Award Number: DAMD17-99-1-9563

TITLE: Multidisciplinary Strategies in the Prevention and Early Detection of Ovarian Cancer

PRINCIPAL INVESTIGATOR: Samuel C. Mok

CONTRACTING ORGANIZATION: Brigham and Women's Hospital
 Boston, Massachusetts 02115

REPORT DATE: September 2001

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
 Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Title and Subtitle: Multidisciplinary Strategies in the Prevention and Early Detection of Ovarian Cancer

Authors: Samuel C. Mok

Performing Organization Name(s) and Address(es): Brigham and Women's Hospital, Boston, Massachusetts 02115

Abstract:

This program project consists of 4 research projects. Project I studies genetic changes in microdissected microscopic Stage I ovarian cancer cells, and identifies markers for early detection of the disease. Using state of the art technology, we have shown that different histological subtypes of ovarian cancer have different allelic loss profiles. Furthermore, we have also identified several candidate serum markers including prostatin, and GA733 autoantibody, which may be used as markers for early detection of ovarian cancer.

Project II evaluates the use of Protease M as an early diagnostic marker for ovarian cancer. We have shown that Protease M is secreted by ovarian cancer cells, and is highly expressed in ovarian tumors of different stages and subtypes. Project III studies the effect of hormones on growth and differentiation of normal ovarian surface epithelial cells, evaluate whether they contributes to ovarian carcinogenesis. We have established an *in vitro* system to evaluate the effect the various hormones on the growth of normal ovarian epithelial cells. We have shown that E1, E2, and FSH can induce cell proliferation and enhance colony formation potential in soft agar.

Project IV uses lysophospholipids (LPA) to develop a highly sensitive and specific marker for the early detection of ovarian cancer. Using the newly developed ESI-MS-based method, we have found that besides LPA, other lysosphospholipids, including alkyl-LPA, alkenyl-LPA, LPI, SPC, and LPC are also elevated in ascites from patients with ovarian cancer. Receptors of SPC and LPC have also been identified.

Subject Terms: Ovarian cancer, carcinogenesis, marker, LPA microdissection

Security Classification of Report: Unclassified

Security Classification of This Page: Unclassified

Security Classification of Abstract: Unclassified

Number of Pages: 258

Price Code: Unlimited
Table of Contents

Cover.. 1
SF 298... 2
Table of Contents... 3
Introduction... 4–5
Body.. 6–15
Key Research Accomplishments... 15–16
Reportable Outcomes... 16–19
Conclusions... 19–20
References.. 20–21
Appendices.. 21–22
INTRODUCTION

Project 1: Early genetic changes in human epithelial ovarian tumors

Ovarian cancer is the fourth cause of death from all cancers among American women and ranks the highest among deaths from gynecologic malignancies. Although the cure rate with stage I ovarian cancer approaches 90%, two-third of patients are diagnosed with advanced intra-peritoneal metastatic disease, with five year survival rate of 15 to 20%. Therefore, it is of paramount importance to identify a marker(s) for early diagnosis of the disease. However, it has been rare to identify Stage I disease and to see transition within a malignant tumor from benign to malignant epithelium which might help us to identify early genetic changes during ovarian cancer development. Recent histologic studies on prophylactic ovaries from high-risk individuals showed the presence of microscopic premalignant and malignant epithelia suggesting that they may create an identifiable milieu from which common epithelial tumors of the ovary will mostly likely arise. Molecular genetic study on these microscopic malignant epithelia would provide us with early genetic events during ovarian cancer development. We therefore propose first, to perform LOH study on specific loci on chromosome 1p, 3p, 5q, 6q, 7q, 9p, 11p, 11q, 12p, 12q, 14q, 17p, 17q, 22q and Xq by polymerase chain reaction (PCR) analysis of tandem repeat polymorphisms; second, to perform immunohistochemistry study on specific oncogene and tumor suppressor genes on paraffin sections prepared from ovaries with microscopic malignant serous lesions and to study specific oncogene activation and tumor suppressor gene inactivation by single strand polymorphism (SSCP) analysis and direct PCR sequencing on microdissected malignant serous epithelium obtained from paraffin-embedded ovaries; and third, to perform RNA fingerprinting on mRNA isolated from microdissected normal and malignant ovarian epithelial cells prepared from normal ovarian surface epithelium and early stage serous ovarian carcinoma and to identify differentially expressed genes in these early stage epithelial ovarian cancer cells. We believe that these studies should provide us with early genetic changes during ovarian cancer progression and serum markers which can be used for early diagnosis of the disease which will significantly improve the survival rate of the patient.

