods are also advantageous for certain applications.

The FAM routine took considerably less time than the DFSM routine. The computing time for the DFSM was two or three times longer than the FAM for signals with a large number of samples. Therefore, for very long signals and large $M = \Delta t \Delta f$, FAM should be used to calculate the complete cyclic spectrum.
3. GUI Implementation:

A Graphical User Interface (GUI), as shown in Figure 27, was developed using the MATLAB® GUIDE Version 6 [4] in order to facilitate the execution of the mathematical model processing.

![Cyclostationary Processing GUI](image)

Figure 27 Cyclostationary processing GUI schematic tutorial.

In this GUI, generated by the MATLAB® [4] routines “cyclo.m”, “FAM.m” and “DFSM.m”, the user defines

- The directory where the data file is to be located;
- The name of the file (without the extension);
- The sampling frequency;
- The desired frequency resolution \(k_{res} \); and
- The Grenander’s Uncertainty Condition \(M = \frac{N}{N'} \), may be chosen to be equal to 2 or 4.

These variables are then used to calculate
• Desired cycle frequency resolution: \(\gamma_{res} = \frac{k_{res}}{M} = \frac{f_s}{N} \);

• \(N' = \frac{f_s}{k_{res}} \) - Number of input channels in the channelization matrix: (rounded to the nearest multiple of 2). For example if \(\frac{f_s}{k_{res}} = \frac{7000}{8} = 875 \), then \(N' = 1024 \);

• Overlap Parameter: the short time FFT’s will be performed and shifted by \(L \) number of samples for every computation (instead of at every sample): \(L \leq \frac{N'}{4} \);

• Number of Columns in the Channelization Matrix: \(P = \frac{f_s}{\gamma_{res}L} \);

• Total number of points in the input data to be processed: \(N = P \times L = M \left(\frac{f_s}{k_{res}} \right) \).

The results of the simulations and a tutorial on how they should be interpreted will be discussed later in this chapter. We will also be able to compare the results of this algorithm and the Frequency-Smoothing approach.

Since the number of points to be processed \(N \) is related to the sampling frequency, the frequency resolution and the value of \(M \) are limited by MATLAB® [4] functions memory constraints related to the size of the matrix being handled. The suggested optimum value of \(N \), in order to avoid memory errors, may vary between 2,048 and 4,096 points depending on the signal analyzed and may be given by using the suggested values on the table below when entering data in the GUI.

| On the Cyclostationary Processing GUI, for an optimum \(N \) value of 2048 points \(\left(\frac{N = M \cdot \left(\frac{f_s}{\Delta k} \right)}{\Delta y} \right) \): |
|---|---|---|
| **Sampling Frequency** | 7000 Hz | 15000 Hz |
| \(M \left(\frac{\Delta k}{\Delta y} \right) \) | 2 | 4 | 2 | 4 |
| Frequency resolution (\(\Delta k \)) | 8 | 16 | 16 | 32 |

Table 2. Recommended variables values for GUI users.
The platform for all the simulations was a Pentium IV, 2 GHz CPU clock and 1GB RAM. The most critical memory constraints appeared while using the “contour.m” MATLAB® [4] built-in function, but since this is the plot with the best visualization, we decided to keep an average maximum number of points of 2,048 whenever possible.

Moreover, by increasing the value of N from 2048 to 4096 or more only improved the results a little. And since the data files were standardized for comparison with the results from the methods described in [5], [6] and [7], the input signals were generated to have characteristics that would facilitate measuring for all four processing types simultaneously.

All the files in the Cyclostationary MATLAB® [4] package (“cyclo.m, FAM.m and dfsm.m”) can be edited very easily to include new capabilities. The function “cyclo.m” triggers the GUI and after entering the data, the user may choose between time or frequency-smoothing method by clicking the appropriate button. Additional features and options to the GUI (“Cyclo.fig”) may be added by using the MATLAB® GUIDE [4] and by editing “cyclo.m” accordingly.

C. PROCESSING TUTORIAL

In order to give a general idea of how the results of both processing methods should look, this section provides some examples of the signals analyzed.

1. Test Signals:

 For this example, the input complex signals characteristics are as following:

<table>
<thead>
<tr>
<th>Carrier Frequency (f_c)</th>
<th>1000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Frequency (f_s)</td>
<td>7000 Hz</td>
</tr>
</tbody>
</table>

 Table 3. Test signal characteristics.

 This signal is composed of a single carrier sampled at $f_s=1000$Hz; using the real part of the signal we expect that the plot on the bi-frequency plane will have the carrier frequency at twice its value, as shown in Figure 28 (DFSM SCD for a Test Signal with $N = 1024$, $df = 16$ and $M = 2$).
We see that the frequency content is very simple, except for some estimation noise around the highest values of the correlation (red dots). This Spectral-Correlation Density was generated using the Frequency-Smoothing Method (DFSM). The test signal in Figure 29 (FAM SCD for a Test Signal with $N = 1024$, $df = 16$ and $M = 2$) shows that the Time-Smoothing Method generates similar results that are a little bit noisier because more estimation is involved.
2. BPSK:

For the BPSK (Barker Code) example, the signals characteristics are as following:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency (f_c)</td>
<td>1000Hz</td>
</tr>
<tr>
<td>Sampling Frequency (f_s)</td>
<td>7000Hz</td>
</tr>
<tr>
<td>Barker Code Length (N_p)</td>
<td>11 bits</td>
</tr>
<tr>
<td>SNR</td>
<td>Only signal</td>
</tr>
<tr>
<td>Number of Carrier Cycles per Barker Bit ($NPBB$)</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4. BPSK signal characteristics.

In Figure 30, “k” is the frequency, “γ” is the cycle frequency, “f_c” is the carrier, “f_s” is the sampling frequency, “f_b” is the code rate ($f_b = \frac{1}{(T_p N_p)}$), “$N_p$” is the number of phase changes, related to the length of the Barker sequence used in the phase modulation, and “T_p” is the chip period.

Figure 30 Pictorial generic illustration of a BPSK signal SCD result.
By zooming in on the plot, as shown in Figure 31 and in the examples on Figure 32 and Figure 33, we can measure the code rate “f_b”, in the cycle frequency axis. It is possible to see a pattern of equally spaced points that will eventually fade away as the magnitude decreases (from red to blue). By changing the background color of the contour plots in order to facilitate establishing a visual threshold (around 0.4 on the normalized values, or “light blue” on the color bar) to eliminate the estimation errors, we can approximately determine the BW of the signal being analyzed and this value will then divided by the code rate “f_b”, giving the value of “N_p” (bandwidth = $N_p \times f_b$).

Figure 31 Zoomed in pictorial generic illustration of a BPSK signal SCD result with estimation of BW, number of phases and code rate.
Figure 32 DFSM generated SCD plot for a BPSK signal (1000Hz single carrier and 11 bits Barker-code phase modulation) with estimated BW.

Figure 33 Zoomed-in DFSM generated SCD plot for a BPSK signal (estimated code rate measurement).
The estimation of the BW using this method is somewhat subjective and may lead to still acceptable errors on the order of $\pm f_b$. From the plots above we may consider the values:

- Carrier frequency (f_C) = 1000 Hz (directly from plot);
- Code rate, from zoomed-in plots, \(f_b = \frac{1}{(T_p N_p)} \approx 90 \text{ Hz} \);
- BW (directly from plot) $\approx 1000 \text{Hz} \pm 90 \text{Hz}$;
- Number of Barker Bits (N_p) $\approx \frac{BW}{f_b} = \frac{1000}{90} = 11.11 \approx 11$ bits.

This procedure of zooming-in the plots and measuring the distances between the highest magnitudes (red) points will be used for all the signals analyzed in the next chapter.

3. **FMCW:**

For the FMCW case, the signal characteristics are as following:

<table>
<thead>
<tr>
<th>Carrier Frequency (f_C)</th>
<th>1000 Hz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Frequency (f_S)</td>
<td>7000 Hz.</td>
</tr>
<tr>
<td>Modulation Band Width (ΔF)</td>
<td>250 Hz</td>
</tr>
<tr>
<td>SNR</td>
<td>Only signal</td>
</tr>
<tr>
<td>Modulation Period (t_m)</td>
<td>20 ms</td>
</tr>
</tbody>
</table>

Table 5. FMCW signal characteristics.

The same behavior showed by BPSK appears here. Figure 34 and Figure 35 show that the carrier frequency appears at twice its value on the cycle-frequency axis and that the Modulation BW and the modulation period may also be estimated by measuring the distance from the center of the SCD result to the edge, on the $k = 0$ axis and by measuring the distance (“delta”) between two consecutive high correlation points in the cycle frequency axis.
Figure 34 Pictorial generic illustration of a FMCW signal SCD result.

Figure 35 Pictorial generic illustration of a zoomed-in plot for a FCMW signal SCD.

delta = \frac{1}{2 \times f_m}
This secondary variable called “\(\text{delta}\)” is related to the modulation period as shown in Figure 35 and in the examples of Figure 36 and Figure 37. From Figure 36 (FAM SCD with \(N = 2048, M = 4\) and \(\Delta k = 16\)) and Figure 37 (Zoomed in plot of Figure 36), we get the values:

- Carrier frequency \((f_C) = 1000\ \text{Hz}\) (directly from plot);
- \(\text{BW} (\Delta F \pm \text{delta}) \approx 250\text{Hz} \pm 25\text{Hz}\);
- \(t_m = \frac{1}{2} \cdot \text{delta} = \frac{1}{2} \cdot 25 = 0.02s = 20\text{ms}\), where \(\text{delta}=25\text{Hz}\);

![Figure 36](image.png)

Figure 36 FAM generated SCD plot for a FMCW signal (1000Hz carrier and estimated modulation BW of 230 Hz).
Figure 37 Zoomed-in FAM generated SCD plot for a FMCW signal (“delta” value of 25Hz).

4. P4:

The example signal characteristics are as following:

Carrier Frequency (f_c)	1000 Hz
Sampling Frequency (f_s)	7000 Hz
Number of Phases (N_p)	16
SNR	Only Signal
Number of Carrier Cycles per Phase (cpp)	1

Table 6. P4 signals characteristics.

Figure 38 and Figure 39 show FAM-generated SCD plots. We may see that the carrier still appears at twice its value on the cycle frequency axis, where the pattern of equally spaced points begins to become visible. Note the white box drawn around the data showing the general shape of the SCD plot divided in channel pair regions. In Figure 39 we can see in detail the estimation of the code rate value (f_b). Figure 40 shows the estimation of the number of phases, as shown in a pictorial representation on Figure 31.
Figure 38 FAM-generated SCD plot for a P4 signal (1125 Hz carrier and estimated BW of 1000 Hz).

Figure 39 Zoomed-in FAM-generated SCD plot for a P4 signal (with estimated code rate (f_b) of 66 Hz).
Figure 40 Zoomed-in FAM-generated SCD plot for a P4 signal (with estimation of BW and number of phases).

Therefore

- Carrier frequency (f_c) = 1125Hz (directly from plot);
- Measured BW ($BW = \frac{f_c}{cpp}$) $\approx 1000Hz \pm 66Hz$ (therefore $cpp=1$);
- Number of Phases Used in the P4 Modulation (Np):
 \[Np = \frac{BW}{f_b} = \frac{1000Hz}{66Hz} = 15.15 \sim 16 \text{ phases} ; \]
- Code Period (Tp): $Tp = \frac{cpp \cdot Np}{f_c} = \frac{1.16}{1000} = 0.016s$; and
- Code Rate $f_b = \left(\frac{1}{Tp} \right) = \left(\frac{1}{0.016} \right) = 62.5Hz$.

C. CHAPTER SUMMARY

This chapter briefly discussed the theory related to the cyclostationarity concept. Two computationally efficient cyclostationary processing algorithms (FAM and DFSM) were discussed and their implementation in MATLAB® [4] was described.

The visual feature extraction was explained for some of the modulation types that will be analyzed in the next chapter. The contour bi-frequency plots were chosen due to their greatest contrast with the figure background and the convenient zooming capability of MATLAB® [4] was explored to extract parameters such as: carrier frequency, code rate and code period, BW, number of phases or number of Barker bits present on the modulation and modulation period for the FMCW case. In the next section, the signal matrix shown in Table 1 is analyzed and the theoretical values are compared with the measurements from the SCD plots, according to the tutorial discussed in this chapter.
IV. DESCRIPTION OF LPI SPECTRAL PROPERTIES AND CYCLOSTATIONARY PROCESSING RESULTS

In this chapter we will analyze a set of LPI signals, with and without the addition of White Gaussian Noise, and extract their main characteristics. All signals were generated using the “LPI Generator” code from [5]. A detailed description of all waveforms may be found in [5]. Table 8 shows the signal examples analyzed in this chapter.

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>CARRIER OR HOPPING SEQUENCE (kHz)</th>
<th>BW (Hz)</th>
<th>NPBB/ CPP</th>
<th>NUMBER OF BITS / PHASES AND MOD. PERIOD</th>
<th>MOD. TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1_7_7_1_s.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>7</td>
<td>BPSK</td>
</tr>
<tr>
<td>F_1_7_250_20_s.mat</td>
<td>1</td>
<td>250</td>
<td>X</td>
<td>20</td>
<td>FMCW</td>
</tr>
<tr>
<td>P1_1_7_4_1_s.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
<td>P1</td>
</tr>
<tr>
<td>P2_1_7_16_1_s.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
<td>P2</td>
</tr>
<tr>
<td>P3_1_7_16_1_s.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
<td>P3</td>
</tr>
<tr>
<td>P4_1_7_16_1_s.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
<td>P4</td>
</tr>
<tr>
<td>FR_1_7_16_1_s.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
<td>FRANK</td>
</tr>
<tr>
<td>C_1_15_10_s.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>-</td>
<td>10</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>FSK_PSK_C_1_15_5_1_s.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>1000</td>
<td>1</td>
<td>5</td>
<td>FSK/PSK COSTAS</td>
</tr>
<tr>
<td>FSK_PSK_T_15_128_5_s.mat</td>
<td>-</td>
<td>4200</td>
<td>5</td>
<td>128 Hops</td>
<td>FSK/PSK TARGET</td>
</tr>
</tbody>
</table>

Table 7. List of signal examples analyzed in this thesis.

The signal analysis will consist of a brief theoretical description of the signals, an illustration of the spectral properties using plots of the PSD, and the resulting plots from the Cyclostationary processing algorithms discussed previously. Both time-smoothing and frequency-smoothing methods will be used and the method that presents the best visualization will be chosen for parameter extraction. The features extracted from the signals will be presented in tables comparing the measured results with the given parameters.
A. TEST SIGNALS

1. Description

The Test Signals were chosen to be single carrier signals with no modulation

- 1000Hz Single Carrier with 7000Hz Sampling Frequency;
- 1000Hz and 2000Hz Double Carrier with 7000Hz Sampling Frequency.

These signals give an insight on how the carrier frequency information may be extracted from each plot.

2. Spectral Properties and Results (T_1_7_1_s and T_12_7_2_s)

Figure 41 shows the PSD of both Test Signals.

![PSD plots for both Test signals: a) 1000Hz single carrier and b) 1 and 2000Hz double carrier, no modulation.](image)

Figure 41 PSD plots for both Test signals: a) 1000Hz single carrier and b) 1 and 2000Hz double carrier, no modulation.
The single carrier case is discussed on Chapter III. From Figure 42 and Figure 43 we can see that the SCD plots for the real part of the double carrier signal show the inter-modulation product at the average of both carrier frequencies (1500Hz) and at 500Hz.

![Figure 42](image1.png)
Figure 42 DFSM generated estimated SCD for a Test signal (1000Hz and 2000Hz double carrier).

![Figure 43](image2.png)
Figure 43 Zoomed in DFSM generated estimated SCD for a Test signal (1000 and 2000Hz double carrier).
Table 9 compares the measured and original characteristics.

<table>
<thead>
<tr>
<th>Feature Extraction</th>
<th>Original</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency ((f_c))</td>
<td>1000Hz</td>
<td>1000Hz</td>
</tr>
<tr>
<td></td>
<td>2000Hz</td>
<td>2000Hz</td>
</tr>
<tr>
<td></td>
<td>1500Hz</td>
<td>1500Hz and 500Hz (intermodulation products)</td>
</tr>
<tr>
<td>Sampling Frequency ((f_s))</td>
<td>7000Hz.</td>
<td>given</td>
</tr>
</tbody>
</table>

Table 8. Comparison between measured and original characteristics for the Test signals.

The Frequency-Smoothing technique generated easier to visualize results, and for such simple signals the performance is equivalent to the Time-Smoothing algorithm. A Time-Smoothing generated plot is shown in Chapter III for the first Test Signal (1000Hz). The time-smoothing results for the second test signal, with double carriers, are not shown since they are very similar to the DFSM plots of Figure 42 and Figure 43.

B. BPSK

1. **Description:**

 Binary Phase Shift Keying codes are not considered LPI radar waveforms in the strict sense of the word, but they are here included as a guide or academic tool to facilitate the visualization of the resulting outputs from each algorithm.