Project 2: A Potential Serum Marker for Ovarian Cancer

The poor prognosis of ovarian cancer is mainly due to the lack of sensitive tests for early detection of the disease, which is often asymptomatic. Studies have shown that ovarian cancer detected in early stage has a high five-year survival rate of exceeding 90% (1, 2). Therefore, identification of molecular marker for early stage ovarian cancer detection is of paramount importance. This project is to study a cDNA sequence which we have recently identified by differential display. The encoded protein is highly homologous to trypsin and members of the kallikrein protease family. The novel protease, named as protease M, is highly expressed in many invasive epithelial ovarian cancer tissues and cell lines, but not in normal ovarian cell cultures (3). Since the preliminary data showed that upregulation of protease M was also observed in stage I tumors and the protease was detectable in the conditioned media culturing the tumor cells, the proposed work is to evaluate the potential use of protease M as a serum marker for early detection of ovarian cancer and for monitoring treatment response of ovarian cancer patients, similar to the use of another kallikrein member, prostate-specific antigen (PSA), in the diagnosis and prognosis of prostate cancer (4). The three objectives of this project are: 1) to study the expression level of protease M in normal human ovaries and ovarian tumors of different stages and histological grades; 2) to characterize protease M and to identify the physiological substrates for protease M by an innovative cyclic peptide library screening method; 3) to develop a sensitive, specific, and reproducible method for measuring the circulating protease M in the sera of ovarian cancer patients.
The results of this study will have a significant impact upon developing a substantially more efficient early detection program with an increased probability of reducing mortality from ovarian cancer. The characterization of protease M protein and identification of physiological substrates for protease M may provide insights into the probable function of this novel protease in the pathogenesis of ovarian cancer. The identified optimal peptide substrates with high specificity and affinity for protease M will have significant value in the development of a carrier for targeted delivery of cytotoxic agents to protease M-secreting ovarian cancer cells.

Project 3: Hormones as etiological factors of ovarian carcinogenesis

Ovarian cancer (OC) is the highest-ranking cause of death from gynecological cancers among American women. All cell types of the human ovary may undergo neoplastic transformation; the vast majority (80-90%) of malignant tumors are derived from the single layer of epithelial cells covering the ovarian surface. Although the etiology of OC is still unknown, several theories have been put forth to explain epidemiologic correlates. Nulliparity, lower number of pregnancies, never breast-feeding, and infertility are linked to increased incidence of ovarian cancer. Since these conditions may increase the number of ovulations in a woman's life-time, a unified hypothesis has been proposed to explain the interrelationships between OC and these contributory factors. It has been postulated that "incessant ovulation" leads to neoplastic transformation of HOSE cells. It is believed that following ovulation, ovarian epithelial cells undergo rapid proliferation to repair the ruptured epithelium. While the etiology of OC remains elusive, epidemiological observations have implicated ovarian steroids and/or gonadotropins, particularly when present at abnormal levels during and after menopause, as probable risk factors of OC. Understanding the role of hormones in ovarian carcinogenesis is of utmost importance to combat this deadly disease.

Project 4: Development of a highly sensitive and specific method for the early detection and a strategy for the early intervention of ovarian cancer

Ovarian carcinoma has the worst prognosis of any gynecological malignancy, due to the difficulty of early detection, the high metastatic potential of the tumor and the lack of highly effective treatment for metastatic disease. We have shown previously that lysophosphatidic acid (LPA) may represent a useful marker for the detection of ovarian cancer (5). The method used for LPA determination was a gas chromatographic method, which is cumbersome to perform. We have proposed to develop a mass spectrometry-based method to detect lysophospholipids in human body fluids (Task 1). This method will then be used to analyze lysolipids in blood samples collected from patients with ovarian cancer, other diseases, or healthy controls to determine whether one or more of these lipids may be useful for the detection of ovarian cancer (Task 1). In Task 2, we hypothesize that elevated levels of LPA in blood and ascites from patients with ovarian cancer are due to an abnormality of LPA production and/or degradation. We propose to study the enzymes controlling levels of LPA in ovarian cancer cells and/or body fluids from patients with ovarian cancer. If an abnormal enzymatic activity associated with ovarian cancer is identified, it may represent a target for early intervention, since LPA is likely to be involved in ovarian tumor cell growth, angiogenesis, and metastasis (reviewed in ref 6).
Task 1. Tissue collection, processing and microdissection (months 1-36): A total of 48 stage I epithelial ovarian carcinomas have been collected. Tissue collection will be continued in month 24-36.

Task 2. To perform loss of heterozygosity (LOH) studies on specific loci on chromosome 1p, 3p, 5q, 6q, 7q, 9p, 11p, 11q, 12p, 12q, 14q, 17p, 17q, 22q and Xq in microscopic stage I serous ovarian carcinomas by polymerase chain reaction (PCR) analysis of tandem repeat polymorphisms (months 1-36).

a). Tissue sectioning, and DNA extraction (months 1-12): Tissue sectioning, microdissection, and DNA extraction have been completed.

b). LOH study (months 3-36): also see attached manuscripts in appendix

Using a high-throughput PCR-based method combined with laser capture microdissection and whole genome amplification techniques, we perform allelotyping on DNA isolated from 48 stage I sporadic epithelial ovarian cancer including 15 serous, 9 mucinous, 12 endometrioid, and 12 clear cell carcinomas. Among them, four are microscopically detected tumors (Fig. 1a & b). A total of 20 fluorescent-labeled microsatellite markers spanning chromosome 5 and 6, and 27 markers spanning chromosome 17 were used. The percentage of loss of heterozygosity (LOH) for each marker and the fractional allelic loss (FAL) for each sample were calculated and compared among different histological types. High frequencies of loss on chromosome 5 were identified at loci D5S428 (48%), D5S424 (32%), and D5S630 (32%). Chromosome 6 exhibited high frequencies of LOH at loci D6S1574 (46%), D6S287 (42%), D6S441 (45%), D6S264 (60%) and D6S281 (35%). These results suggest that multiple tumor suppressor genes are located on 5 distinct regions on chromosomes 5 and 6, i.e., 5p15.2, 5q13-21, 6p24-25, 6q21-23 and 6q25.1-27, and may be involved in the early development of ovarian carcinomas. However, there were no significant difference in LOH frequencies among tumors with different sizes, grades, and histological subtypes.
On chromosome 17, allelotyping on all 48 tumors showed high frequencies of LOH (>45%) at loci D17S849 (17p13.2), D17S799 (17p12), and D17S1862 (17q24.3) (Fig. 2). Increased number of loci showed more than 45% LOH rate when the four histological subtypes were analyzed separately. Serous tumors demonstrated significantly higher LOH rate in 7 of 27 loci examined than other tumor types (p<0.05). Significant difference in LOH rate was also observed in 18 of 27 loci screened when tumors with different differentiations were compared (P<0.05). When the average FAL rate was compared among different tumor types, there was no significant difference among grade I tumors. However, grade 2 serous, mucinous, and clear cell tumors showed significantly higher FAL rate than endometrioid tumors (p<0.01); and grade 3 serous and endometrioid tumors showed significantly higher FAL rate than both mucinous and clear cell types (p<0.01). Among the microscopic tumors, both grade 3 serous (case 99N51) and endometrioid (case774) adenocarcinomas showed significantly higher FAL than the grade 1 serous (case 3317) (p<0.0001) and the grade 2 serous (case 7024) (p<0.02) adenocarcinomas (Fig. 2). Significant difference in FAL between the microscopically detected carcinomas and other stage I invasive ovarian carcinomas with the same grade was not detected.

![Figure 1](image1.png)

Figure 1. (a) Representative example of LCM of a microscopically identified high grade serous adenocarcinoma. (b). Allelotyping patterns on chromosome 17 in a stage I serous ovarian adenocarcinoma. Shown in this figure are representative electropherogram traces on four loci examined. The top panel depicts the peaks for each of the four loci in the stromal tissue from the same tumor. The bottom panel from left to right shows loss of heterozygosity (LOH), retention of heterozygosity, (HET), uninformative (NI), and microsatellite instability (MIS).

![Figure 2](image2.png)

Figure 2. Detailed deletion map of stage I epithelial ovarian tumors. Cases are grouped under different histological types and pathological grades. Microsatellite markers used and the genetic linkage map are shown on the left. Chromosomal localizations of the markers are shown on the right. LOH (Loss of heterozygosity), red box; HET (heterozygous with no loss), green box; NI (homozygous), gray box; MSI (microsatellite instability) with both alleles retained, hatched green box; MSI with loss of one allele, hatched red box; MSI with homozygous, hatched blue box; not test, white box. S, serous; M, mucinous; E, endometrioid; C, clear cell.
Task 3. To study specific proto-oncogene activation and tumor suppressor gene inactivation in microscopic stage I ovarian carcinomas by single strand conformation polymorphism (SSCP) analysis, direct PCR sequencing and immunohistochemistry (months 1-30).

Tissue sectioning (months 1-12)
SSCP analysis and direct PCR sequencing (months 6-24)
Immunostaining of sections (months 18-30) (also see attached manuscript in appendix)

Wang VW, Bell DA, Berkowitz RS, Mok SC: TP53 is involved in the development of de novo high grade serous ovarian carcinomas. Submitted

Seven microscopically detected stage I ovarian carcinomas were identified. LCM was used to procure tumor cells from tissue sections. DNA was isolated and amplified with primer sets flanking exons 2-11 of the TP53 gene. Amplified DNA was purified and direct PCR sequencing was performed using the ABI PRISM® BigDye Terminator Cycle Sequencing system (Applied Biosystem, foster City, CA) and the ABI PRISM 310 Genetic Analyzer. Immunolocalization of the p53 protein was also performed on the same cases. The results showed that TP53 mutations and p53 over-expression were detected in all grade 2 and 3 serous adenocarcinomas but not in the two grade 1 serous adenocarcinomas (case V1834 and 3317), and the grade 3 clear cell adenocarcinoma (case S3854) (Fig. 3, Table 1).