 This type of signal consists basically of using Barker Sequences of various lengths to perform a binary phase modulation of the carrier \((0\) and \(\pi\)). The signal is then sampled and the output of the generator is saved as two vectors \(I\) and \(Q\) representing the in phase and quadrature components of the signal. The modulation is performed following the block diagram on Figure 44 [5].
In this work, we are going to analyze a waveform modulated with a Barker Sequence of length 7 bits, at various signal-to-noise ratios. All MATLAB® [4] plots were generated with the “cyclo.m” generated GUI and using a frequency resolution of 16 Hz that influence directly on how precise the measurements of the code rate (f_c) are made. The FAM SCD plots were estimated using $N=2048$ and $M=4$, the DFSM SCD plots were estimated using $N=1024$ and $M=2$.

2. Spectral Properties and Results (B_1_7_7_1_s)

The first signal to be analyzed is a 7-Bit Barker Code phase modulated signal, with carrier frequency at 1000Hz and with $NPBB=1$. No noise is added at this moment and the carrier presents a lower magnitude in the PSD plot meaning that this may be called a “Suppressed Carrier Dual Side Band” (SC-DSB) Modulation. The first signal analyzed has its characteristics defined on Table 10.

<table>
<thead>
<tr>
<th>Name</th>
<th>Carrier Frequency (f_c)</th>
<th>Sampling Frequency (f_s)</th>
<th>Number of Barker Bits (Np)</th>
<th>Number of Carrier Periods per Barker Bit ($NPBB$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1_7_7_1_s</td>
<td>1000 Hz</td>
<td>7000 Hz</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 9. B_1_7_7_1_s signal characteristics.

The following sequence of Figures give an overview of the frequency content (Figure 45) and the Estimated SCD (Figure 46, Figure 47, Figure 48, Figure 49 and Figure 50) of the
signal analyzed. The blue background of the SCD estimation contour plots helps in visually filtering out the noise.

Figure 45 PSD for a Barker signal (1000Hz carrier, 7-bits Barker sequence and 1 NPBB).

Figure 46 Estimated FAM SCD contour plot for a BPSK real signal with 1000Hz carrier, Barker-7 code and 1 NPBB.
Figure 47 Estimated FAM SCD contour plot for a BPSK real signal with 1000Hz carrier, Barker-7 code and 1 NPBB, with estimated carrier of 1000Hz and estimated BW of 1000Hz.

Figure 48 Zoomed-in FAM SCD contour plot for a BPSK signal with 1000Hz carrier, Barker-7 code and 1 NPBB, with estimated f_b of 141 Hz.
Figure 49 Estimated DFSM SCD contour plot for a BPSK signal with 1000Hz carrier, Barker-7 code and 1 NPBB, with estimated BW of 1000Hz.

Figure 50 Zoomed-in estimated DFSM SCD contour plot for a BPSK signal with 1000Hz carrier, Barker-7 code and NPBB = 1, with estimated f_b of 142Hz.
Figures 51 to 55 include the analysis of the same signal with added White Gaussian Noise. At the end of this analysis, a table is included comparing the original and the measured characteristics of each signal.

Figure 51 PSD for a Barker signal (1000Hz carrier, 7-bits Barker sequence, 1 NPBB and 0 dB SNR).

Figure 52 Estimated FAM SCD contour plot for a BPSK signal with 1000Hz carrier, 7-bits Barker code, 1 NPBB and 0 dB SNR, with estimated BW of 1000Hz.
Figure 53 Zoomed-in estimated FAM SCD for BPSK with 1000Hz carrier, Barker-7 code, 1 NPBB, 0 dB SNR, with estimated f_b of 143Hz.

Figure 54 Estimated DFSM SCD for BPSK with 1000Hz carrier, Barker-7 code, 1 NPBB, 0 dB SNR, with estimated BW of 1000Hz.
Figure 55 Zoomed-in estimated FAM SCD for BPSK with 1000Hz carrier, Barker-7 code, 1 \(NPBB \), 0 dB SNR, with estimated \(f_b \) of 144Hz.

The following table shows a comparison between the given and the measured parameters.

<table>
<thead>
<tr>
<th>Feature Extraction</th>
<th>Original</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency ((f_C))</td>
<td>1000 Hz</td>
<td>1000 Hz</td>
</tr>
<tr>
<td>Band Width ((BW))</td>
<td>1000 Hz</td>
<td>997.5 Hz</td>
</tr>
<tr>
<td>Carrier Periods Per Barker Bit ((NPBB))</td>
<td>(NPBB = \frac{f_C}{BW} = 1)</td>
<td>(NPBB = \frac{1000}{997.5} = 1.0025)</td>
</tr>
<tr>
<td>Code Rate ((f_b = \frac{BW}{k}))</td>
<td>(f_b = \frac{1000}{7} = 142.8)</td>
<td>142.75 Hz (average)</td>
</tr>
<tr>
<td>Number of Barker Bits ((N_p))</td>
<td>(k = \frac{BW}{f_b} = 7)</td>
<td>(k = \frac{1000}{142.75} = 7.005)</td>
</tr>
</tbody>
</table>

Table 10. Comparison between measured and original characteristics for this BPSK signal.

The BPSK signals analyzed helped as an example in determining how to make measurements in more complex signals such as FMCW, Polyphase and frequency
hopping signals. Table 11 shows a summary of all measurements for the BPSK modulation. Table 12 and Figure 56 show the detection effectiveness of the cyclostationary processing for all BPSK cases, comparing with the original values.

<table>
<thead>
<tr>
<th>Carrier (Hz)</th>
<th>Bandwidth (Hz)</th>
<th>Bits</th>
<th>Code period (ms)</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>990.5</td>
<td>7</td>
<td>7.06</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>1004.5</td>
<td>7</td>
<td>6.968</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>995.5</td>
<td>11</td>
<td>11.049</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>1045</td>
<td>11</td>
<td>10.526</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>968</td>
<td>11</td>
<td>11.363</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>196</td>
<td>7</td>
<td>35.714</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>192.5</td>
<td>7</td>
<td>36.363</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>196</td>
<td>7</td>
<td>35.714</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>187</td>
<td>11</td>
<td>58.82</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>187</td>
<td>11</td>
<td>58.82</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
</tbody>
</table>

Table 11. Summary of all measurements for the BPSK modulation.

<table>
<thead>
<tr>
<th>BPSK Detection Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Only signal</td>
</tr>
<tr>
<td>0 dB</td>
</tr>
<tr>
<td>(-) 6 dB</td>
</tr>
</tbody>
</table>

Table 12. Detection effectiveness for the BPSK modulation.

Figure 56 Graphic demonstration of detection effectiveness for the BPSK modulation.
C. FMCW

1. Description

The triangular modulation of a Frequency Modulated Continuous Wave (FMCW) is very popular as a LPI application for a Continuous Wave signal. The emitter uses a continuous 100% duty-cycle waveform and therefore, target range and Doppler information can be measured unambiguously while retaining the LPI characteristics. The FMCW signal is usually easier to implement than phase code modulation signals as long as there is not strict demand on linearity over the modulation BW. [5] The triangular modulation consists of two linear frequency modulation sections with positive and negative slopes. With this configuration, the range and Doppler frequency of the detected target can be extracted unambiguously by taking the sum and the difference of the two beat frequencies. These characteristics are showed in Figure 57.

\[
f_d = \frac{2V}{\lambda}
\]

\[
f_{1b} = f_d + \frac{\Delta F}{t_m} t_d
\]

\[
f_{2b} = f_d - \frac{\Delta F}{t_m} t_d
\]

Figure 57 Linear Frequency Modulated Triangular Waveform and Doppler Shifted Signal [5]
The frequency of the transmitted signal may be calculated by

\[
f_i(t) = f_0 - \frac{\Delta F}{2} t + \frac{\Delta F}{t_m} t
\]

(4.3.1)

for \(0 < t < t_m\) and zero elsewhere. Here \(f_0\) stands for RF carrier, \(\Delta F\) stands for transmitted modulation BW, and \(t_m\) stands for modulation period. The rate of the frequency change or chirp rate \(F\) is [5]

\[
F = \frac{\Delta F}{t_m}
\]

(4.3.2)

The following section shows that we can measure these characteristics of an FMCW signal in the bi-frequency plane generated by the cyclostationary algorithms implemented.

2. Spectral Properties and Results (F_1_7_250_20_s)

This FMCW signal to be analyzed has a modulation period of 20 ms, with carrier frequency at 1000Hz and modulation BW of 250 Hz. The signal has its characteristics defined on Table 14:

<table>
<thead>
<tr>
<th>Name</th>
<th>Carrier Frequency ((f_c))</th>
<th>Sampling Frequency ((f_s))</th>
<th>Modulation BW ((\Delta F))</th>
<th>Modulation Period ((t_m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1_7_250_20_s</td>
<td>1000 Hz</td>
<td>7000 Hz</td>
<td>250 Hz</td>
<td>20 ms</td>
</tr>
</tbody>
</table>

Table 13. F_1_7_250_20_s signal characteristics.

The PSD is shown in Figure 58 and shows the frequency content of the first FMCW signal. The following sequence of Figures gives an overview of the frequency content (Figure 58), time X frequency plot (Figure 59), and the Estimated SCD (Figure 60, Figure 61, Figure 62 and Figure 63, all with \(N = 2048\), frequency resolution of 16 Hz and \(M = 4\)) of the signal analyzed.
Figure 58 PSD for an FMCW signal (1000Hz carrier, 250Hz modulation BW and 20ms modulation period, only signal).

Figure 59 Time X Frequency plot for an FMCW signal (20ms triangular modulation up-ramp period).
Figure 60 Estimated FAM SCD contour plot for an FMCW signal with 1000Hz carrier and estimated modulation BW of 230Hz.

Figure 61 Zoomed-in estimated FAM SCD contour plot for an FMCW signal with an estimated “delta” value of 25Hz.
Figure 62 Estimated DFSM SCD contour plot for an FMCW signal with 1000Hz carrier and estimated modulation BW of 235Hz.

Figure 63 Zoomed-in estimated DFSM SCD contour plot for an FMCW signal with an estimated “delta” value of 21Hz.
Figures 64 to 69 include the analysis of the same signal with added White Gaussian Noise. At the end of this analysis, a table is included comparing the original and the measured characteristics of each signal.

Figure 64 PSD for an FMCW signal (1000Hz carrier, 250 Hz modulation BW and 20ms modulation period, 0dB SNR).

Figure 65 Estimated FAM SCD contour plot for an FMCW signal with 1000Hz carrier, 0 dB SNR and estimated modulation BW of 200 Hz.
Figure 66 Estimated FAM SCD contour plot for an FMCW signal with an estimated “delta” value of 26Hz.

Figure 67 PSD for an FMCW signal (1000Hz carrier, 250 Hz modulation BW and 20ms modulation period, -6dB SNR).
Figure 68 Estimated FAM SCD contour plot for an FMCW signal with 1000Hz carrier, -6 dB SNR and estimated modulation BW of 200 Hz.

Figure 69 Estimated FAM SCD contour plot for an FMCW signal with an estimated “delta” value of 27Hz.
Table 15 shows that the main parameters of the FMCW modulation may be easily measured in the bi-frequency plane, using both time and frequency-smoothing methods.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Original</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency ((f_c))</td>
<td>1000 Hz</td>
<td>992.83 Hz (average)</td>
</tr>
<tr>
<td>Modulation BW ((\Delta F))</td>
<td>250 Hz</td>
<td>218.83 Hz</td>
</tr>
<tr>
<td>“Delta”</td>
<td>25 Hz</td>
<td>24.75 Hz (average)</td>
</tr>
</tbody>
</table>

\[t_m = \frac{1}{2} \cdot \text{delta} = 20\text{ms} \]
\[t_m = \frac{1}{2} \cdot 24.75 = 0.02020s = 20.20\text{ms} \]

Table 14. Comparison between measured and original characteristics for an FMCW signal.

Table 16 shows a summary of all measurements for the FMCW modulation. Table 17 and graphics on Figure 70 show the detection effectiveness of the cyclostationary processing for the FMCW case, comparing with the original values.

<table>
<thead>
<tr>
<th>Carrier (Hz)</th>
<th>Modulation BW (Hz)</th>
<th>Modulation Period (ms)</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>992.5</td>
<td>232.5</td>
<td>21.74</td>
<td>Only signal</td>
</tr>
<tr>
<td>993</td>
<td>208</td>
<td>19.23</td>
<td>0</td>
</tr>
<tr>
<td>993</td>
<td>216</td>
<td>18.52</td>
<td>-6</td>
</tr>
<tr>
<td>987.5</td>
<td>221</td>
<td>29.42</td>
<td>Only signal</td>
</tr>
<tr>
<td>987.5</td>
<td>234</td>
<td>27.77</td>
<td>0</td>
</tr>
<tr>
<td>985</td>
<td>218.72</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>970</td>
<td>470</td>
<td>20.83</td>
<td>Only signal</td>
</tr>
<tr>
<td>970</td>
<td>460</td>
<td>17.85</td>
<td>0</td>
</tr>
<tr>
<td>970</td>
<td>480</td>
<td>17.86</td>
<td>-6</td>
</tr>
<tr>
<td>978</td>
<td>470</td>
<td>33.33</td>
<td>Only signal</td>
</tr>
<tr>
<td>978</td>
<td>450</td>
<td>35.71</td>
<td>0</td>
</tr>
<tr>
<td>970</td>
<td>480</td>
<td>0</td>
<td>-6</td>
</tr>
</tbody>
</table>

Table 15. Summary of all measurements for the FMCW modulation.

<table>
<thead>
<tr>
<th>FMCW Detection Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only signal</td>
</tr>
<tr>
<td>98%</td>
</tr>
<tr>
<td>98%</td>
</tr>
<tr>
<td>98%</td>
</tr>
</tbody>
</table>

Table 16. Detection effectiveness for the FMCW modulation.
D. P1

1. Description

The first polyphase code to be analyzed is called “P1” and its phase modulation is defined by the equation:

\[\phi_{i,j} = -\frac{\pi}{Np} [Np - (2j - 1)][(j - 1)Np + (i - 1)] \quad (4.4.1) \]

Where \(i \) is the number of the samples in a given frequency and \(j \) is the index of the frequency, the phase of the \(ith \) sample of the \(jth \) frequency is given by equation (4.4.1), and \(i = 1,2,\ldots,Np \) and \(j = 1,2,\ldots,Np \). Therefore, there’s a total of \(Np^2 \) phases in this modulation. Figure 71 reveals the quadratic nature of the phase modulation in P1, given by (4.4.1).
2. Spectral Properties and Results (P1_1_7_16_1_s)

This P1 signal has the following given characteristics:

<table>
<thead>
<tr>
<th>Name</th>
<th>Carrier Frequency (f_c)</th>
<th>Sampling Frequency (f_s)</th>
<th>Number of Phases (Np^2)</th>
<th>Number of Cycles per Phase (cpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1_1_7_16_1_s</td>
<td>1000 Hz</td>
<td>7000 Hz</td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 17. P1_1_7_16_1_s signal characteristics.

Based on these properties, we expect a BW of 1000Hz, and yields from (4.4.1) that the total number of phases is equal to Np^2 and in this case, the 16 equally spaced regions inside the BW are going to be separated by $f_s = \frac{BW}{(Np)^2} = \frac{1000}{16} = 62.5\text{Hz}$ in the cycle frequency axis. The PSD is shown in Figure 72 and shows the frequency content of this P1 signal. The following sequence of Figures give an overview of the frequency content (Figure 72) and the Estimated SCD (Figure 73 and Figure 74, with $N = 1024$, frequency resolution of 16 Hz and $M = 2$) of the signal analyzed.
Figure 72 PSD for a P1 signal (1000Hz carrier, 16 phases and 1 cpp, only signal).

Figure 73 Estimated DFSM SCD contour plot for a P1 signal with 900Hz carrier and estimated BW of 1000Hz.
Figure 74 Zoomed-in estimated DFSM SCD contour plot for a P1 signal with an estimated code rate \(f_0 \) of 62Hz.

Figures 75 to 79 include the analysis of the same signal with added White Gaussian Noise. At the end of this analysis, a table is included comparing the original and the measured characteristics of each signal.

Figure 75 PSD for a P1 signal (1000Hz carrier, 16 phases and 1 cpp, 0dB SNR).
Figure 76 Estimated FAM SCD contour plot for a P1 signal with 900Hz carrier and estimated BW of 1000Hz, with 0dB SNR.

Figure 77 Zoomed-in estimated FAM SCD contour plot for a P1 signal with an estimated code rate (f_b) of 65Hz, with 0dB SNR.
Figure 78 PSD for a P1 signal (1000Hz carrier, 16 phases and 1 cpp, -6dB SNR).

Figure 79 Estimated FAM SCD contour plot for a P1 signal with 850Hz carrier and estimated BW of 1000Hz, with -6dB SNR.
The FAM measurements could be performed until an SNR of –6dB, except for the \(f_b \) value. All results from the DFSM processing were similar.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Original</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency ((f_C))</td>
<td>1000 Hz</td>
<td>876.67 Hz (average)</td>
</tr>
<tr>
<td>Bandwidth ((BW))</td>
<td>1000 Hz</td>
<td>1000 Hz</td>
</tr>
<tr>
<td>Code Rate ((f_b))</td>
<td>62.5 Hz</td>
<td>63.5 Hz (average)</td>
</tr>
<tr>
<td>(\left(Np \right)^2 = \frac{BW}{f_b} = \frac{1000}{62.5} = 16)</td>
<td>(\left(Np \right)^2 = \frac{BW}{f_b} = \frac{1000}{63.5} = 15.75)</td>
<td></td>
</tr>
<tr>
<td>Number of Phases ((Np^2))</td>
<td>(t_p = \frac{1}{f_b} = 0.016s)</td>
<td>(t_p = \frac{1}{f_b} = \frac{1}{63.5} = 0.01575s)</td>
</tr>
</tbody>
</table>

Table 18. Comparison between measured and original characteristics for a P1 signal. Both time and frequency-smoothing processing techniques are very well suited for analyzing high BW and short code period signals. Table 20 shows a summary of all measurements for the P1 modulation.