![Electropherogram traces showing TP53 exon 7 sequences in normal (7024N) and tumor tissues (7024T). Arrow indicates a nucleotide change from C to T in the tumor tissue.](image)

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Grade</th>
<th>Histological type</th>
<th>Size</th>
<th>Loss of heterozygosity</th>
<th>Immunoreactivity</th>
<th>Exon-mutated stage (codon)</th>
<th>Nucleotide change</th>
<th>Amino acid change</th>
</tr>
</thead>
<tbody>
<tr>
<td>3317</td>
<td>1</td>
<td>serous</td>
<td>a</td>
<td>L</td>
<td>negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>97-7024</td>
<td>2</td>
<td>serous</td>
<td>8mm</td>
<td>L</td>
<td>positive</td>
<td>7 (241) TCC to TTC Ser to Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99N51</td>
<td>3</td>
<td>serous</td>
<td>2mm</td>
<td>L</td>
<td>positive</td>
<td>6 (214) CAT to CGT His to Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>774</td>
<td>3</td>
<td>endometrioid</td>
<td>2mm</td>
<td>L</td>
<td>positive</td>
<td>9 (310) AAC to ACC Asn to Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3854</td>
<td>3</td>
<td>clear cell</td>
<td>2mm</td>
<td>NL</td>
<td>negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4613</td>
<td>3</td>
<td>serous</td>
<td>6mm</td>
<td>L</td>
<td>positive</td>
<td>9 (310) AAC to ACC Asn to Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1834</td>
<td>1</td>
<td>serous</td>
<td>a</td>
<td>NL</td>
<td>negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* a. several tiny loci too small to measure; L, loss of heterozygosity; NL, no loss

Fig. 3. Electropherogram traces showing TP53 exon 7 sequences in normal (7024N) and tumor tissues (7024T). Arrow indicates a nucleotide change from C to T in the tumor tissue.

Task 4. To identify differentially expressed genes in microdissected normal ovarian surface epithelial cells and Stage I ovarian carcinoma cells by RNA fingerprinting technique (months 12-36).

Perform RNA fingerprinting (months 12-24)
Characterize differentially expressed sequences (months 16-30) (see attached manuscripts)

Using a higher throughput microarray analysis to identify differential expressed genes in early stage ovarian cancer, we have identify a total of 30 putative genes, which are differentially over-expressed in ovarian cancer cells. Two of them, prostasin and Ep-CAM have been validated and further characterized. Prostasin is a serine proteinase normally secreted by the prostate gland. Over-expression of prostasin in ovarian cancer tissues and cell lines was confirmed by real-time PCR and immunostaining. An enzyme linked immunosorbant assay was developed to quantify the amount of prostasin in serum samples. The mean (and 95% confidence interval on the mean) serum level of prostasin in ovarian cancer cases was 13.7 (10.5, 16.9) µg/ml compared to 7.5 (6.8, 8.3) µg/ml in 137 controls subjects (p<0.001, after adjustment for age and specimen source). In 16 case patients with both pre-operative and postoperative serum samples available, postoperative prostasin levels were statistically significantly lower than pre-operative levels (p<0.02). No significant correlation was observed between prostasin and CA-125 in 37 case patients with nonmucinous ovarian cancer and 100 control subjects suggesting that CA-125 may provide complementary information.

Ep-CAM is an epithelial cell adhesion molecule. Microarray analysis showed that this gene exhibited a cancer-to-HOSE ratio of 444. Real time quantitative PCR analysis revealed significant overexpression of Ep-CAM mRNA in cancer cell lines (P<0.001) and microdissected cancer tissues (p=0.035), compared to that in cultured normal HOSE and microdissected cancer tissues, respectively. Immuno-histochemical staining of paraffin block sections revealed that Ep-CAM expression was absent in stromal areas of normal ovaries or those with benign disease or cancer. In contrast, a gradient of expression was found in the germinal epithelium with ovaries from women with borderline or invasive cancer displaying the greatest level of expression, normal ovaries the least, and ovaries from women with benign tumors intermediate expression (p<0.05). No significant differences in Ep-CAM immuno-histochemical staining were observed among ovarian cancer samples with different histologic types, and grades. Early stage tumors showed significantly stronger staining than late stage tumors. Because Ep-CAM auto-antibody levels have been shown to be elevated in other cancers, such as colon, we examined levels of auto-antibody against Ep-CAM in patients with epithelial ovarian cancer and controls by enzyme-linked immunosorbent assay (ELISA). Ep-CAM auto-antibody levels (measured in units of absorbance at 450nm) were: 0.132 in 52 patients with ovarian cancer, 0.098 in 26 cases with benign gynecologic disease, and 0.090 in 26 normal women (p<0.05). When a cut-off value of 0.115 was used, the Ep-CAM auto-antibody assay showed a sensitivity of 71.2% and a specificity of 80.8% whereas the sensitivity and specificity of CA 125 measured in 52% of the same subjects were 84.6% and 88.5% with a CA 125 cut-off of 35U/ml. However, the Ep-CAM auto-antibody assay may be complementary to CA125, as indicated by low correlation coefficient and the fact that combining the test with CA 125 increased the sensitivity to 94.2% and specificity to 100.0%. This investigation has demonstrated the potential value of cDNA microarray analysis in identifying overexpressed genes in ovarian cancer, and suggests that the Ep-CAM auto-antibody may offer a biomarker for ovarian cancer with clinical usefulness.