<table>
<thead>
<tr>
<th>Carrier (Hz)</th>
<th>Bandwidth (Hz)</th>
<th>Number of Phases</th>
<th>Code period (ms)</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>890</td>
<td>1000</td>
<td>4</td>
<td>16.13</td>
<td>Only signal</td>
</tr>
<tr>
<td>870</td>
<td>1000</td>
<td>4</td>
<td>15.38</td>
<td>0</td>
</tr>
<tr>
<td>870</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>986</td>
<td>224</td>
<td>4</td>
<td>71.43</td>
<td>Only signal</td>
</tr>
<tr>
<td>986</td>
<td>210</td>
<td>4</td>
<td>71.43</td>
<td>0</td>
</tr>
<tr>
<td>986</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>986</td>
<td>1088</td>
<td>8</td>
<td>58.82</td>
<td>Only signal</td>
</tr>
<tr>
<td>975</td>
<td>990</td>
<td>8</td>
<td>66.67</td>
<td>0</td>
</tr>
<tr>
<td>990</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>8</td>
<td>312.5</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>8</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
</tbody>
</table>

Table 19. Summary of all measurements for the P1 modulation.

Table 21 and graphics on Figure 80 show the detection effectiveness of the cyclostationary processing for the P1 case, comparing with the original values for all the P1 signals analyzed.
P1 Detection Effectiveness

<table>
<thead>
<tr>
<th>Carrier</th>
<th>Bandwidth</th>
<th>Code period</th>
<th>Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only signal</td>
<td>97%</td>
<td>105%</td>
<td>95%</td>
</tr>
<tr>
<td>0 dB</td>
<td>96%</td>
<td>101%</td>
<td>92%</td>
</tr>
<tr>
<td>(-) 6 dB</td>
<td>71%</td>
<td>50%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 20. Detection effectiveness for the P1 modulation.

P1 code effectiveness on detection

Figure 80 Graphic demonstration of detection effectiveness for the P1 modulation.

E. P2

1. Description

The P2 code has almost the same phase increments as the P1 code, except that the starting phase is different. The P2 code is valid for N_p even, and each group of the code is symmetric about phase of index 0. These phases may be calculated by the equation

$$\phi_{i,j} = \left\{ \frac{\pi}{2} \left[\frac{(N_p - 1)}{N_p} \right. - \left. \left(\frac{\pi}{N_p} \right)(i-1) \right] \right\} [N_p + 1 - 2j]$$

(4.5.1)

Figure 81 reveals the symmetric nature of the P2 code, for an N_p^2 of 64 phases.
P2 symmetric phase relationship between the index in the matrix and its phase shift.

2. Spectral Properties and Results (P2_1_7_16_1_s)

This P2 signal has the following given properties:

<table>
<thead>
<tr>
<th>Name</th>
<th>Carrier Frequency</th>
<th>Sampling Frequency</th>
<th>Number of Phases</th>
<th>Number of Cycles per Phase (cpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2_1_7_16_1_s</td>
<td>1000 Hz</td>
<td>7000 Hz</td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 21. P2_1_7_16_1_s signal characteristics.

From these properties yields a BW of 1000Hz, and from (4.5.1) yields that the total number of phases is equal to \(Np^2 \), therefore 16 equally spaced regions inside the BW are going to be separated by \(f_b = \frac{BW}{(Np)^2} = \frac{1000}{16} = 62.5 \text{Hz} \) in the cycle frequency axis, which is related to the code period. The PSD is shown in Figure 82 and shows the frequency content of this P2 signal. The following sequence of Figures give an overview of the frequency content (Figure 82) and the Estimated SCD (Figure 83 and Figure 84, with \(N = 1024 \), frequency resolution of 16 Hz and \(M = 2 \)) of the signal analyzed.
Figure 82 PSD for a P2 signal (1000Hz carrier, 16 phases and 1 cpp, only signal).

Figure 83 Estimated FAM SCD contour plot for a P2 signal with 1000Hz carrier and estimated BW of 950 Hz.
Figure 84 Zoomed-in estimated FAM SCD contour plot for a P2 signal with an estimated code rate \((f_b) \) of 65 Hz.

Figures 85 to 87 include the analysis of the same signal with added White Gaussian Noise. At the end of this analysis, a table is included comparing the original and the measured characteristics of each signal.

Figure 85 PSD for a P2 signal (1000Hz carrier, 16 phases and 1 cpp, 0dB SNR).
Figure 86 Estimated DSFM SCD contour plot for a P2 signal with 1000Hz carrier and estimated BW of 850Hz, with 0dB SNR.

Figure 87 Zoomed-in estimated DFSM SCD contour plot for a P2 signal with an estimated code rate (f_b) of 65Hz, with 0dB SNR.
The results are summarized in Table 23.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Original</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency ((f_C))</td>
<td>1000 Hz</td>
<td>1015 Hz (average)</td>
</tr>
<tr>
<td>Bandwidth ((BW))</td>
<td>1000 Hz</td>
<td>900 Hz (average)</td>
</tr>
<tr>
<td>Code Rate ((f_b))</td>
<td>62.5 Hz</td>
<td>65 Hz (average)</td>
</tr>
<tr>
<td>Number of Phases ((N_p^2))</td>
<td>((N_p)^2 = BW/f_b = 1000/62.5 = 16)</td>
<td>((N_p)^2 = BW/f_b = 900/65 = 13.84)</td>
</tr>
<tr>
<td>Code Period ((t_p))</td>
<td>(t_p = 1/f_b = 0.016s)</td>
<td>(t_p = 1/f_b = 1/65 = 0.01538s)</td>
</tr>
</tbody>
</table>

Table 22. Comparison between measured and original characteristics for a P2 signal.

Table 24 shows a summary of all measurements for the P2 modulation.

<table>
<thead>
<tr>
<th>Carrier (Hz)</th>
<th>Bandwidth (Hz)</th>
<th>Number of Phases</th>
<th>Code period (ms)</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>975</td>
<td>3.873</td>
<td>15.38</td>
<td>Only signal</td>
</tr>
<tr>
<td>1030</td>
<td>870</td>
<td>3.66</td>
<td>15.38</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>167.5</td>
<td>3.52</td>
<td>74.07</td>
<td>Only signal</td>
</tr>
<tr>
<td>1007</td>
<td>180</td>
<td>3.59</td>
<td>71.43</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>962</td>
<td>8.28</td>
<td>71.43</td>
<td>Only signal</td>
</tr>
<tr>
<td>1100</td>
<td>1100</td>
<td>4.5</td>
<td>18.2</td>
<td>0</td>
</tr>
<tr>
<td>1050</td>
<td>1200</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>975</td>
<td>195</td>
<td>0</td>
<td>0</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>175</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>970</td>
<td>240</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
</tbody>
</table>

Table 23. Summary of all measurements for the P2 modulation.

Table 25 and graphics on Figure 88 show the detection effectiveness of the cyclostationary processing for the P2 case, comparing with the original values.

<table>
<thead>
<tr>
<th>P2 Detection Effectiveness</th>
<th>Carrier</th>
<th>Bandwidth</th>
<th>Code period</th>
<th>Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only signal</td>
<td>99%</td>
<td>94%</td>
<td>75%</td>
<td>72%</td>
</tr>
<tr>
<td>0 dB</td>
<td>103%</td>
<td>94%</td>
<td>53%</td>
<td>59%</td>
</tr>
<tr>
<td>(-) 6 dB</td>
<td>76%</td>
<td>79%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 24. Detection effectiveness for the P2 modulation.
P2 code effectiveness on detection

![Graph demonstrating P2 code effectiveness on detection](image)

Figure 88 Graphic demonstration of detection effectiveness for the P2 modulation.

F. P3

1. Description

The phase changes in P3 (Figure 89) occur according to the following equation:

\[
\phi_i^{(p3)} = 2\pi \int_0^{(i-1)\kappa_c} [(f_0 + kt) - f_0] dt = \pi k(i-1)^2 t_c^2
\]

(4.6.1)

where \(i = 1, 2, \ldots, Np\). Substituting \(k = B/T\) and \(t_c = 1/B\), the equation can be written as

\[
\phi_i^{(p3)} = \pi(i-1)^2 \frac{BT}{Np}
\]

(4.6.2)

where \(T\) stands for pulse length, \(f\) stands for frequency \((f = f_0 + kt)\), \(k\) is a constant, the \(BW\) is approximately \(B = kT\), \(t_c\) stands for compressed pulse length \((t_c = 1/B)\) and the provided pulse compression ratio of \(pc = T/t_c = BT\) is provided by the waveform.
2. Spectral Properties and Results (P3_1_7_16_1_s)

This P3 signal has the following properties:

<table>
<thead>
<tr>
<th>Name</th>
<th>Carrier Frequency ((f_C))</th>
<th>Sampling Frequency ((f_S))</th>
<th>Number of Phases ((N_p))</th>
<th>Number of Cycles per Phase ((cpp))</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3_1_7_16_1_s</td>
<td>1000 Hz</td>
<td>7000 Hz</td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 25. P3_1_7_16_1_s Signal characteristics.

The expected BW is 1000 Hz, and the total number of phases is equal to 16, therefore 16 equally spaced regions inside the BW are going to be separated by \(f_b = \frac{BW}{N_p} = \frac{1000}{16} = 62.5 \text{Hz} \) in the cycle frequency axis. The PSD is shown in Figure 90 and shows the frequency content of this P3 signal. The following sequence of Figures give an overview of the frequency content (Figure 90) and the Estimated SCD (Figure 91,
Figure 92, Figure 93 and Figure 94, with $N = 1024$, frequency resolution of 16 Hz and $M = 2$) of the signal analyzed.

Figure 90 PSD for a P3 signal (1000Hz carrier, 16 phases and 1 cpp, only signal).

Figure 91 Estimated FAM SCD contour plot for a P3 signal with 1100Hz carrier and estimated BW of 1000Hz.
Figure 92 Zoomed-in estimated FAM SCD contour plot for a P3 signal with an estimated f_b of 62 Hz.

Figure 93 Estimated DFSM SCD contour plot for a P3 signal with 1150Hz carrier and estimated BW of 1000Hz.
Figures 95 to 99 include the analysis of the same signal with added White Gaussian Noise. At the end of this analysis, a table is included comparing the original and the measured characteristics of each signal.

Figure 95 PSD for a P3 signal (1000Hz carrier, 16 phases, 1 cpp, and 0dB SNR).
Figure 96 Estimated FAM SCD contour plot for a P3 signal with 1050Hz carrier and estimated BW of 1000Hz, with 0dB SNR.

Figure 97 Zoomed-in estimated FAM SCD contour plot for a P3 signal with an estimated f_b of 56 Hz and 0dB SNR.
Figure 98 Estimated DFSM SCD contour plot for a P3 signal with 1050Hz carrier and estimated BW of 1000Hz, with 0dB SNR.

Figure 99 Zoomed-in estimated DFSM SCD contour plot for a P3 signal with an estimated f_b of 68 Hz and 0dB SNR.
The given and measured features are summarized in Table 27.

<table>
<thead>
<tr>
<th>Feature Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>Carrier Frequency ((f_c))</td>
</tr>
<tr>
<td>Bandwidth ((BW))</td>
</tr>
<tr>
<td>Code Rate ((f_b))</td>
</tr>
<tr>
<td>Number of Phases ((N_p))</td>
</tr>
<tr>
<td>Code Period ((t_p))</td>
</tr>
</tbody>
</table>

Table 26. Comparison between measured and original characteristics for a P3 signal.

Table 28 shows a summary of all measurements for the P3 modulation.

<table>
<thead>
<tr>
<th>Carrier (Hz)</th>
<th>Bandwidth (Hz)</th>
<th>Number of Phases</th>
<th>Code period (ms)</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>1000</td>
<td>16.01</td>
<td>16</td>
<td>Only signal</td>
</tr>
<tr>
<td>1050</td>
<td>1000</td>
<td>16.03</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>14.71</td>
<td>71.43</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>14.71</td>
<td>71.43</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>220</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1100</td>
<td>1000</td>
<td>71.43</td>
<td>71.43</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>71.43</td>
<td>71.43</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>7.143</td>
<td>35.71</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>7.143</td>
<td>35.71</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
</tbody>
</table>

Table 27. Summary of all measurements for the P3 modulation.

Table 29 and graphics on Figure 100 show the detection effectiveness of the cyclostationary processing for the P3 case, comparing with the original values.

<table>
<thead>
<tr>
<th>P3 Detection Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only signal</td>
</tr>
<tr>
<td>105%</td>
</tr>
<tr>
<td>0 dB</td>
</tr>
<tr>
<td>(-) 6 dB</td>
</tr>
</tbody>
</table>

Table 28. Detection effectiveness for the P3 modulation.
P3 code effectiveness on detection

![Graph showing P3 code effectiveness](image)

Figure 100 Graphic demonstration of detection effectiveness for the P3 modulation.

G. P4

1. Description

The P4 code is derived from the same waveform as the P3 code. However, in this case, the LO frequency is set equal to \(f_o + kT/2 \) in the I-Q detectors. With this frequency, the phases of successive samples are defined by the equations: [5]

\[
\phi_i^{(P4)} = 2\pi \int_0^{(i-1)T_c} [(f_0 + kt) - f_0 + kT/2] dt = 2\pi \int_0^{(i-1)T_c} k(t - T/2) dt \tag{4.7.1}
\]

\[
\phi_i^{(P4)} = nk(i-1)^2 t_c^2 - nkT(i-1)t_c = \left[\frac{n(i-1)^2}{Np} \right] - \pi(i-1) \tag{4.7.2}
\]

Figure 101 shows the relationship between the index in the matrix and its subsequent phase for a P4-coded signal with \(Np = 64 \) (phases).
2. Spectral Properties and Results (P4_1_7_16_1_s)

The P4 signal has the following characteristics:

<table>
<thead>
<tr>
<th>Name</th>
<th>Carrier Frequency (f_c)</th>
<th>Sampling Frequency (f_s)</th>
<th>Number of Phases (N_p)</th>
<th>Number of Cycles per Phase (cpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4_1_7_16_1_s</td>
<td>1000 Hz</td>
<td>7000 Hz</td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 29. P4_1_7_16_1_s signal characteristics.

The expected BW is 1000 Hz, and the total number of phases is equal to 16. There will be 16 equally spaced regions inside the BW separated by $f_s = \frac{BW}{N_p} = \frac{1000}{16} = 62.5 Hz$ in the cycle frequency axis. The PSD is shown in Figure 102 and shows the frequency content of this P4 signal. The following sequence of Figures give an overview of the frequency content (Figure 102) and the Estimated SCD (Figure 103, Figure 104, Figure
105, and Figure 106 with $N = 1024$, frequency resolution of 16 Hz and $M = 2$) of the signal analyzed.

Figure 102 PSD for a P4 signal (1000Hz carrier, 16 phases and 1 cpp, only signal).

Figure 103 Estimated FAM SCD contour plot for a P4 signal with 1100Hz carrier and estimated BW of 1000 Hz.
Figure 104 Zoomed-in estimated FAM SCD contour plot for a P4 signal with an estimated f_s of 66 Hz.

Figure 105 Estimated DFSM SCD contour plot for a P4 signal with 1100Hz carrier and estimated BW of 1000 Hz.
Figure 106 Zoomed-in estimated FAM SCD contour plot for a P4 signal with an estimated f_b of 62 Hz.

Figures 107 to 109 include the analysis of the same signal with added White Gaussian Noise. At the end of this analysis, a table is included comparing the original and the measured characteristics of each signal.

Figure 107 PSD for a P4 signal (1000Hz carrier, 16 phases, 1 cpp, and 0dB SNR).
Figure 108 Estimated FAM SCD contour plot for a P4 signal with 1100Hz carrier and estimated BW of 1000 Hz, with 0dB SNR.

Figure 109 Zoomed-in estimated FAM SCD contour plot for a P4 signal with an estimated f_b of 67 Hz, with 0dB SNR.
The given and measured features are summarized in the table below.

<table>
<thead>
<tr>
<th>Feature Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>Carrier Frequency</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>Code Rate</td>
</tr>
<tr>
<td>Number of Phases</td>
</tr>
<tr>
<td>Code Period</td>
</tr>
</tbody>
</table>

Table 30. Comparison between measured and original characteristics for a P4 signal.

Table 32 shows a summary of all measurements for the P4 modulation.

<table>
<thead>
<tr>
<th>Carrier (Hz)</th>
<th>Bandwidth (Hz)</th>
<th>Number of Phases</th>
<th>Code period (ms)</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>1000</td>
<td>15.625</td>
<td>16</td>
<td>Only signal</td>
</tr>
<tr>
<td>1100</td>
<td>1000</td>
<td>14.93</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>700</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>14.29</td>
<td>71.43</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>14.29</td>
<td>71.43</td>
<td>0</td>
</tr>
<tr>
<td>960</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>71.43</td>
<td>71.43</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>71.43</td>
<td>71.43</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1100</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>160</td>
<td>22.86</td>
<td>142.86</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>170</td>
<td>12.59</td>
<td>74.1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
</tbody>
</table>

Table 31. Summary of all measurements for the P4 modulation.