Project 2: A Potential Serum Marker for Ovarian Cancer

Task 1: Investigation of expression of protease M in clinical samples:

1. Collection of samples: months 1 - 30
Samples are continuously collected by Dr. Samuel Mok and his associates.

2. Gene expression study: months 6 - 36

Table 2 summaries the updated expression data of protease M in ovarian tumor tissues according to different stages of the disease. For the RNA analysis, we have applied real-time quantitative RT-PCR to analyze the expression of protease M in ovarian tumors in comparison with the levels in normal ovarian epithelial primary cultures. Most of the tested tumor RNAs expressed high levels of protease M transcript. Furthermore, many of the early stage and low grade tumor samples showed up-regulation of protease M expression, suggesting that high levels of protease M expression also occur in stage I tumors, especially for invasive epithelial ovarian cancers. Up-regulation of protease M may be an early event during ovarian carcinogenesis. Since our polyclonal antibody does not work for immunohistochemistry, we could only determine the protein expression in a few samples by Western blot analysis. We are now in the process of developing monoclonal antibodies specific to protease M. One goal of this development is to obtain good antibody for detecting protease M in archival tissues by immunohistochemical staining.

<table>
<thead>
<tr>
<th>INVASIVE</th>
<th>BORDERLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA</td>
<td>PROTEIN</td>
</tr>
<tr>
<td>Stage 1</td>
<td>8/9 (89%)</td>
</tr>
<tr>
<td>Stage 2</td>
<td>4/7 (57%)</td>
</tr>
<tr>
<td>Stage 3</td>
<td>29/33 (88%)</td>
</tr>
<tr>
<td>Stage 4</td>
<td>7/7 (100%)</td>
</tr>
</tbody>
</table>

Table 2. Protease M expression in different stages of epithelial ovarian tumors. Percentage of cases that show protease M RNA and/or protein expression are tabulated according to disease stages. N.D. = not determined.

Task 2: Substrate screening:

1. Enzymatic assays for protease M and other proteases: months 8 - 16

We have to produce recombinant protease M protein for the enzymatic assays. The COS 7 cells we obtained have been confirmed later that they did not express protease M. We have tried many times of expressing the gene in different cell types without success. Sequencing of the cDNA did not reveal any mutation. The latest strategy was cloning the cDNA together with 5'-noncoding region. Unfortunately the resulting cell lines after transfection were still not producing the recombinant protein. We are now trying to use the TNT® coupled in vitro transcription/translation system (Promega) to confirm that our cDNA is workable and start from there.
We have for the generation of monoclonal antibody purpose produced and purified a prokaryotic protease M recombinant protein in fusion with maltose-binding protein (MBP), which is soluble in native reaction buffer (Fig. 3A). Preliminary enzymatic analysis using an EnzChek™ Protease Assay Kit (Molecular Probes) has shown that the protease M fusion protein possesses measurable proteolytic activity (Fig. 3C). But the enzymatic activity may be too low for accurate comparison with other proteases, probably due to the hindrance of the nonactive fusion part. Another approach is the development of a prokaryotic recombinant protein with minimal fusion counterpart.

A. Coomassie blue staining of the gel. Lane 1: the purified fusion protein; lane 2: The fusion after Factor Xa digestion. Molecular weight markers are shown on the left. The MBP-Protease M fusion protein is indicated by an arrow, whereas the protease M protein released after Factor Xa cleavage is indicated by an arrowhead.

B. Western blot analysis using the protease M-directed polyclonal antibody.

C. Proteolytic assay using an EnzChek™ Protease Assay Kit (Molecular Probes). Proteolytic activity of MBP-protease M fusion protein released the highly fluorescent BODIPY FL dye-labeled peptides. The fluorescence was quantified by a Gemini spectrofluorometer. The plot shown is Activity (arbitrary fluorescence units) versus concentration of the proteins (μg).

2. Enzymatic assays in the presence of protease inhibitors: months 16 - 20

We cannot attempt this without resolving the bottleneck of producing enough recombinant protein. We will hasten the production process to finish this work before the end of this grant.

3. Cyclic peptide library screening: months 14 - 24

Same as above.

4. Confirmation of the optimal peptide motifs by enzymatic assays: months 25 - 30

Not started yet.

Task 3: Detection of protease M in patient blood:
1. Collection of samples and storage: months 1 - 24

Samples are continuously collected by Drs. Samuel Mok and Dan Cramer.

2. Development of detection methods: months 6 - 24

We have developed a prokaryotic protease M fusion protein as mentioned above (Figure 3). We have sent the fusion protein to the company Green Mountain Antibody for immunizing the mice. However, there were very few (about 100) hybrid clones obtained after the fusion of splenocytes with the immortalized myeloma line SN1. Screening of the hybrid clones by ELISA just showed that they produced antibodies either directed only to the maltose-binding protein counterpart or to nothing. The failure of detecting any protease M-directed clones might be due to the dominant effect of the maltose binding protein counterpart to the murine immune system. We have since then changed the strategy by using more immunogen for the immunization and using Factor Xa-released protease M in the boosting of mice. We will test the titer of the antiserum very soon and hope that we will obtain positive clones this time.