Table 33 and graphics on Figure 110 show the detection effectiveness of the cyclostationary processing for the P4 case, comparing with the original values.

<table>
<thead>
<tr>
<th>P4 Detection Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier</td>
</tr>
<tr>
<td>Only signal</td>
</tr>
<tr>
<td>0 dB</td>
</tr>
<tr>
<td>(-) 6 dB</td>
</tr>
</tbody>
</table>

Table 32. Detection effectiveness for the P4 modulation.
P4 code effectiveness on detection

![Graph showing P4 code effectiveness on detection]

Figure 110 Graphic demonstration of detection effectiveness for the P4 modulation.

H. FRANK

1. Description

Frank codes belong to the family of polyphase codes, Chirp codes and Barker codes, and have been successfully used in implementing Low probability of Intercept (LPI) radar signals. [5]

A Frank-coded waveform has a length of \(Np^2 \) and basically consists of a constant amplitude signal whose carrier frequency is modulated by the phases of the Frank code given by the following equation:

\[
\phi_{i,j} = \frac{2\pi}{Np} (i-1)(j-1)
\]

(4.8.1)

where \(i = \) number of samples \((i = 1, 2, \ldots Np)\) and \(j = \) number of frequencies \((j = 1, 2, \ldots Np)\). Figure 111 clearly displays how the phases change in the Frank modulation.
Figure 111 Frank modulation phase changes $Np^2=16$.

2. Spectral Properties and Results (FR_1_7_16_1_s)

This Frank signal has the following characteristics:

<table>
<thead>
<tr>
<th>Name</th>
<th>Carrier Frequency (f_c)</th>
<th>Sampling Frequency (f_s)</th>
<th>Number of Phases (Np^2)</th>
<th>Number of Cycles per Phase (cpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR_1_7_16_1_s</td>
<td>1000 Hz</td>
<td>7000 Hz</td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 33. FR_1_7_16_1_s signal characteristics.

The expected BW is 1000 Hz, and the total number of phases is equal to 16. There will be sixteen equally spaced regions inside the BW range separated by the distance $f_b = \frac{BW}{(Np^2)} = \frac{1000}{16} = 62.5 Hz$ in the cycle frequency axis. The PSD is shown in Figure 112 and shows the frequency content of This Frank signal. The following sequence of Figures give an overview of the frequency content (Figure 112) and the Estimated SCD (Figure 113 and Figure 114, with $N = 1024$, frequency resolution of 16 Hz and $M = 2$) of the signal analyzed.

97
Figure 112 PSD for a Frank signal (1000Hz carrier, 16 phases and 1 cpp, only signal).

Figure 113 Estimated DFSM SCD contour plot for a Frank signal with 1150Hz carrier and estimated BW of 1000 Hz.
Figure 114 Zoomed-in estimated DFSM SCD contour plot for a Frank signal with an estimated f_b of 61 Hz.

Figures 115 to 120 include the analysis of the same signal with added White Gaussian Noise. At the end of this analysis, a table is included comparing the original and the measured characteristics of each signal.

Figure 115 PSD for a Frank signal (1000Hz carrier, 16 phases, 1 cpp, and 0dB SNR).
Figure 116 Estimated FAM SCD contour plot for a Frank signal with 1000Hz carrier and estimated BW of 1000 Hz, with 0dB SNR.

Figure 117 Zoomed-in estimated FAM SCD contour plot for a Frank signal with an estimated f_b of 63 Hz and 0dB SNR.
Figure 118 PSD for a Frank signal (1000Hz carrier, 16 phases, 1 cpp, and -6dB SNR).

Figure 119 Estimated FAM SCD contour plot for a Frank signal with 1100Hz carrier and estimated BW of 1000 Hz, with -6dB SNR.
Figure 120 Zoomed-in estimated FAM SCD contour plot for a Frank signal with an estimated f_b of 65 Hz, and –6dB SNR.

The given and measured features are summarized in Table 35.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Original</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency (f_c)</td>
<td>1000 Hz</td>
<td>1083.3 Hz (average)</td>
</tr>
<tr>
<td>Bandwidth (BW)</td>
<td>1000 Hz</td>
<td>1000 Hz</td>
</tr>
<tr>
<td>Code Rate (f_b)</td>
<td>62.5 Hz</td>
<td>63 Hz (average)</td>
</tr>
<tr>
<td>Number of Phases (Np^2)</td>
<td>$Np^2 = \frac{BW}{f_b} = \frac{1000}{62.5} = 16$</td>
<td>$Np^2 = \frac{BW}{f_b} = \frac{1000}{63} = 15.87$</td>
</tr>
<tr>
<td>Code Period (t_p)</td>
<td>$t_p = \frac{1}{f_b} = 0.016s$</td>
<td>$t_p = \frac{1}{63} = 0.01587s$</td>
</tr>
</tbody>
</table>

Table 34. Comparison between measured and original characteristics for a Frank signal.
Table 36 shows a summary of all measurements for the Frank modulation.

<table>
<thead>
<tr>
<th>Carrier (Hz)</th>
<th>Bandwidth (Hz)</th>
<th>Number of Phases</th>
<th>Code period (ms)</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1150</td>
<td>1000</td>
<td>4.05</td>
<td>16.4</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>3.98</td>
<td>15.87</td>
<td>0</td>
</tr>
<tr>
<td>1100</td>
<td>1000</td>
<td>3.92</td>
<td>15.38</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>3.65</td>
<td>66.67</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>3.65</td>
<td>66.67</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>210</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1100</td>
<td>1000</td>
<td>7.45</td>
<td>55.55</td>
<td>Only signal</td>
</tr>
<tr>
<td>1100</td>
<td>1000</td>
<td>8.45</td>
<td>71.43</td>
<td>0</td>
</tr>
<tr>
<td>1100</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>4.71</td>
<td>111.11</td>
<td>Only signal</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>3.92</td>
<td>76.92</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
</tbody>
</table>

Table 35. Summary of all measurements for the Frank modulation.

The following table and graphics on Figure 121 show the detection effectiveness of the cyclostationary processing for the Frank case, comparing with the original values.

<table>
<thead>
<tr>
<th>Frank Detection Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only signal</td>
</tr>
<tr>
<td>Carrier</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Only signal</td>
</tr>
<tr>
<td>0 dB</td>
</tr>
<tr>
<td>(-) 6 dB</td>
</tr>
</tbody>
</table>

Table 36. Detection effectiveness for the Frank modulation.

Frank code effectiveness on detection

![Figure 121](image-url)
Graphic demonstration of detection effectiveness for the Frank modulation.
I. COSTAS CODES

1. Description

We briefly discussed the Costas modulation on Chapter II. If we don’t phase modulate the signals discussed, we get a pure Costas FH signal. The FH signal consists of one or more frequencies being chosen from a set \{f_1, f_2, \ldots f_m\} of available frequencies, for transmission at each of a set \{t_1, t_2, \ldots t_n\} of consecutives time intervals. For modeling purposes, it is reasonable to consider the situation in which \(m=n\), and a different one of \(n\) equally spaced frequencies \{f_1, f_2, \ldots f_n\} is transmitted during each of the \(n\) equal duration time intervals \{t_1, t_2, \ldots t_n\}. Such a signal is represented by a \(n \times n\) permutation matrix \(A\), where the \(n\) rows correspond to the \(n\) frequencies, the \(n\) columns correspond to the \(n\) intervals, and the entry \(a_{ij} = 1\) means transmission and 0 otherwise. [5] Any frequency sequence chosen from a Costas matrix will generate a Costas Frequency Hopping sequence with the spectral characteristics discussed in [5]. In order to facilitate the analysis of these signals, the complex waveform was analyzed and this will result in a less cluttered plot, for this type of signal.

2. Spectral Properties and Results (C_1_15_10_s)

The signal characteristics are defined on Table 38.

<table>
<thead>
<tr>
<th>Name</th>
<th>Frequency Sequence (kHz)</th>
<th>Sampling Frequency (fS)</th>
<th>Number of Cycles per Frequency (cpf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1_15_10_s</td>
<td>4 7 1 6 5 2 3</td>
<td>15000 Hz</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 37. C_1_15_10_s signal characteristics.

The expected BW is 6000Hz (from 1000Hz to 7000Hz), and the total number of frequencies is equal to 7. The following Figures give an overview of the frequency content of the signal (Figure 122) and the Estimated SCD (Figure 123, Figure 124, Figure 125, Figure 126 and Figure 127, with \(N = 1024\), frequency resolution of 16 Hz and \(M = 2\)) of the signal analyzed. Note on Figure 123 that the frequency components are all along
the $\gamma = 0$ axis (vertical or frequency axis) while the intermodulation products are located symmetrically over the bi-frequency plane, outside the vertical axis.

Figure 122 PSD for a Costas signal (1, 2, 3, 4, 5, 6 and 7 kHz carriers, 10 cpf, only signal).

Figure 123 Estimated FAM SCD contour plot for a complex Costas signal (1, 2, 3, 4, 5, 6 and 7000Hz carriers over $\gamma = 0$ axis, $cpf=10$, only signal), with intermodulation products.
Figures 124 to 127 include the analysis of the same signal with added White Gaussian Noise. At the end of this analysis, a table is included comparing the original and the measured characteristics of each signal.

Figure 124 PSD for a Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, 10 cpf and 0dB SNR).

Figure 125 Estimated FAM SCD contour plot for a complex Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers over $\gamma = 0$ axis, 10 cpf, 0dB SNR), with intermodulation products.
Figure 126 PSD for a Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, 10 cpf and SNR of -6dB).

Figure 127 Estimated FAM SCD contour plot for a complex Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers over $\gamma = 0$ axis, 10 cpf, -6dB SNR), with intermodulation products.
The order of the frequencies can’t be measured in this kind of plot since we don’t have a “time x frequency” type of output, but the frequency content is easily determined.

<table>
<thead>
<tr>
<th>Feature Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>Frequency Components</td>
</tr>
<tr>
<td>BW (BW)</td>
</tr>
</tbody>
</table>

Table 38. Comparison between measured and original characteristics for a Costas signal.

The following table shows a summary of all measurements for the Costas modulation.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Time in each freq</th>
<th>Code Period</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 7 1 6 5 2 3</td>
<td>0</td>
<td>0</td>
<td>Only signal</td>
</tr>
<tr>
<td>4 7 1 6 5 2 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 7 1 6 5 2 3</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>4 7 1 6 5 2 3</td>
<td>0</td>
<td>0</td>
<td>Only signal</td>
</tr>
<tr>
<td>4 7 1 6 5 2 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 7 1 6 5 2 3</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>4 1 6 7 5 3 2</td>
<td>0</td>
<td>0</td>
<td>Only signal</td>
</tr>
<tr>
<td>4 1 6 7 5 3 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 1 6 7 5 3 2</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>4 1 6 7 5 3 2</td>
<td>0</td>
<td>0</td>
<td>Only signal</td>
</tr>
<tr>
<td>4 1 6 7 5 3 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 1 6 7 5 3 2</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
</tbody>
</table>

Table 39. Summary of all measurements for the Costas modulation.

The following table and graphics on Figure 128 show the detection effectiveness of the cyclostationary processing for the Costas case, comparing with the original values.

<table>
<thead>
<tr>
<th>Costas Detection Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only signal</td>
</tr>
<tr>
<td>0 dB</td>
</tr>
<tr>
<td>(-) 6 dB</td>
</tr>
</tbody>
</table>

Table 40. Detection effectiveness for the Costas modulation.
J. **FSK/ PSK COSTAS**

1. **Description**

 A detailed description of this type of signal is given in Chapter II.

2. **Spectral Properties and Results (FSK_PSK_C_1_15_5_1_s)**

 This FSK/PSK Costas signal has the following characteristics:

<table>
<thead>
<tr>
<th>Name</th>
<th>Frequency Sequence (kHz)</th>
<th>Sampling Frequency (f_s)</th>
<th>Number of Barker Bits (N_p)</th>
<th>Number of Cycles per Phase ($NPBB$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSK_PSK_C_1_15_5_1_s</td>
<td>4 7 1 6 5 2 3</td>
<td>15000 Hz</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

 Table 41. FSK_PSK_C_1_15_5_1_s signal characteristics.

 The expected BW is 7000 Hz (from 500 Hz to 7.5kHz), each frequency will be modulated with as BPSK Barker-5 and since the smallest frequency is 1000Hz, the BW for each frequency hop will be 1000Hz. Inside each hop, we expect to see a
\[f_b = \frac{BW}{N_p} = \frac{1000}{5} = 200\text{Hz} \]. The following Figures give an overview of the frequency content of the signal (Figure 129), the Barker phase sequence (Figure 130) and the Estimated SCD (Figure 131, Figure 132 and Figure 133, with \(N = 1024 \), frequency resolution of 16 Hz and \(M = 2 \)) of the signal analyzed.

Figure 129 PSD for a FSK/PSK Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, Barker-5 and 1 \(NPBB \), only signal).

Figure 130 Barker-5 phase sequence used inside each hop.
Figure 131 Estimated FAM SCD contour plot for a complex FSK/PSK Costas signal (1, 2, 4, 5, 6 and 7kHz measured carriers).

Figure 132 Zoomed-in estimated FAM SCD contour plot for a complex FSK/PSK Costas signal (4, 5 and 6kHz measured carriers and estimated BW of 1000 Hz for each frequency hop).
Figure 133 Estimated f_b value of 200 Hz for the embedded Barker-5 BPSK modulation.

Figures 134 to 137 include the analysis of the same signal with added White Gaussian Noise. At the end of this analysis, a table is included comparing the original and the measured characteristics of each signal.

Figure 134 PSD for a FSK/PSK Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, Barker-5 and 1 NPBB, 0dB SNR).
Figure 135 Estimated FAM SCD contour plot for a complex FSK/PSK Costas signal (1, 2, 4, 5, 6 and 7kHz measured carriers, 0dB SNR).

Figure 136 Zoomed-in estimated FAM SCD contour plot for a complex FSK/PSK Costas signal (5, 6 and 7kHz measured carriers and estimated BW of 1000 Hz for each frequency hop, 0dB SNR).
The given and measured features are summarized in the table below.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Original</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency (f_c)</td>
<td>1, 2, 3, 4, 5, 6 and 7kHz</td>
<td>1, 4, 5, 6 and 7kHz</td>
</tr>
<tr>
<td>BW for Each Frequency Hop (BW)</td>
<td>1000 Hz</td>
<td>1000 Hz</td>
</tr>
<tr>
<td>Code Rate (f_b)</td>
<td>200 Hz</td>
<td>200 Hz</td>
</tr>
<tr>
<td>Number of Bits in Barker Code (Np)</td>
<td>$Np = \frac{BW}{f_b} = \frac{1000}{200} = 5$</td>
<td>$Np = \frac{BW}{f_b} = \frac{1000}{200} = 5$</td>
</tr>
<tr>
<td>Code Period Inside Each Hop</td>
<td>$t_p = \frac{1}{f_b} = 0.005s$</td>
<td>$t_p = \frac{1}{200} = 0.005s$</td>
</tr>
</tbody>
</table>

Table 42. Comparison between measured and original characteristics for a FSK/PSK Costas signal.
The large BW within each frequency hop may increase the error in the estimation of the carrier frequencies. For the example above, it was possible to measure practically all characteristics of the signals, with SNR until 0 dB. These signals present a modulation complexity level much higher than any modern receiver would be able to analyze. The cyclostationary processing algorithms implemented reveal their real processing power when facing these types of signals: frequency hopping with large intra-hop BWs and small code periods. Both cyclostationary algorithms are very powerful tools to perform analysis of LPI signals like the FSK/PSK Costas. Still the biggest constraints reside in processing power of the analyzer (computer speed and memory). Table 44 shows a summary of all measurements for the Costas modulation.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Bandwidth (Hz)</th>
<th>Np</th>
<th>Code Period (ms)</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 7 1 6 5 2</td>
<td>7000</td>
<td>5</td>
<td>5</td>
<td>Only signal</td>
</tr>
<tr>
<td>4 7 1 6 5 2</td>
<td>7000</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4 7 1</td>
<td>6200</td>
<td>5</td>
<td>25</td>
<td>Only signal</td>
</tr>
<tr>
<td>4 7 1</td>
<td>6200</td>
<td>5</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>4 7 1</td>
<td>7000</td>
<td>11</td>
<td>11</td>
<td>Only signal</td>
</tr>
<tr>
<td>4 7 1</td>
<td>7000</td>
<td>11</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>11</td>
<td>55</td>
<td>Only signal</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>11</td>
<td>55</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 43. Summary of all measurements for the FSK/PSK Costas modulation.

Table 45 and graphics on Figure 138 show the detection effectiveness of the cyclostationary processing for the FSK/PSK Costas case, comparing with the original values.

<table>
<thead>
<tr>
<th>FSK/PSK Costas Detection Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Only signal</td>
</tr>
<tr>
<td>0 dB</td>
</tr>
</tbody>
</table>

Table 44. Detection effectiveness for the FSK/PSK Costas modulation.
Figure 138 Graphic demonstration of detection effectiveness for the FSK/PSK Costas modulation.

K. FSK/PSK TARGET

1. Description

Vide Chapter II for a detailed description of these types of signals.

2. Spectral Properties and Results (FSK_PSK_T_15_128_5_s)

This FSK/PSK Target signal has the following characteristics:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sampling Frequency (f_S)</th>
<th>Number of Frequency Hops (N_f)</th>
<th>Number of Cycles per Phase (cpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSK_PSK_T_15_128_5_s</td>
<td>15000 Hz</td>
<td>128</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 45. FSK_PSK_T_15_128_5_s Signal characteristics.

The expected BW is around 4200Hz (from 2400Hz to 6600Hz), each frequency will be modulated with a random phase sequence of length equal to the number of cycles per
phase. The following Figures reveal the frequency content of the signal (Figure 139), the phase plots (Figure 140), the histogram of the frequency hops (Figure 141) and the Estimated SCD (Figure 142, with $N = 1024$, frequency resolution of 16 Hz and $M = 2$) of the signal analyzed.

Figure 139 PSD for a FSK/PSK Target signal (4200Hz BW, random phase with length 5 and 5 cpp, only signal).

Figure 140 Random phase sequence of length 5 used inside each hop.
Figure 141 Frequency hops histogram after random firing order generator.

Figure 142 Estimated FAM SCD contour plot for a complex FSK/PSK Target signal with an estimated BW of 4800Hz.
The given and measured features are summarized in the table below.

<table>
<thead>
<tr>
<th>Feature Extraction</th>
<th>Original</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total BW for Entire Frequency Hopping Sequence</td>
<td>4200Hz</td>
<td>4800Hz</td>
</tr>
</tbody>
</table>

Table 46. Comparison between measured and original characteristics for a FSK/PSK Target signal.

The highest peaks of the spectrum of this signal (as seen in the PSD plot) may also be detected in the bi-frequency plane. The firing order of the frequency hopping sequence cannot be measured because we don’t have the time information in the output of the cyclostationary processing.

This signal presented the highest degree of complexity of the whole set of signals analyzed. The cause of this high complexity may be linked to the presence of two pseudo-random factors:

- The frequency firing order; and
- The phase modulation for each frequency hop.

Since the emitter knows the pseudo-random sequence used, it can coherently demodulate the signal with little effort but for a non-cooperative receiver this task becomes less feasible. Table 48 shows a summary of all measurements for the FSK/PSK Target modulation.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Bandwidth</th>
<th>Code Period</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4800</td>
<td>0</td>
<td>Only signal</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>0</td>
<td>Only signal</td>
</tr>
<tr>
<td>0</td>
<td>4200</td>
<td>0</td>
<td>Only signal</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>0</td>
<td>Only signal</td>
</tr>
</tbody>
</table>

Table 47. Summary of all measurements for the FSK/PSK Target modulation.

Table 49 and graphics on Figure 143 show the detection effectiveness of the cyclostationary processing for the FSK/PSK Target case, comparing with the original values. The analysis was performed for the only signal case, since the results from the added White Gaussian Noise cases were all inconclusive.
FSK/PSK Target Detection Effectiveness

<table>
<thead>
<tr>
<th>Only signal</th>
<th>Sequence</th>
<th>Bandwidth (Hz)</th>
<th>Code period (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>95%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 48. Detection effectiveness for the FSK/PSK Target modulation.

![FSK/PSK Target effectiveness on detection](image)

Figure 143 Graphic demonstration of detection effectiveness for the FSK/PSK Target modulation.

L. COMPARISON BETWEEN POLYPHASE CODES

The following figures show a comparison between Frank (Figure 144), P1 (Figure 145), P2 (Figure 146), P3 (Figure 147) and P4 (Figure 148), with the same number of phases \(Np^2\) or \(Np = 16\), same carrier frequency (1kHz) and same number of carrier cycles per phase \(cpp=1\). It is possible to see that there’s some difference between the SCD estimated results for the various modulations. The general shape of Frank, P3 and P4 are very similar but P1 and P2 stand out very easily from the group. The absence of time in the plots prevents us to see the phase changes along the code. The number of phases may be calculated, as seen on the previous sections, by measuring the carrier frequency, the bandwidth and the code period. Both cyclostationary algorithms were very effective on determining all parameters for the LPI Radar signals with larger bandwidth \(cpp=1\) and shorter code periods.
Figure 144 Estimated DFSM SCD contour plot for a Frank signal with 1150Hz carrier, BW of 1000 Hz, \(Np^2 = 16 \) and \(cpp = 1 \).

Figure 145 Estimated DFSM SCD contour plot for a P1 signal with 900Hz carrier, BW of 1000 Hz, \(Np^2 = 16 \) and \(cpp = 1 \).
Figure 146 Estimated DFSM SCD contour plot for a P2 signal with 1050Hz carrier, BW of 950 Hz, $Np^2=16$ and $cpp=1$.

Figure 147 Estimated DFSM SCD contour plot for a P3 signal with 1150Hz carrier, BW of 1000 Hz, $Np=16$ and $cpp=1$.
The DFSM plots were chosen just to establish a standard observation but the FAM generated plots, as seen on the previous sections, show the same results and take less computing time to process.

M. CHAPTER SUMMARY

In this last Chapter we analyzed and extracted parameters from a set of LPI Radar Signals. The extracted parameters were compared to the original ones in tables at the end of every processing.

The analyzed modulations were

- BPSK (Binary Phase Shift Keying);
- FMCW (Frequency Modulated Continuous Wave);
- Polyphase Codes (P4, P3, P2 P1 and Frank Codes);
• Costas Codes (Frequency Hopping);

• FSK/PSK (Combined Frequency Shift Keying and Phase Shift Keying) with a Costas frequency distribution; and

• FSK/PSK (Combined Frequency Shift Keying and Phase Shift Keying) with a target matched frequency distribution

It was possible to see that both time and frequency-smoothing methods of cyclostationary processing may be applied to analyze these types of signals yielding fairly appropriate results for the majority of the signals. A comparison between the polyphase codes is also presented.
V. CONCLUSIONS AND RECOMMENDATIONS

This thesis effort was developed in order to implement two cyclostationary processing techniques (Time and Frequency-Smoothing algorithms). The Time Smoothing FFT Accumulation Method and the Direct Frequency Smoothing Method were implemented in MATLAB® Version 6.1 [4] and tested in simulations using a standardized data set. During this work it was possible to verify that the cyclostationary processing approach is very suitable for analyzing radar signals with LPI characteristics. Depending on the type of modulation, the processing and feature extraction can be more or less difficult. The analysis of LPI signals can be improved for any type of signals with the combination of the algorithms implemented here and other techniques such as:

- Parallel Filter Arrays and Higher Order Statistics [5];
- Quadrature Mirror Filtering [6]; and
- Wigner-Ville Distribution [7].

The similarities between the DFSM results and the FAM results go until a certain level; in the zoomed plots we see that the channel pair regions are a little different in shape and size, although they occur in the same values for frequency and cycle frequency. This may be the result of the different windows applied in each method (Hamming window for FAM and square window for DFSM). The computing time is also noticeable larger, two or three times more, for the DFSM routine in comparison to the FAM routine. The FAM implementation is recommended for long signals with a large number of samples.

Both methods were very effective for phase modulated signals (BPSK, Frank, P1, P2, P3, P4 and FSK/PSK Costas) and for FH signals (Costas) until signal-to-noise ratios of 0dB and –6dB. The FMCW results showed more variation and errors in the results, comparing to the original characteristics of the signals, even on the signal-only cases. The FSK/PSK Target signal was also very difficult to analyze but mainly due to its pseudo-random characteristic and complexity. In the technical report [10], signals with different bandwidths and different code rates were included. It is possible to see that the
cyclostationary methods are very effective for signals with larger bandwidth and larger code rates. In order to improve the computation time, a parallel processing implementation is recommended for future work, using clusters or PC-based parallel processors for academic purposes.

Starting from the extracted features, we recommend a future research on the automatic classification of these types of signals as a form of maintaining the continuity of this work. Neural networks have being exhaustively pointed as a viable solution for accomplishing this task. The use of MATLAB® Version 6.1 and GUIDE Version 2.0 [4] was very important to the success of this research and helped the development of a very useful tool for future academic applications in Electronic Warfare and Signal Processing oriented courses of the Naval Post Graduate School.
APPENDIX A. CYCLOSTATIONARY IMPLEMENTATION CODES (CYCLO.M, FAM.M AND DFSM.M)

%%%
% CYCLO.M
%
% Use: GUI implementation for inputing parameters in Cyclostationary Signal Processing Methods: DFSM.m and FAM.m
%
% Inputs: Path of the file to be analyzed; Name of the file; Sampling Frequency used in the generation of the file to be analyzed, % desired frequency resolution and desired method to be used (DFSM or FAM)
%
% Output: Various different plots exploring the bi-frequency plane representation typical of cyclostationary processing
%
% These are default commands and comments from the MATLAB® GUI guide tool
% DO NOT EDIT !!
function varargout = cyclo(varargin)
 % CYCLO Application M-file for cyclo.fig
 % FIG = CYCLO launch cyclo GUI.
 % CYCLO('callback_name', ...) invoke the named callback.

 % Last Modified by GUIDE v2.0 01-May-2002 12:56:05

 if nargin == 0 % LAUNCH GUI
 fig = openfig(mfilename,'reuse');

 % Use system color scheme for figure:
 set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

 % Generate a structure of handles to pass to callbacks, and store it.
 handles = guihandles(fig);
 guidata(fig, handles);
 if nargout > 0
 varargout{1} = fig;
 end
 elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK
 try
 if (nargout)
 [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard
 else
 feval(varargin{:}); % FEVAL switchyard
 end
 catch
 % Handle the exception
 end

127
disp(lasterr);
end

function varargout = edit3_Callback(h, eventdata, handles, varargin)
d = get(h,'String');
handles.edit3 = d; % Save file path in global variable handles.edit3 (path = handles.edit3)
guidata(h,handles);

function varargout = edit1_Callback(h, eventdata, handles, varargin)
name = get(h,'String');
handles.edit1 = name; % Save file name in global variable handles.edit1 (filename = handles.edit1)
if isstr(name)
else
 errordlg('Filename: Please enter a valid file name (B_1_7_7_s is default)', 'Bad input', 'modal')
end
guidata(h,handles);

function varargout = edit2_Callback(h, eventdata, handles, varargin)
fs = str2double(get(h,'String'));
handles.edit2 = fs;% Save sampling frequency in global variable handles.edit2 (fs = handles.edit2)
if isnan(fs)
 errordlg('Sampling Frequency: Please enter a numeric value (Hz)', 'Bad input', 'modal')
end
guidata(h,handles);

function varargout = popupmenu1_Callback(h, eventdata, handles, varargin)
val = get(h,'Value');
switch val % Switches between the values chosen by user on popupmenu
 case 1
 handles.popupmenu1 = 128;% Save frequency resolution in global variable handles.popupmenu3 (df = handles.popupmenu3)
 case 2
 handles.popupmenu1 = 64;% Save frequency resolution in global variable handles.popupmenu3 (df = handles.popupmenu3)
 case 3
 handles.popupmenu1 = 32;% Save frequency resolution in global variable handles.popupmenu3 (df = handles.popupmenu3)
case 4
 handles.popupmenu1 = 16;% Save frequency resolution in global variable handles.popupmenu3 (df = handles.popupmenu3)

case 5
 handles.popupmenu1 = 8;% Save frequency resolution in global variable handles.popupmenu3 (df = handles.popupmenu3)
%
 case 6
 handles.popupmenu1 = 4;% Save frequency resolution in global variable handles.popupmenu3 (df = handles.popupmenu3)
 case 7
 handles.popupmenu1 = 2;% Save frequency resolution in global variable handles.popupmenu3 (df = handles.popupmenu3)
end

% More options may be added following the same pattern.

guidata(h,handles);

% --
function varargout = popupmenu2_Callback(h, eventdata, handles, varargin)
Mval = get(h,'Value');
switch Mval % Switches between the values chosen by user on popupmenu
 case 1
 handles.popupmenu2 = 2;% Save reliability condition M in global variable handles.popupmenu2 (M = handles.popupmenu2)
 case 2
 handles.popupmenu2 = 4;% Save reliability condition M in global variable handles.popupmenu2 (M = handles.popupmenu2)
 case 3
 handles.popupmenu2 = 8;% Save reliability condition M in global variable handles.popupmenu2 (M = handles.popupmenu2)
end

guidata(h,handles);

% % ---
function varargout = togglebutton1_Callback(h, eventdata, handles, varargin)
dfsm;% Runs frequency smoothing method (DFSM.m), using the values entered - Direct Frequency Smoothing Method

% % ---
function varargout = togglebutton2_Callback(h, eventdata, handles, varargin)
fam;% Runs time smoothing method (FFTAM.m), using the values entered - FFT Accumulation Method
% FAM.M
% Cyclostationary Estimator using the time smoothing FFT Accumulation Algorithm.

% Part of the LPI oriented thesis work with Prof. P.E. PACE and Prof. H. LOOMIS

% Student: Antonio F. LIMA Jr. - 1st. Lt. Brazilian Air Force

% Getting input data from the global variables generated by GUI cyclo_s.m and calculating constants
% present_directory = cd; % Save present directory to a variable to make the GUI go back to it in the end
path = handles.edit3; % Saving the path information in a variable
cd (path); % Loading the file from the specified path
filename = handles.edit1; % File to be analyzed from GUI generated global variable handles.edit1
fs = handles.edit2; % Sampling frequency from GUI generated global variable handles.edit2
df = handles.popupmenu1; % Frequency Resolution from GUI generated global variable handles.popupmenu3
M = 2; % df/dalpha = M >> 1 (reliability condition)
dalpha = df/M;

load (filename); % loading file to be analyzed in workspace
x = I + j.*Q; % using complex signal (for Real part only, use only I – input data file needs to be formatted as
% described in (4)

% Defining parameters
Np = pow2(nextpow2(fs/df)); % Initially, it is the number of rows in the channelization matrix (X) or
% the number of input channels defined by fs/df
L = Np/4; % Overlap factor in order to reduce the number of short time fft's
% L is the offset between points in the same column at consecutive rows
% should be less than or equal to Np/4 (Prof. Loomis paper)
P = pow2(nextpow2(fs/dalpha/L)); % Number of columns formed in the channelization matrix (X)
N = P*L; % Total number of points in the input data to be processed

% Input channelization - this part limits the input total number of points to be analyzed. It also generates a
Np X P matrix
% (X) with shifted versions of the input vector in each column.
if length(x)<N
 x(N) = 0;
elseif length(x)>N
 x = x(1:N);
end
NN = (P-1)*L+Np;
xx = x;
xx(NN) = 0;
xx = xx(:);
X = zeros(Np,P);
for k = 0:P-1
 X(:,k+1) = xx(k*L+1:k*L+Np); % X = (Np X P) Channelization input matrix
end

%%%
% Windowing (Hamming window) - a vector of length Np is created with the MATLAB® 'hamming'
% inserted in a Np X Np matrix diagonal and this result is multiplied by the channelized input matrix (X).

a = hamming (Np);
XW = diag(a)*X;
%%%
% First FFT - this is the first short time fft (Np points long) applied to each column of matrix X.