3. Assays on the blood samples: months 25 - 30

Not started yet.

4. Data analysis: months 31 - 36

Not started yet.

Project 3: Hormones as etiological factors of ovarian carcinogenesis

The first objective is to determine the efficacies of selected estrogens, to achieve this the HOSE cells will be treated with increasing concentrations of estrogen for five days. The cell proliferation will be measured by MTT assay. To study the synergistic effect of FSH and estrogens cells will be cultured in the absence or presence of FSH and HOSE cell proliferation will be studied. To ascertain whether their mitogenicities are mediated via estrogen receptors receptor blocker will be used.

The second objective is to determine whether the 3 selected estrogens have direct oncogenic potentials and if they could be enhanced by FSH and blocked by the antiestrogen, ICI 182, 780. The HOSE cells will be plated and exposed to different doses of estrogen for two weeks. Soft agar assay will be used to study the transformation potential of estrogens. In a parallel experiment FSH will be added along with estrogen to study the synergistic effect on cell transformation.

The third objective is to pick up a hormonal milieu that will produce the highest frequency of \textit{in vitro} transformation. To ascertain whether progesterone and DHEA exert anti-tumorigenic action by blocking the estrogen and/or FSH-induced neoplastic transformation of HOSE cells, in vitro transformation assay will be used to assay the ability of progesterone and DHEA in inhibiting the estrogen-gonadotropin-induced transformation of HOSE cells.

Results:

\textbf{Estradiol stimulated cell proliferation is inhibited by antiestrogen}: When increasing concentrations (10^{-11}-10^{-6} M) of estrone (E1) or estradiol (E2) were added to primary HOSE 639, HOSE 770, HOSE
783, HOSE 785, and immortalized normal HOSE 642, HOSE 301, HOSE 306, HOSE 12-12, in culture, a dose dependent rise in cell proliferation was observed. About ten to fourteen fold increase was noted by 10^6 M E1 or E2 in HOSE 639, HOSE 770, HOSE 783, HOSE 785 cell lines compared to six fold increase in normal immortalized lines HOSE 642, HOSE 301, HOSE 306 and HOSE 12-12 cell lines. E1 and E2 were equally effective in causing cell proliferation in all cell lines except HOSE 12-12 cell line where E1 showed a significant enhancement of cell proliferation compared to E2. Cell lines cultured with FSH and estradiol showed significant cell growth but no additive effect was seen in any cell line tested. The ICI considered as pure antiestrogen, functions specifically by binding to and inactivating the estrogen receptor. When primary and immortalized HOSE cells were incubated with 10^{-6} M E2 A marked enhancement of cell proliferation was seen in all the cell lines with E2 and when cells were cultured with E2 and two doses (10^{-5} and 10^{-4} M) of ICI for 5 days, addition of ICI to cultures along with E2 markedly attenuated cell proliferation.

FSH and estrogen combination enhance colony formation of HOSE cells. The first criterion used to select transformed HOSE cells following exposure to estrogen is their ability to proliferate on soft agar. We have established a standard protocol to test the carcinogenicity of hormones on HOSE cells. Briefly, HOSE cells were plated at low density in 24-well plates and exposed to different doses of either estrogen (DES), FSH or combination of both FSH and DES for 14 days. After treatments, cells were removed from the 24-well plates with trypsin and replated in 6-well plates for expansion of potential transformants. Once the cell cultures reached confluence in 6-well plates they are removed and subjected to soft-agar growth selection (Freshney, 1994). After two-four weeks of soft agar selection, individual clones proliferating on soft agar plates were removed, expanded, and stored for further investigations.

Using this protocol, we discovered that HOSE cells, exposed continuously to diethylstilbestrol (DES), a potent synthetic estrogen, at concentrations between 10^{-9} to 10^{-6} M for 14 days, had acquired ability to grow on soft agar (Table 1). Approximately 4-6, 3-5 and 8-10 colonies were found in a total of 10^4 FSH treated, DES treated and FSH+DES treated cells plated on soft agar respectively. Untreated HOSE cells did not form any soft-agar colonies suggesting little or no spontaneous transformation activity. At present, the FSH+DES-induced colonies derived from these preliminary experiments are under passaging to establish stable lines.

Project 4: Development of a highly sensitive and specific method for the early detection and a strategy for the early intervention of ovarian cancer

Work accomplished as proposed in Task 1:

We have completed work proposed in items a, d, e, f, and g in Task 1. We have collected ascites samples (Task 1, item a) and developed an electrospray ionization mass spectrometry (ESI-MS)-based method for analyzing all lysophospholipids in ascites and in plasma (Task 1, item d, e, f, and g). The work accomplished is published in Anal Biochem (Ref 7; in Appendices). We have optimized conditions to extract lipids from human body fluids and established standard curves to measure each of the lysolipids quantitatively. None of the previous lipid analytical methods, including gas-chromatographic-based, and HLPC-based methods, can analyze many lysophospholipids simultaneously.
and quantitatively. The method that we developed is highly effective, reproducible, sensitive, and quantitative.