XF1 = fft(XW);
XF1 = fftshift(XF1);
XF1 = [XF1(:,P/2+1:P) XF1(:,1:P/2)];
%%%
%Downconversion - the short sliding fft's results are shifted to base band to obtain decimated complex
demodulate sequences [2]

e = zeros(Np,P);
for k = -Np/2:Np/2-1
 for m = 0:P-1
 E(k+Np/2+1, m+1) = exp(-i*2*pi*k*m*L/Np);
 end
end
XD = XF1.*E;
XD = conj(XD'); % Transposing the matrix and taking the complex conjugate of the signal

clear ('XF1', 'E', 'XW', 'X', 'x','I', 'Q'); % cleaning up memory space
%%%
% Multiplication - the product sequences between each one of the complex demodulates and the complex
% conjugate of the others
% are formed. This forms the area in the bi-frequency plane as explained in [2] figures 4 , 7 and 10

XM = zeros(P,Np^2);
for k = 1:Np
 for c = 1:Np
 XM(:,(k-1)*Np+c) = (XD(:,k).*conj(XD(:,c))); % Transposing the matrix and taking the complex conjugate of the signal
 end
end
%%%
% Second FFT - a P point FFT is applied to XM (in each of its columns)
alpha0 = -fs/fs/N:fs;
f0 = -fs/2:fs/Np:fs/2;
Sx = zeros(Np+1, 2*N+1);

% Display only the data inside the range of interest - centralizes the bi-frequency plane according to alpha0
% and f0 vectors

for k1 = 1:P/2+1
 for k2 = 1:Np^2
 if rem(k2,Np) == 0
 c = Np/2 - 1;
 else
 c = rem(k2,Np) - Np/2 - 1;
 end
 k = ceil(k2/Np)-Np/2-1;
 p = k1-P/4-1;
 alpha = (k-c)/Np+(p-1)/N;
 f = (k+c)/2/Np;
 if alpha<-1 | alpha>1
 k2 = k2+1;
 elseif f<-.5 | f>.5
 k2 = k2+1;
 else
 kk = 1+Np*(f + .5);
 ll = 1+N*(alpha + 1);
 Sx(round(kk), round(ll)) = MM(k1,k2);
 end
 end
end

Sx = Sx./max(max(Sx)); % Normalizes the magnitudes of the values in output matrix (maximum = 1)

% Plotting Routines
% saves file containing results
% savefile = 'FFTAM_result_s';
% save(savefile,'filename','N','alpha0', 'f0', 'Sx', 'M', 'df')
% clear all;
% clc;
%
% load ('FFTAM_result_s.mat');
%
% figure (df + M);
% mesh
% view (-55,70);
% xlabel ('cycle frequency'); ylabel('frequency'); zlabel ('SCD magnitude');
% title ('[Time Smoothing (FFTAM) generated SCD for ', filename, '], df = ', int2str(df), ' and N = ', int2str(N));
% %
% % % figure
% % % mesh (alpha0,f0, Sx, 'EdgeColor', 'interp');
% % view (0,90);
% % xlabel ('cycle frequency'); ylabel('frequency'); zlabel ('SCD magnitude');
% % title ('SCD for ', filename, ' N=', int2str(N));
% % figure
% % subplot(2,2,1:2);
% % plot (f0, Sx); grid;
% % title ('Time Smoothing Processing for ', filename, ', df = ', int2str(df), ' and N = ', int2str(N));
% % xlabel ('frequency (Hz)'); ylabel('SCD magnitude');
% % subplot(2,2,3:4);
% % plot (alpha0, Sx); grid;
% % xlabel ('cycle frequency (Hz)'); ylabel ('SCD magnitude');

% % figure
% % subplot(2,2,1:2);
% % contour (alpha0, f0, Sx); grid;
% % xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)');
% % title ('Time Smoothing (FFTAM) generated SCD for ', filename, ', df = ', int2str(df), ' and N = ', int2str(N));
% % zoom(2);colorbar;
% % subplot(2,2,3:4);
% % contour (alpha0, f0, Sx); grid;
% % xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)');
% % zoom(2);colorbar;
%
% figure
contour (alpha0, f0, Sx); grid;
xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)');
title ('Time Smoothing (FFTAM) generated SCD for ', filename, ', df = ', int2str(df), ' and N = ', int2str(N));
colorbar;
delete ('FFTAM_result_s.mat');

% newname = ['FFTAM_' filename];
% cd('C:\Documents and Settings\aflima\Tese\Result Figures');
% saveas (gcf, newname, 'jpg');

cd('C:\Documents and Settings\aflima\Tese\cyclo');
%*** Cyclostationary Estimator using the Direct Frequency Smoothing Method algorithm.***

% Part of the LPI oriented thesis work with Prof. P.E. PACE and Prof. H. LOOMIS

% Student: Antonio F. LIMA Jr. - 1st. Lt. Brazilian Air Force

Getting input data from the global variables generated by GUI cyclo_s.m

function f = dfsm_s(x);
present_directory = cd; % Save present directory to a variable to make the GUI go back to it in the end
path = handles.edit3; % Saving the path information in a variable
cd (path);% Loading the file from the specified path
filename = handles.edit1; % File to be analyzed
Fs = handles.edit2; % Sampling frequency
df = handles.popupmenu1; % Frequency Resolution
M = 2; % Smoothing window range
load (filename);
x = I;% Using real part of signal
N = (M*Fs)/df;
N = pow2 (nextpow2(N)); % windowing record for FFT

X = fft(x,N); % fft of the truncated (or zero padded) time series
X = fftshift(X); % shift components of fft
Xc = conj(X); % precompute the complex conjugate vector
S = zeros (N,N); % size of the Spectral Correlation Density matrix
f = zeros (N,N); % size of the frequency matrix;
alfa = zeros (N,N); % size of the cycle frequency matrix
F = Fs/(2*N); % precompute constants - F = Fs/(2*N);
G = Fs/N; % precompute constants - G = Fs/N;
m = [-M/2+1:M/2]; % set frequency smoothing window index

for k = 1:N % fix k
 % computes vectors of f and alfa,
 % store frequency and cycle frequency data for given k.
 k1 = 1:N;
f(k,k1) = F*(k+k1-1) - Fs/2; % Computes f values and shift them to center in zero (f = (K+L)/2N)
alfa(k,k1) = G*(k-k1 + N-1) - Fs; % Computes alfa values and shift them to center in zero (alfa = (K-L)/N) [1]
for k1 = 1:N %fix k1 = J
 calculate X(K+m) & conj (X(J+m)) for arguments of X(1:N) only
 B = max(1-k, 1-k1); % Largest min of 1 <= (K+m)| (J+m) <= N
 A = min (N-k, N-k1); % Smallest max of 1 <= (K+m)| (J+m) <= N
 n = m((m<=A) & (m>=B)); %fix the index out of range problem by
 % truncating the window
 if isempty(n)
 S(k,k1) = 0;
 else
 p = k+n; q = k1+n;
 Y = X(p).*Xc(q);
 end
end
end
S(k,k1) = sum(Y);
end
end
end

S = abs(S./max(max(S))); % normalize output matrix

%%%
% Saving variables, cleaning up memory and running plots

savefile = 'DFSM_result_s';
save(savefile,'I', 'Q', 'alfa', 'f', 'S', 'N', 'Fs', 'filename', 'M', 'df')
save(savefile,'alfa', 'f', 'S', 'N','filename', 'M', 'df')
clear all;
load ('DFSM_result_s.mat');

figure (2*(df+M));
% mesh (alfa,f, S, 'EdgeColor', 'interp');
% view (-55,70);
% xlabel ('cycle frequency'); ylabel('frequency'); zlabel ('SCD magnitude');
% title ('Frequency Smoothing (DFSM) generated SCD for ', filename, ' df = ', int2str(df), ' N = ', int2str(N));
% figure (2*(df+M) + 1);
% mesh (alfa,f, S, 'EdgeColor', 'interp');
% view (0,90);
% xlabel ('cycle frequency'); ylabel('frequency'); zlabel ('SCD magnitude');
% title ('SCD for', filename, ' df=', int2str(df), ' N=', int2str(N));
% figure(2*(df+M) + 2)
% subplot (2,2,1:2)
% psd(I, N, Fs);
% title(['I - real part for nfft = ', int2str(N), ' and for default nfft = 256']);
% subplot (2,2,3:4)
% psd(I, [], Fs);
% subplot (2,2,3)
% psd(I+j.*Q, N/2, Fs);
% title('I+j.Q - complex');
% subplot (2,2,4)
% psd(I-j.*Q, N/2, Fs);
% title('I-j.Q - complex');
% figure
% subplot(2,2,1:2);
% plot (f, S); grid;
% title ('Frequency Smoothing Processing for ', filename, ' df = ', int2str(df), ' and N = ', int2str(N));
% xlabel ('frequency (Hz)'); ylabel('SCD magnitude');
% subplot(2,2,3:4);
% plot (alfa, S); grid;
% xlabel ('cycle frequency (Hz)'); ylabel ('SCD magnitude');
% figure (2*(df+M) + 5)
% subplot(2,2,1:2);
% contour (alfa, f, S); grid;
% xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)');
% title ('Frequency Smoothing (DFSM) generated SCD for ', filename, ', df = ', int2str(df), ' and N = ', int2str(N));
% zoom(2);colorbar;
% subplot(2,2,3:4);
% contour (alfa, f, S); grid;
% xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)');
% zoom(2);colorbar;
figure
contour (alfa, f, S); grid;
xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)');
title ('Frequency Smoothing (DFSM) generated SCD for ', filename, ', df = ', int2str(df), ' and N = ', int2str(N));
colorbar;
delete ('DFSM_result_s.mat');

newname = ['DFSM_ ' filename];
cd ('C:\Documents and Settings\aflima\Tese\Result Figures');
saveas (gcf, newname, 'jpg');
cd ('C:\Documents and Settings\aflima\Tese\cyclo');
APPENDIX B. FSK/PSK GENERATION CODES

% FREQUENCY AND PHASE SHIFT COMBINED CODE using Costas Frequency modulation
% Developed by Antonio Lima and Harsha Tummala
% July, 2002
% Phase code for FSK/PSK from IEEE International Radar Conference Paper - 1990
% “The ambiguity properties of FSK/PSK signals”
% by J. Patrick Donohoe, and Franklin M. Ingels

clear all;
clc;
disp('** ************');
disp('FREQUENCY AND PHASE SHIFT CODE (FSK/PSK) USING COSTAS FREQUENCIES******');
disp('** ************');
% DEFAULT VARIABLES
A=1; % Amplitude of CW
fs =15e3; % Sample Rate
SNR_dB = 0; %Signal to Noise Ratio
cpf=1; %Cycles per frequency (> 10)
scale=5; % Scaling for plotting time domain graphs
barker = 5; % Number of Barker Bots for phase modulation
j=sqrt(-1); % j

% NEW INPUT
newvar = 1;
while newvar == 1;
 disp('
 WHICH PARAMETER DO YOU WANT TO SET ? ')
 disp(' 1. Amplitude of frequencies - A= %g.
 2. Sampling frequency - fs (Hz)= %g.
 3. Signal to Noise Ratio
 4. Cycles per frequency = %g.
 5. Number of bits per Barker code for phase modulation
 6. No changes

 Select a option: ');
 option= input('');
 switch option
 case 1
 A=input('New amplitude of the carrier signal= ');
 case 2
 fs=input('New sampling frequency (Hz)= ');
 case 3
 SNR_dB=input('New signal to noise ratio (dB)= ');
 case 4
 cpf=input('New number of cycles per frequency = ');
 case 5
 barker=input('New number of bits for Barker Code = ');
 case 6
 newvar = 0;
 end

137
clc;
end

% FREQUENCY CHOICES
newvar = 1;
while newvar == 1;
 disp(' ') disp('WHICH COSTAS FREQUENCY SEQUENCE WOULD YOU LIKE TO USE ? ') disp(' ')
disp('1. 4, 7, 1, 6, 5, 2, 3 ');
disp('2. 2, 6, 3, 8, 7, 5, 1 ');
disp('3. 4, 1, 6, 7, 5, 3, 2 ');
disp('4. 5, 6, 8, 2, 4, 3, 1 ');
disp('5. 4, 9, 2, 5, 1, 9, 8 ');
disp('6. 2, 4, 1, 1, 7, 11, 9');
disp('7. 2, 2, 5, 1, 3, 7, 4 ');
disp(' ')
option2= input('Select an option: '); freq=[4 7 1 6 5 2 3;
 2 6 3 8 7 1 5;
 4 1 6 7 5 3 2;
 5 6 8 2 4 3 1;
 4 9 2 5 1 9 8;
 2 4 1 1 7 11 9;
 2 2 5 1 3 7 4]*1000
switch option2
 case 1
 seq=freq(1,:);
 case 2
 seq=freq(2,:);
 case 3
 seq=freq(3,:);
 case 4
 seq=freq(4,:);
 case 5
 seq=freq(5,:);
 case 6
 seq=freq(6,:);
 case 7
 seq=freq(7,:);
end
newvar=0;
clc;
end

% Create spanning Barker frequency
minimum = min(seq);
SAR = ceil(fs/minimum); % Sampling ratio
tb = 1/(fs); % Sampling period

% This section generates I & Q without COSTAS phase shift and I & Q with Phase shift. The signals are
generated
% five times by the outer loop. The variable 'index' is used to generate a time vector for time domain plots.
% The signal is generated at seven samples per phase change.

pw = 1;
if barker == 13
 phase = [ones(1,pw*5),-(ones(1,pw*2)),ones(1,pw*2),-ones(1,pw),ones(1,pw),-
 ones(1,pw),ones(1,pw)];% 13 bits
elseif barker == 11
 phase = [ones(1,pw*3),-(ones(1,pw*3)),ones(1,pw),-ones(1,pw),-ones(1,pw),ones(1,pw),-
 ones(1,pw),ones(1,pw)];% 11 bits
elseif barker == 7
 phase = [ones(1,pw*3),-(ones(1,pw*2)),ones(1,pw),-ones(1,pw)];% 7 bits
elseif barker == 5
 phase = [ones(1,pw*3),-(ones(1,pw)),ones(1,pw)];% 5 bits
end

index = 0;
for pp = 1:5
 for xx = 1:7
 for nn = 1:barker
 for n = 1:SAR*cpf
 IWO(index+1) = A*cos(2*pi*seq(xx)*(n-1)*tb);
 QWO(index+1) = A*sin(2*pi*seq(xx)*(n-1)*tb);
 I(index+1) = A*cos(2*pi*seq(xx)*(n-1)*tb)*phase(nn);
 Q(index+1) = A*sin(2*pi*seq(xx)*(n-1)*tb)*phase(nn);
 time(index+1) = index*tb; %time vector cumulation
 index = index + 1;
 end
 end
 end
end
end
end

% Power Spectral Density for I with phase shift & with WGN with Signal to noise ratios (SNR) = [0,-
5,5,10,-10,-20]
%for loop makes calculations and plots for each value of SNR for WGN
[a,b]=size(I);
SNR=10^(SNR_dB/10);
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function
noise=wgn(a,b,power);%calculate noise at specified SNR
IN=I+noise;%add noise to I with FSK/PSK phase shift
IPWON=I;% with phase shift without noise
QN=Q+noise;%add noise to Q with FSK/PSK phase shift
QPWON=Q;%Q with phase shift without noise
ffs = fs/1000;

%%%
PLOTS
%%%

disp('')
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s');
disp('')
if (plt == 'Y') | (plt =='y')
disp('

%Plot Power Spectral Density for I without phase shift
% figure ; % open new figure for plot
% psd(IWO,[],fs); %Power Spectral Density of I without Phase shift
% title(['PSD of I without Phase Shift or Noise']);

%Plot PSD of I+ FSK/PSK Phase + WGN and Time Domain of I + FSK/PSK Phase
figure ;% open new figure for plot
signal = I+j*Q;
psd(signal,[],fs);%plot PSD for specified noise SNR
title(['PSD of FSK-PSK-C- ' num2str(option2) ' ' num2str(ffs) ' ' num2str(barker) ' ' num2str(cpf) ' 's
I+j*Q']);

figure ;% open new figure for plot
signal = IN+j*QN;
psd(signal,[],fs);%plot PSD for specified noise SNR
title(['PSD of FSK-PSK-C- ' num2str(option2) ' ' num2str(ffs) ' ' num2str(barker) ' ' num2str(cpf) ' 's
num2str(SNR_dB) 'I+j*Q']);

% %plot time domain signal I with FSK/PSK phase shift and WGN at specified SNR
% figure;%open new figure for plot
% plot(time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale)));
% title(['FSK-PSK-C- ' num2str(option2) ' ' num2str(ffs) ' ' num2str(barker) ' 's Time Domain']);
% xlabel({'\itTime - Seconds'});
% ylabel('Amplitude');
% grid on;
%
% % Now check to see if signal is correct by plotting phase shift alone and then determining phase shift
% from I+jQ.
% To determine phase shift, look at the phase angle of I+jQ at every 7th time interval. Expect to see the
% FSK/PSK phase
% function plot repeated 5 times after unwrapping and detrending the phase angle.

figure;%open new figure for plot
plot(phase);
title(['FSK-PSK-C-' num2str(option2) '-' num2str(ffs) '-' num2str(barker) '-' num2str(cpf) '-s Phase Shift for each Costas frequency hop']);
xlabel('i - index for phase change');
ylabel('FSK/PSK Phase Shift - Theta');
grid on;
else
 disp('Signal not plotted')
 fprintf('

')
end

% This section generates the files for analysis

INP=IN';%transpose I with noise and FSK/PSK phase shift for text file
QNP=QN';%transpose Q with noise and FSK/PSK phase shift for text file
IPWONT=IPWON';%transpose I with phase without noise for text file
QPWONT=QPWON';%transpose Q with phase without noise for text file

% % save results in data files

I= INP(:,1);
Q=QNP(:,1);
II= IPWONT(:,1);
QQ=QPWONT(:,1);

disp(' ')
saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s');

if (saveresult == 'Y') | (saveresult == 'y')
 ffs=floor(fs/1e3);
 save(['FSK_PSK_C_' num2str(option2) '_' num2str(ffs) '_' num2str(barker) '_' num2str(cpf) '_'
 num2str(SNR_dB)],'I','Q');
 I=II;
 Q=QQ;
 save(['FSK_PSK_C_' num2str(option2) '_' num2str(ffs) '_' num2str(barker) '_' num2str(cpf) '_s'],I,'Q');
 disp(' '); disp(['Signal and noise save as : FSK_PSK_C_' num2str(option2) '_' num2str(ffs) '_' num2str(barker) '_' num2str(cpf) '_'
 num2str(SNR_dB)]); disp(['Signal only save as : FSK_PSK_C_' num2str(option2) '_' num2str(ffs) '_' num2str(barker) '_'
 num2str(cpf) '_s']); disp(['Directory: ' num2str(cd)]);
else
 disp(' ') disp('Signal not saved')
 fprintf('

')
end
clear all;
clc;
disp('***');
disp('*************FREQUENCY AND PHASE SHIFT CODE (FSK/PSK)*************');
disp('***');

%DEFAULT VARIABLES
A=1; % Amplitude of CW
fs =15000; % Sampling Frequency
SNR_dB = 0; % Signal to Noise Ratio
scale=20; % Scaling for plotting time domain graphs
j=sqrt(-1); % j
global N;
N=128; % Number of fsk/psk sections (frequency hops and phase changes)
cpp = 5; % Number of cycles per phase

% NEW INPUT
newvar = 1;
while newvar == 1;
 disp('')
 disp('WHICH PARAMETER DO YOU WANT TO SET? ')
 disp('')
 fprintf('1. Amplitude of the carrier signal - A= %g.
', A)
 fprintf('2. Sampling frequency - fs (Hz)= %g.
', fs)
 fprintf('3. Signal to noise ratio - SNR_dB (dB) = %g.
', SNR_dB)
 fprintf('4. Number of phase/frequency hops - N = %g.
', N)
 fprintf('5. Number of cycles per phase - cpp = %g.
', cpp)
 fprintf('6. No changes
')
 disp('')
 option= input('Select a option: ');
 switch option
 case 1
 A=input('New amplitude of the carrier signal= ');
 case 2
 fs=input('New sampling frequency (Hz)= ');
 case 3
 SNR_dB=input('New signal to noise ratio (dB)= ');
 case 4
 N=input('New number of phase/frequency hops =');
 case 5
 cpp=input('New number of cycles per phase=');
 case 6
 newvar = 0;
 end
 clc;
end

airplane; % Compute frequency hops values according to an airplane's frequency response
syn_test; % Generates frequency distribution according to previous probability distribution

global target; % Compute Frequency, first call up airplane variable
global detection; %

tb=1/(fs); % Sampling period
SAR=ceil(fs/min(detection)); % Sampling ratio (for smaller frequency)

phase = rand(1,cpp); % Compute the phase encoding random sequence for each frequency burst
greater = find(phase>=0.5);
phase(greater) = pi;
lesser = find(phase<0.5);
phase(lesser) = 0;

% This section generates I & Q without phase shift and I & Q with Phase shift. The signals are generated
% five times the number of frequency hops by the outer loop. The variable 'index' is used to generate a
% time vector for time domain plots.
% The signal is generated at seven samples per phase change.
index=0; % Time vector for time domain plots.

for p=1:2% Generate the signal two times and store sequentially in corresponding vectors
 for ii = (1:N) % Loop for each frequency hop
 f = detection(ii,:);
 for kk = (1:size(target,1))
 if f == target(kk,1)
 init_phase = target(kk,3); % defines initial phase of FSK sequence
 end
 end
 for n=1:SAR*cpp % Loop to increment time for single frequency value.
 I(index+1)=A*cos(2*pi*f*(n-1)*tb+phase(ceil(n/SAR))+init_phase); % Calculate in phase component of signal with phase shift
 IWO(index+1)=A*cos(2*pi*f*(n-1)*tb); % Calculate in phase component of signal without phase shift
 Q(index+1)=A*sin(2*pi*f*(n-1)*tb+phase(ceil(n/SAR))+init_phase); % Calculate quadrature component of signal with phase shift
 QWO(index+1)=A*sin(2*pi*f*(n-1)*tb); % Calculate quadrature component of signal without phase shift
 time(index+1)=index*tb; % time vector cumulation
 index = index +1;
 end
 end
end

% Power Spectral Density for I with phase shift & with WGN with Signal to noise ratios (SNR) = [0,-
% 5,10,-10,-20]
% for loop makes calculations and plots for each value of SNR for WGN
[a,b]=size(I);
SNR=10*(SNR_db/10);
power=10*log10(A^2/(2*SNR));% calculate SNR in dB for WGN function
noise=wgn(a,b,power);% calculate noise at specified SNR
IN=I+noise; % Add noise to I with FSK/PSK phase shift
IPWON=I; % I with phase shift without noise
QN=Q+noise; % Add noise to Q with FSK/PSK phase shift
QPWON=Q; %Q with phase shift without noise
ffs = fs/1000;

%**
%PLOTS
%**

disp(' ')
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s');
disp(' ')
if (plt == 'Y') | (plt =='y')
 disp(' ')
global range;
global airplane;

%Plot Target Frequency Distribution and Range/Magnitude plot
figure;% open new figure for plot
plot(target(:,1), target(:,2)); title('Ship FFT ABS'); grid on
title(['Original Target Frequency Probability Distribution']);
xlabel('Frequency');
ylabel('Normalized Magnitude = Probability');

figure;% open new figure for plot
plot(range, real(airplane(1:64))); title('Ship'); grid on
title(['Original Target Range / Magnitude Plot']);
xlabel('Range (ft)');
ylabel('Magnitude');

% Plot original frequency distribution histogram and frequency random firing distribution
figure;% open new figure for plot
orient tall;
subplot(2,1,1),
hist(detection(:,1),N);
xlabel('Detection Index');
ylabel('Number of Occurences');
fid1=['Target SYNTHETIC'];
title(fid1);
subplot(2,1,2),
bar(target(:,1), target(:,2));
xlabel('Detection Index')
ylabel('Probability')
fid2=['Target ORIGINAL'];
title(fid2);

%Plot Power Spectral Density for I without phase shift
% figure ; % open new figure for plot
% psd(IWO,[],fs); %Power Spectral Density of I without Phase shift
% title(['PSD of I without Phase Shift or Noise']);

%time domain plot of in phase signal I with phase shift
% figure ; %open new figure for plot
% % plot small portion of time domain signal I so that data will fit meaningfully in figure.
% % floor(size(time,2)/scale) selects a small sample of the vectors to plot
% plot (time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale)));
% title(['Time Domain of I with Phase Shift & no Noise']);
xlabel('Time - Seconds');
ylabel('Amplitude');
grid on;

%Plot PSD of I+ FSK/PSK Phase + WGN and Time Domain of I + FSK/PSK Phase figure ;% open new figure for plot
signal = I+j*Q;
psd(signal,[],fs);%plot PSD for specified noise SNR
title(['PSD of FSK-PSK-T-' num2str(ffs) '-' num2str(N) '-' num2str(cpp) '-s I+j*Q']);

%plot time domain signal I with FSK/PSK phase shift and WGN at specified SNR figure ;%open new figure for plot
plot(time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale)));
title(['FSK-PSK-T-' num2str(ffs) '-' num2str(N) '-' num2str(cpp) '-s Time Domain']);
xlabel('{\itTime - Seconds} ');
ylabel('Amplitude');
grid on;

% Now check to see if signal is correct by plotting phase shift alone and then determining phase shift from I+jQ.
% To determine phase shift, look at the phase angle of I+jQ at every 7th time interval. Expect to see the FSK/PSK phase
% function plot repeated 5 times after unwrapping and detrending the phase angle.
figure;%open new figure for plot
plot(phase);
title(['FSK-PSK-T-' num2str(ffs) '-' num2str(N) '-' num2str(cpp) '-s Phase Shift ']);
xlabel('i - index for phase change');
ylabel('FSK/PSK Phase Shift - Theta');
grid on;
else
disp('Signal not plotted')
fprintf('

')
end

% This section generates the files for analysis
INP=IN';%transpose I with noise and FSK/PSK phase shift for text file
QNP=QN';%transpose Q with noise and FSK/PSK phase shift for text file
IPWONT=IPWON';%transpose I with phase without noise for text file
QPWONT=QPWON';%transpose Q with phase without noise for text file

% save results in data files
I = INP(:,1);
Q = QNP(:,1);
II = IPWONT(:,1);
QQ = QPWONT(:,1);

disp('')
saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s');
if (saveresult == 'Y') | (saveresult =='y')
 ffs=floor(fs/1e3);
end
save(['FSK_PSK_T_' num2str(ffs) ' ' num2str(N) ' ' num2str(cpp) ' ' num2str(SNR_dB)],'I','Q','detection');
I=II;
Q=QQ;
save(['FSK_PSK_T_' num2str(ffs) '_' num2str(N) '_' num2str(cpp) '_s'],'I','Q','detection');
disp('');
disp(['Signal and noise save as : FSK_PSK_T_' num2str(ffs) ' ' num2str(N) ' ' num2str(cpp) ' ' num2str(SNR_dB)]);
disp(['Signal only save as : FSK_PSK_T_' num2str(ffs) ' ' num2str(N) ' ' num2str(cpp) '_s']);
disp(['Directory: ' num2str(cd)]);
else
disp('');
disp('Signal not saved')
fprintf('n
')
end

%%%
% This part may be implemented on a different file
%%%
function airplane = airplane;
global target;
global airplane;
global range;

% Target range Profile
airplane = [complex(0,-0.00000032:0.00000001:-0.00000016), complex(-0.001,-0.00000015), complex(-0.002,-0.00000014), complex(-0.003,-0.00000013), complex(-0.0027,-0.00000012), complex(-0.0025,-0.00000011), ...
complex(-0.0022,-0.00000010), complex(-0.0020,-0.00000009), complex(-0.0017,-0.00000008), complex(-0.0015,-0.00000007), complex(-0.0023,-0.00000006), complex(-0.003,-0.00000005), complex(-0.0015,-0.00000004), ...
complex(0,-0.00000003), complex(0,-0.00000002), complex(-0.0015,-0.00000001), complex(-0.003,0),complex(0.028, 0.00000001), complex(-0.0075, 0.00000002), complex(0.014, 0.00000003), complex(0.013,0.00000004), complex(-0.038,0.00000005), ...
complex(-0.003, 0.00000006), complex(-0.004, 0.00000007), complex(-0.005, 0.00000008), complex(-0.015, 0.00000009), complex(0.003, 0.00000001), complex(-0.0015, 0.00000011:0.00000001:0.00000016), complex(0, 0.00000017:0.00000001:0.00000031), complex(0,-0.00000032:0.00000001:0.00000031)];

% Target Time profile
airplane_t = flipdim(airplane, 2);
airplane_t = real(airplane_t).*(-1) + j.*imag(airplane_t));

% FFT of the time record fo the target response
airplane_1 = fft(airplane_t);
airplane_2 = abs(ifftshift(airplane_1));
ph_airplane = phase(airplane_1);

freq_step = 64; % Number of frequency steps to be used

fss = 12e6;
fs = fss/2000; %Downsized sampling frequency (from 12MHz to 6000Hz)
frequency = fs/2:fs/2/freq_step:fs - 1;

146
airplane_3 = airplane_2(64:127);
total = sum(airplane_3);
airplane_4 = airplane_3/total;
target = [(frequency), (airplane_4), (ph_airplane(1:freq_step))];

range_bin = (fss*2e-9)^(-1);
range = 1:range_bin:freq_step*range_bin-1;

% This part may be implemented on a different file

%% FREQUENCY SYNTHESIS ALGORITHM FOR FSK/PSK TARGET
%% Frequencies are in the vector "detection"
function syn_test = syn_test;

fid=['Ship';]
global N;
global target;
ew_rec= target(:,1:2);

%***
%NO EDITS BELOW
%***

% PULL OFF THE DECIMAL DIGITS
[nn,jo]=size(new_rec); % Determine number
% of detections or rows

% Pull off the density
% decimal digits as strings
“delta”=sprintf('%6.4f',new_rec(:,2));
ss=reshape(“delta”, 6, nn);
ss=ss'; % Turn back into a number
% with each digit a column
“delta”s(:,[1])=str2num(ss(:,3));
“delta”s(:,[2])=str2num(ss(:,4));
“delta”s(:,[3])=str2num(ss(:,5));
“delta”s(:,[4])=str2num(ss(:,6));

%% kk =4; % NUMBER OF DECIMAL DIGITS

% Define probabilities
% p1 through p4
p0=0;
p1=10^(-1) * sum(“delta”s(:,1));
p2=10^(-2) * sum(“delta”s(:,2));
p3=10^(-3) * sum(“delta”s(:,3));
p4=10^(-4) * sum(“delta”s(:,4));

% Determine pi values
pi0 = 0;
p1 = 10 * p1;
p2 = (10 * p1) + (10^2 * p2);
p3 = (10 * p1) + (10^2 * p2) + (10^3 * p3);
p4 = (10 * p1) + (10^2 * p2) + (10^3 * p3) + (10^4 * p4);

% Determine test values for
% the uniform random variable
ptest0 = 0;
ptest1 = p1;
ptest2 = ptest1 + p2;
ptest3 = ptest2 + p3;
ptest4 = ptest3 + p4;

% FILL MEMORY LOCATION
% SET 1
ok = 0;
for j = 1:nn
 % RANDOM VARIABLE INDEX
 if “delta”s(j,1) == 0
 for i = 1: “delta”s(j,1)
 mem(i + ok, 1) = j;
 end
 ok = i + ok;
 end
end
if “delta”s(j,1) == 0
 [mem_size xx] = size(mem);
else
 mem_size = 0;
 xx = 0;
end

% FILL MEMORY LOCATIONS
% SET 2
ok = 0;
for j = 1:nn
 % RANDOM VARIABLE INDEX
 if “delta”s(j,2) == 0
 for i = 1: “delta”s(j,2)
 mem(i + ok + mem_size, 1) = j;
 end
 ok = i + ok;
 end
end
[mem_size xx] = size(mem);

% FILL MEMORY LOCATIONS
% SET 3
ok = 0;
for j = 1:nn
 % RANDOM VARIABLE INDEX
 if “delta”s(j,3) == 0
 for i = 1: “delta”s(j,3)
 mem(i + ok + mem_size, 1) = j;
 end
 ok = i + ok;
 end
end

148
[mem_size xx]=size(mem);

end
end

% FILL MEMORY LOCATIONS
% SET 4
ok=0;
for j=1:nn % RANDOM VARIABLE INDEX
 if “delta”s(j,4)~=0
 for i=1:”delta”s(j,4)
 mem(i+ok+mem_size,1)=j;
 end
 ok=i+ok;
 end
end

% Now that mem is filled
% generate the detections
% nn number of detections
for gi=1:N
 % uni is the uniform RV
 % pull the decimal digits off
 uni=rand;
 uni_str=sprintf('%6.4f',uni) ;
 sss=reshape(uni_str, 6, 1);
 sss=sss';
 d1=str2num(sss(:,3));
 d2=str2num(sss(:,4));
 d3=str2num(sss(:,5));
 d4=str2num(sss(:,6));

 % Test the RV to find correct
 % index. Then generate detection

% DETECTION

global detection;
if uni >= 0 & uni < ptest1
 rv_index=mem(round(d1+1),1);
 detection(gi,[1])=new_rec(rv_index,(1:1));
elseif uni >= ptest1 & uni < ptest2
 const=pi1-(100*(p1));
 rv_index=mem(round(d1*10 + d2 + const +1),1);
 detection(gi,[1])=new_rec(rv_index,(1:1));
elseif uni >= ptest2 & uni < ptest3
 const=pi2-(1000*(p1+p2));
 rv_index=mem(round(d1*100 + d2*10 + d3 + const +1),1);
 detection(gi,[1])=new_rec(rv_index,(1:1));
elseif uni >= ptest3 & uni < ptest4
 const=pi3-(10000*(p1+p2+p3));
 rv_index=mem(round(d1*1000 + d2*100 + d3*10 +d4 + const +1),1);
 detection(gi,[1])=new_rec(rv_index,(1:1));
end
% % PLOTS % %
figure
% orient tall;
subplot(2,1,1),
hist(detection(:,1),N);
xlabel('Detection Index');
ylabel('Number of Occurences');
fid1=[fid,' SYNTHETIC'];
title(fid1);

subplot(2,1,2),
bar(new_rec(:,1), new_rec(:,2));
xlabel('Detection Index')
ylabel('Probability')
fid2=[fid,' ORIGINAL'];
title(fid2);
clear all;
clc; close all;

load FSK_PSK_T_15_256_10_s; % Loads the I and Q for the P4 signal, 1 cycle N^2 = 128
cpp = 10;
NN = 256;

load FSK_PSK_C_1_15_5_1_s; % Loads the I and Q for the P4 signal, 1 cycle N^2 = 128
seq = 1;
barker = 5;
cpf = 1;

SignalI=I(1:size(I,1)/2)'; % Signal repeats after 896 intervals, 128 phase codes*1 samples/phase*3
 % SAR*5
SignalQ=Q(1:size(Q,1)/2)';
SignalQ_j=SignalQ.*j; % Make Q the complex part
u1=SignalI+SignalQ_j; % Create signal and reference signal
u2=SignalI-SignalQ_j;

tau = 1;
T = 1;
N = 1; % Adjust number of pulses in the train
tx = length(u2); % Number of samples in the time domain
tb = T/tx; % Code(chip) period
vstep = 500; % Steps in the freq shift dimension - (600 FOR COSTAS)
t=[0:tx-1]*tau/tx; % Steps in the time dimension, positive
dt = t(2)-t(1);
z=[]; % Empty result matrix
v=linspace(-50/tau,50/tau,vstep); % Width in the freq shift dimension - (TARGET, 50 FOR COSTAS)
for m= 1:vstep
 mult=[];
 mult = exp(j*2*pi*v(m)*t);
 u2ex = u2.*mult;
 u3 = conj(u2ex); % Transfer in order to use built in function
c = xcorr(u3,u1).*dt; % Using the built in correlation function
 universal=[];
 dummy = (pi*v(m)*T);
 dummy = dummy + (dummy==0)*eps;
 universal = abs(sin(dummy*N)/(N*sin(dummy)));
 e= (c.* universal);
 z=[z;abs(e)]; % Normalizing the freq shift axis
end
t=[fliplr(-t),t(2:tx)]; % Creating a negative time axis
t=%(t(tb*tx)); % Normalizing the time axis
z = z/max(max(z));
% FOR FSK_PSK_TARGET, USE THE FOLLOWING

figure
contour(t,v,z), grid on
colorbar
title(['FSK/PSK Target Code, Cpp = ', num2str(cpp) ', N hops = ' num2str(NN)])
xlabel('Normalized \tau')
ylabel('Normalized \nu')
axis tight

figure
plot(t,z((vstep+1)/2,:)), grid on
title('PSK/FSK Target code, Cut along the 0 doppler axis')
xlabel('Normalized \tau')
ylabel('Magnitude')
axis tight

figure
plot(v,z(:,tx)), grid on
title('PSK/FSK Target code, Cut along the 0 delay axis')
xlabel('Normalized \nu')
ylabel('Magnitude')
axis tight