We have previously shown that lysophosphatidic acid (LPA) is present in ascites and elevated in plasma from patients with ovarian cancer (1). Using the ESI-MS based method developed, we compared lysophospholipid contents isolated in ascitic fluids from patients with ovarian cancer to those from patients with non-malignant diseases. Ascites from ovarian cancer patients contained acyl-, alkyl-, and alkenyl-LPAs, lysophosphatidylinositols (LPIs) and lysophosphatidylcholines (LPCs). In addition, we detected both sphingosine-1-phosphate (SIP) and sphingosylphosphorylcholine (SPC) in ascites from patients with ovarian cancer. Overall, ascitic fluids from patients with ovarian cancer contain significantly higher levels of lysophospholipids than those from patients with non-malignant diseases (Ref 7; in Appendices). We have previously shown that LPA stimulates tumor cell proliferation. The high levels of bioactive lipids may play important roles in tumor development and metastasis. Furthermore, these lipids may represent useful diagnostic, prognostic markers and/or novel therapeutic target(s) of ovarian cancer.

The work proposed in items b, c, h, and i in Task 1 has been partially accomplished. We have analyzed lysophospholipid contents in a total of 155 plasma samples, including 15 healthy controls, 24 patients with ovarian cancer, 32 patients with other malignancies, 65 patients with benign gynecological diseases, and 19 patients with family history of ovarian and/or breast cancers. We are in the process of analyzing all data statistically. Fig. 4 (in the appendices) shows that levels of LPA, LPI, and SPC were significantly (P < 0.05) elevated in ovarian cancer patients, compared with healthy controls. In contrast, levels of other lipids tested, including LPC and lyso-PAF, were not significantly different in plasma from patients with ovarian cancer and healthy controls. We are in the process of analyzing whether combined measurements of LPA, LPI, and SPC would increase sensitivity and/or specificity of the test.

Work accomplished as proposed in Task 2:

We have proposed to develop a strategy for the early intervention of ovarian cancer through controlling LPA levels. We hypothesize that ovarian cancer cells may be defective in LPA degradation and/or possess the ability to produce abnormally high levels of LPA. Indeed, we have found a lysophospholipase D (LysoPLD) activity in ovarian cancer ascites, but not in ascites from patients with non-malignant diseases (Fig. 5, below). This activity is sensitive to EDTA and EGTA treatment, suggesting that calcium ions are required for the enzymatic activity.

LPA Production in Ascites
We have performed functional analyses of alkyl- and alkenyl-LPA (al-LPAs) in ovarian cancer cells, and found that they are elevated and stable in ovarian cancer ascites, which represents an \textit{in vivo} environment for ovarian cancer cells. They stimulated DNA synthesis and proliferation of ovarian cancer cells. In addition, they induced cell migration and the secretion of a pro-angiogenic factor, interleukin-8 (IL-8), in ovarian cancer cells. The latter two processes are potentially related to tumor metastasis and angiogenesis, respectively. Al-LPAs induced diverse signaling pathways in ovarian cancer cells. Their mitogenic activity depended on the activation of the $G_{i/o}$ protein, phosphatidylinositol-3 kinase (PI3K), and mitogen-activated protein (MAP) kinase kinase (MEK), but not p38 MAP kinase. The S473 phosphorylation of Akt by these lipids required activation of the $G_{i/o}$ protein, PI3K, MEK, p38 MAP kinase, and Rho. On the other hand, cell migration induced by al-LPAs depended on activities of the $G_{i/o}$ protein, PI3K, and Rho, but not MEK. These data strongly suggest that al-LPAs may play important roles in ovarian cancer development and therefore may represent novel targets for tumor intervention as we proposed in Task 2. A manuscript describing these works is enclosed in the appendices.

We have shown that SPC enhances production of the proangiogenic factor, interleukin-8 (IL-8) (8). LPC may be involved in regulating DNA synthesis and proliferation (our unpublished results). Therefore, these lipids may be useful targets for therapy. While receptors for LPA have been identified in the past few years, the receptors for SPC and LPC were unknown previously. We have recently identified receptors for SPC and LPC (9-11; reprints in the appendices).

\textbf{KEY RESEARCH ACCOMPLISHMENTS}
Project 1: Early genetic changes in human epithelial ovarian tumors
- Six manuscripts have either been published or submitted.
- Techniques including microdissection, whole genome amplification, high throughput allelotyping, and signal amplification system for microarray analysis have been established.
- Two potential serum markers which may be used for early detection of ovarian cancer have been identified.

Project 2: A Potential Serum Marker for Ovarian Cancer
- Gene expression analysis of the tumor samples has demonstrated that protease M is highly expressed in ovarian tumors of various stages and subtypes but not in the normal ovarian epithelial cells.
- Protease M fusion proteins have been made. Different strategies will be tried to produce monoclonal antibodies specific to protease M.