% FOR FSK_PSK_COSTAS, USE THE FOLLOWING

figure
% contour(t,v,z), grid on
% colorbar
% title(['PAF for a FSK/PSK Costas Code, Costas sequence = ', num2str(seq) ', Barker Bits = ' num2str(barker) ', Cycles per Phase = ' num2str(cpf)])
% xlabel('Normalized \tau')
% ylabel('Normalized \nu')
% axis tight
%
% figure
% plot(t,z((vstep+1)/2,:)), grid on
% title('PSK/FSK Costas code, Cut along the 0 doppler axis')
% xlabel('Normalized \tau')
% ylabel('Magnitude')
% axis tight
%
% figure
% plot(v,z(:,tx)), grid on
% title('PSK/FSK Costas code, Cut along the 0 delay axis')
% xlabel('Normalized \nu')
% ylabel('Magnitude')
% axis tight
%
% %Doing it again
% index = 0;
% for ii = 1:(cpf*375):((size(I,1))/2)
% for pp = 0:74
%% Signal(index+1) = I(ii+pp);
%% SignalQ(index+1) = Q(ii+pp);
%% index = index + 1;
%% end
%% end
%% SignalQ_j=SignalQ.*j; % Make Q the complex part
%% u1=SignalI+SignalQ_j; % Create signal and reference signal
%% u2=SignalI-SignalQ_j;

%% tau = 1;
%% T = 1;
%% N = 1; % Adjust number of pulses in the train
%% tx = length(u2); % Number of samples in the time domain
%% tb = T/tx; % Code(chip) period
%% vstep = 500; % Steps in the freq shift dimension - (600 FOR COSTAS)
%% t=[0:tx-1]*tau/tx; % Steps in the time dimension, positive
%% dt = (t(2)-t(1));
%% z=[]; % Empty result matrix
%% v= linspace(-20/tau,20/tau,vstep); % Width in the freq shift dimension - (TARGET, 50 FOR COSTAS)
%% for m=1:vstep
%% mult=[];
%% mult = exp(j*2*pi*v(m)*t);
%% u2ex= u2.*mult;
%% u3 = conj(u2ex); % Transfer in order to use built in function
%% c = xcorr(u3,u1).*dt; % Using the built in correlation function
%% universal=[]; % Multiplying with the universal function
%% dummy = (pi*v(m)*T);
%% dummy = dummy + (dummy==0)*eps;
%% universal = abs(sin(dummy*N))/(N*sin(dummy));
%% e= (c.* universal);
%% z=[z;abs(e)]; % Normalizing the freq shift axis
%% end
%% t=[fliplr(-t),t(2:tx)]; % Creating a negative time axis
%% t=(t/(tb*tx)); % Normalizing the time axis
%% z = z/max(max(z));

%% figure
%% contour(t,v,z),grid on
%% colorbar
%% title(['PAF for a FSK/PSK Costas Code, Costas sequence = ', num2str(seq) ' , Barker Bits = ' num2str(barker) ', Cycles per Phase = ' num2str(cpf)])
%% xlabel('Normalized \tau')
%% ylabel('Normalized \nu')
%% axis tight
%% figure
%% plot(t,z((vstep+1)/2,:)), grid on
%% title('PSK/FSK Costas code, Cut along the 0 doppler axis')
%% xlabel('Normalized \tau')
%% ylabel('Magnitude')
%% axis tight

% figure
% plot(v,z(:,tx)), grid on
% title('PSK/FSK Costas code, Cut along the 0 delay axis')
% xlabel('Normalized \nu')
% ylabel('Magnitude')
% axis tight
%
% %%%%%%%%%%% FOR OTHER PLOTS, USE THE FOLLOWING FIGURES%%%%%%%%%%%%%%%%%%%%%%%%
%
% figure
% colormap(jet); caxis=[3 1];
% mesh(t,v,z),grid on
% axis tight
%
% figure
% mesh(t,v,z),grid on
% view(0,0)
% axis tight
%
% figure
% mesh(t,v,z),grid on
% view(90,0)
% axis tight

154
APPENDIX C. LIST OF LPI RADAR SIGNALS ANALYZED

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>CARRIER FREQUENCY OR HOPPING SEQUENCE (kHz)</th>
<th>BW (Hz)</th>
<th>NPBB/CPP</th>
<th>NUMBER OF BITS / PHASES AND MODULATION PERIOD</th>
<th>MODULATION TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1_7_11_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>11</td>
<td>BPSK</td>
</tr>
<tr>
<td>B_1_7_11_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>11</td>
<td>BPSK</td>
</tr>
<tr>
<td>B_1_7_11_1_s.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>11</td>
<td>BPSK</td>
</tr>
<tr>
<td>B_1_7_11_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>11</td>
<td>BPSK</td>
</tr>
<tr>
<td>B_1_7_11_5_0.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>11</td>
<td>BPSK</td>
</tr>
<tr>
<td>B_1_7_11_5_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>11</td>
<td>BPSK</td>
</tr>
<tr>
<td>B_1_7_7_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>7</td>
<td>BPSK</td>
</tr>
<tr>
<td>B_1_7_7_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>7</td>
<td>BPSK</td>
</tr>
<tr>
<td>B_1_7_7_1_s.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>7</td>
<td>BPSK</td>
</tr>
<tr>
<td>B_1_7_7_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>7</td>
<td>BPSK</td>
</tr>
<tr>
<td>B_1_7_7_5_0.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>7</td>
<td>BPSK</td>
</tr>
<tr>
<td>B_1_7_7_5_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>7</td>
<td>BPSK</td>
</tr>
<tr>
<td>FR_1_7_16_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
<td>FRANK</td>
</tr>
<tr>
<td>FR_1_7_16_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
<td>FRANK</td>
</tr>
<tr>
<td>FR_1_7_16_1_s.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
<td>FRANK</td>
</tr>
<tr>
<td>FR_1_7_16_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>16</td>
<td>FRANK</td>
</tr>
<tr>
<td>FR_1_7_16_5_0.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>16</td>
<td>FRANK</td>
</tr>
<tr>
<td>FR_1_7_16_5_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
<td>FRANK</td>
</tr>
<tr>
<td>FR_1_7_64_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
<td>FRANK</td>
</tr>
<tr>
<td>FR_1_7_64_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
<td>FRANK</td>
</tr>
<tr>
<td>FR_1_7_64_1_s.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
<td>FRANK</td>
</tr>
<tr>
<td>FR_1_7_64_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
<td>FRANK</td>
</tr>
<tr>
<td>FR_1_7_64_5_0.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
<td>FRANK</td>
</tr>
<tr>
<td>FR_1_7_64_5_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
<td>FRANK</td>
</tr>
<tr>
<td>F_1_7_250_20_-6.mat</td>
<td>1</td>
<td>250</td>
<td>X</td>
<td>20</td>
<td>FMCW</td>
</tr>
<tr>
<td>F_1_7_250_20_0.mat</td>
<td>1</td>
<td>250</td>
<td>X</td>
<td>20</td>
<td>FMCW</td>
</tr>
<tr>
<td>F_1_7_250_20_s.mat</td>
<td>1</td>
<td>250</td>
<td>X</td>
<td>20</td>
<td>FMCW</td>
</tr>
<tr>
<td>F_1_7_250_30_-6.mat</td>
<td>1</td>
<td>250</td>
<td>X</td>
<td>30</td>
<td>FMCW</td>
</tr>
<tr>
<td>F_1_7_250_30_0.mat</td>
<td>1</td>
<td>250</td>
<td>X</td>
<td>30</td>
<td>FMCW</td>
</tr>
<tr>
<td>F_1_7_250_30_s.mat</td>
<td>1</td>
<td>250</td>
<td>X</td>
<td>30</td>
<td>FMCW</td>
</tr>
<tr>
<td>F_1_7_500_20_-6.mat</td>
<td>1</td>
<td>500</td>
<td>X</td>
<td>20</td>
<td>FMCW</td>
</tr>
<tr>
<td>F_1_7_500_20_0.mat</td>
<td>1</td>
<td>500</td>
<td>X</td>
<td>20</td>
<td>FMCW</td>
</tr>
<tr>
<td>F_1_7_500_20_s.mat</td>
<td>1</td>
<td>500</td>
<td>X</td>
<td>20</td>
<td>FMCW</td>
</tr>
<tr>
<td>F_1_7_500_30_-6.mat</td>
<td>1</td>
<td>500</td>
<td>X</td>
<td>30</td>
<td>FMCW</td>
</tr>
<tr>
<td>F_1_7_500_30_0.mat</td>
<td>1</td>
<td>500</td>
<td>X</td>
<td>30</td>
<td>FMCW</td>
</tr>
<tr>
<td>F_1_7_500_30_s.mat</td>
<td>1</td>
<td>500</td>
<td>X</td>
<td>30</td>
<td>FMCW</td>
</tr>
</tbody>
</table>

Table 49. Test matrix of LPI radar signals analyzed.
<table>
<thead>
<tr>
<th>Filename</th>
<th>Length</th>
<th>Rate</th>
<th>Samples</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1_1_7_16_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>P1_1_7_16_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>P1_1_7_16_1_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>P1_1_7_16_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>P1_1_7_16_5_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>P1_1_7_16_5_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P1_1_7_64_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>P1_1_7_64_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>P1_1_7_64_1_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P1_1_7_64_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>P1_1_7_64_5_0.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P1_1_7_64_5_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P2_1_7_16_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>P2_1_7_16_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>P2_1_7_16_1_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P2_1_7_16_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>P2_1_7_16_5_0.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P2_1_7_16_5_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P2_1_7_64_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>P2_1_7_64_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>P2_1_7_64_1_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P2_1_7_64_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>P2_1_7_64_5_0.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P2_1_7_64_5_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P3_1_7_16_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>P3_1_7_16_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>P3_1_7_16_1_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P3_1_7_16_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>P3_1_7_16_5_0.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P3_1_7_16_5_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P3_1_7_64_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>P3_1_7_64_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>P3_1_7_64_1_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P3_1_7_64_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>P3_1_7_64_5_0.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P3_1_7_64_5_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P4_1_7_16_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>P4_1_7_16_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>P4_1_7_16_1_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P4_1_7_16_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>P4_1_7_16_5_0.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P4_1_7_16_5_s.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>P4_1_7_64_1_-6.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>P4_1_7_64_1_0.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 50. Test matrix of LPI radar signals analyzed.
<table>
<thead>
<tr>
<th>File Name</th>
<th>Value1</th>
<th>Value2</th>
<th>Value3</th>
<th>Value4</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4_1_7_64_1_s.mat</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>64</td>
<td>P4</td>
</tr>
<tr>
<td>P4_1_7_64_5_-6.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
<td>P4</td>
</tr>
<tr>
<td>P4_1_7_64_5_0.mat</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>64</td>
<td>P4</td>
</tr>
<tr>
<td>C_1_15_10_-6.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>-</td>
<td>10</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>C_1_15_10_0.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>-</td>
<td>10</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>C_1_15_10_s.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>-</td>
<td>10</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>C_1_15_20_-6.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>-</td>
<td>20</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>C_1_15_20_0.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>-</td>
<td>20</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>C_1_15_20_s.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>-</td>
<td>20</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>C_2_17_10_-6.mat</td>
<td>2, 6, 3, 8, 7, 5, 1</td>
<td>-</td>
<td>10</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>C_2_17_10_0.mat</td>
<td>2, 6, 3, 8, 7, 5, 1</td>
<td>-</td>
<td>10</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>C_2_17_10_s.mat</td>
<td>2, 6, 3, 8, 7, 5, 1</td>
<td>-</td>
<td>10</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>C_2_17_20_-6.mat</td>
<td>2, 6, 3, 8, 7, 5, 1</td>
<td>-</td>
<td>20</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>C_2_17_20_0.mat</td>
<td>2, 6, 3, 8, 7, 5, 1</td>
<td>-</td>
<td>20</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>C_2_17_20_s.mat</td>
<td>2, 6, 3, 8, 7, 5, 1</td>
<td>-</td>
<td>20</td>
<td>1</td>
<td>COSTAS</td>
</tr>
<tr>
<td>FSK_PSK_C_1_15_11_1_0.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>1000</td>
<td>1</td>
<td>11</td>
<td>FSK/PSK COSTAS</td>
</tr>
<tr>
<td>FSK_PSK_C_1_15_11_1_s.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>1000</td>
<td>1</td>
<td>11</td>
<td>FSK/PSK COSTAS</td>
</tr>
<tr>
<td>FSK_PSK_C_1_15_11_5_0.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>200</td>
<td>5</td>
<td>11</td>
<td>FSK/PSK COSTAS</td>
</tr>
<tr>
<td>FSK_PSK_C_1_15_11_5_s.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>200</td>
<td>5</td>
<td>11</td>
<td>FSK/PSK COSTAS</td>
</tr>
<tr>
<td>FSK_PSK_C_1_15_5_1_0.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>1000</td>
<td>1</td>
<td>5</td>
<td>FSK/PSK COSTAS</td>
</tr>
<tr>
<td>FSK_PSK_C_1_15_5_1_s.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>1000</td>
<td>1</td>
<td>5</td>
<td>FSK/PSK COSTAS</td>
</tr>
<tr>
<td>FSK_PSK_C_1_15_5_5_0.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>200</td>
<td>5</td>
<td>5</td>
<td>FSK/PSK COSTAS</td>
</tr>
<tr>
<td>FSK_PSK_C_1_15_5_5_s.mat</td>
<td>4, 7, 1, 6, 5, 2, 3</td>
<td>200</td>
<td>5</td>
<td>5</td>
<td>FSK/PSK COSTAS</td>
</tr>
<tr>
<td>FSK_PSK_T_15_128_10_0.mat</td>
<td>-</td>
<td>3600</td>
<td>10</td>
<td>128 Hops</td>
<td>FSK/PSK TARGET</td>
</tr>
<tr>
<td>FSK_PSK_T_15_128_10_s.mat</td>
<td>-</td>
<td>3600</td>
<td>10</td>
<td>128 Hops</td>
<td>FSK/PSK TARGET</td>
</tr>
<tr>
<td>FSK_PSK_T_15_128_5_0.mat</td>
<td>-</td>
<td>4200</td>
<td>5</td>
<td>128 Hops</td>
<td>FSK/PSK TARGET</td>
</tr>
<tr>
<td>FSK_PSK_T_15_128_5_s.mat</td>
<td>-</td>
<td>4200</td>
<td>5</td>
<td>128 Hops</td>
<td>FSK/PSK TARGET</td>
</tr>
<tr>
<td>FSK_PSK_T_15_256_10_0.mat</td>
<td>-</td>
<td>3600</td>
<td>10</td>
<td>256 Hops</td>
<td>FSK/PSK TARGET</td>
</tr>
<tr>
<td>FSK_PSK_T_15_256_10_s.mat</td>
<td>-</td>
<td>3600</td>
<td>10</td>
<td>256 Hops</td>
<td>FSK/PSK TARGET</td>
</tr>
<tr>
<td>FSK_PSK_T_15_256_5_0.mat</td>
<td>-</td>
<td>4200</td>
<td>5</td>
<td>256 Hops</td>
<td>FSK/PSK TARGET</td>
</tr>
<tr>
<td>FSK_PSK_T_15_256_5_s.mat</td>
<td>-</td>
<td>4200</td>
<td>5</td>
<td>256 Hops</td>
<td>FSK/PSK TARGET</td>
</tr>
<tr>
<td>T_1_7_1_s.mat</td>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>TEST SIGNAL 1 CARRIER</td>
</tr>
<tr>
<td>T_12_7_2_s.mat</td>
<td>1000 and 2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>TEST SIGNAL 2 CARRIERS</td>
</tr>
</tbody>
</table>

Table 51. Test matrix of LPI radar signals analyzed.
LIST OF REFERENCES

[15] Pace, P.E. - “Introduction to LPI Radars”, NPS, Class Notes for Course EC 4690, SPRING 2002;

1. Defense Technical Information Center
 8725 John J. Kingman Rd., STE 0944
 Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
 Naval Postgraduate School
 411 Dyer Rd.
 Monterey, CA 93943-5121

3. IW, EW Curricular Officer, Code 37
 Naval Postgraduate School
 Monterey, CA 93943-5121

4. Dr. Dan C. Boger, Chairman, Code 37
 Naval Postgraduate School
 Monterey, CA 93943-5121

5. Dr. Phillip E. Pace, Code EC
 Naval Postgraduate School
 Monterey, CA 93943-5121

6. Dr. Herschel H. Loomis, Code EC
 Naval Postgraduate School
 Monterey, CA 93943-5121

7. COL Narcelio Ramos Ribeiro
 CGEGAR / COMGAR
 Comando da Aeronautica, Ed. Anexo
 Esplanada dos Ministerios
 Brasilia, DF, 70064-901, Brazil

8. Dr. Jose Edimar Barbosa
 Aeronautical Institute of Technology - ITA
 Praça Marechal Eduardo Gomes, 50
 Divisão de Engenharia Eletrônica - IEEE
 São José Dos Campos, SP, 12229 – 900, Brazil

9. CAPT Antonio F. Lima Jr
 Av. Maria Luiza Americano, 2163-A, Parque do Carmo
 São Paulo, SP, 08280-340, Brazil