Project 3: Hormones as etiological factors of ovarian carcinogenesis
- One abstract and one manuscript have been published
- An in vitro system has been established to evaluate the effect of hormones on the growth of ovarian surface epithelial cells.

Project 4: Development of a highly sensitive and specific method for the early detection and a strategy for the early intervention of ovarian cancer
- Developed a highly sensitive and reproducible electrospray mass spectrometry-based method to analyze lysophospholipids quantitatively.
- Detected for the first time alkyl-LPA and alkenyl-LPA in human body fluids, including plasma and ascites.
- Higher concentrations of bioactive lysophospholipids, including alkyl-, alkenyl-, acyl-LPAs, lysophosphatidylinositol (LPI), lysophosphatidylcholine (LPC), and sphingosylphosphorylcholine (SPC), are present in ascites from patients with ovarian cancer, compared to patients with non-malignant diseases. These lipid molecules 1) may represent useful diagnostic and/or prognostic markers for ovarian cancer; 2) may be useful in clinical management; and 3) may be novel therapeutic targets.
- After analyses of lysophospholipids in plasma samples from patients with ovarian cancer and healthy controls using the ESI-MS method, we confirmed our previous results that LPA levels are elevated in patients with ovarian cancer. In addition, we have found that both LPI and SPC levels were also elevated in plasma from ovarian cancer patients. The clinical significance of these findings are under investigation.
- Identified the first high affinity receptors for SPC and LPC
- Detected a lysoPLD activity in ascites from patients with ovarian cancer, but not from patients with non-malignant diseases. This activity may play a critical role in controlling LPA levels in vivo.

REPORTABLE OUTCOMES

Project 1: Early genetic changes in human epithelial ovarian tumors

Manuscript:

Abstract:

2. Gibson HE, Wong KK, Yiu GK, Muto MG, Berkowitz RS, Cramer DW, Mok SC: Clinical applications of microarray technology. Creatine kinase B is an upregulated gene in epithelial ovarian cancer and shows promise as a serum marker. (SGO 32nd Annual Meeting, Nashville, TE, March 3-7, 2001).

Funding applied for based on the work supported by this award:
"Prostasin, a potential serum marker for ovarian cancer" (4/1/02-3/30/07)
Principal Investigator: Samuel C. Mok
Agent: NIH
Type: RO1 ($3,798,254)
To evaluate the potential in using prostasin as a marker for early detection of ovarian cancer

Project 2: A Potential Serum Marker for Ovarian Cancer
None

Project 3: Hormones as etiological factors of ovarian carcinogenesis

Manuscript:

17

Abstract:

Project 4: Development of a highly sensitive and specific method for the early detection and a strategy for the early intervention of ovarian cancer

Manuscripts:

Abstract:
5. Zhu K, Baudhuin LM, Hong G, Xu Y. Sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC) are ligands for GRP4 (2000 CCF Retreat, 9/10/00; Research Day, 10/15/00).

Presentation:
CONCLUSIONS

Project 1: Early genetic changes in human epithelial ovarian tumors

High throughput allelotyping on stage I ovarian carcinomas showed that different histological types and grades of sporadic stage I epithelial ovarian cancers have different allelic loss profiles. Allelic loss on chromosome 17 is an early event in the pathogenesis of high grade serous and endometrioid carcinomas. These data support the notion that ovarian cancer represents multiple diseases with different pathogenetic pathways and therefore warrants to be studied separately. The identification of TP53 mutations and p53 protein over-expression in these microscopically detected high grade serous carcinomas suggest that p53 alteration is an early event in the pathogenesis of high grade serous adenocarcinomas and further suggest that high and low grade ovarian carcinomas may have different pathogenetic pathways. Finally, using microarray analysis, we identified prostasin and Ep-CAM autoantibody as potential serum markers for early detection of ovarian cancer. Characterization of other candidate markers is on-going.

Project 2: A Potential Serum Marker for Ovarian Cancer

Analysis of the tumor samples has demonstrated that protease M is highly expressed in ovarian tumors of various stages and subtypes but not in the normal ovarian epithelial cells. This is important for the development of screening tools for early detection of ovarian cancer. Other objectives are being
pursued to characterize the protease and to develop a sensitive and specific method for detection of circulating protease in the sera of ovarian cancer patients.

Project 3: Hormones as etiological factors of ovarian carcinogenesis

All the cell lines responded equally well to E2 and E1 except HOSE 12-12 cell line, where E1 was more effective than E2 in inducing cell proliferation. Furthermore, no synergism was observed when cultures were challenged simultaneously with FSH and E2. Furthermore, treatment of HOSE cells with FSH and estrogens enhance their colony formation potential on soft agar.

Project 4: Development of a highly sensitive and specific method for the early detection and a strategy for the early intervention of ovarian cancer

We have made important accomplishments in developing a method of detecting, and a strategy for, the early intervention of ovarian cancer. The newly developed ESI-MS-based method is highly sensitive, reproducible, and quantitative. We confirmed that LPA levels are elevated in plasma from patients with ovarian cancer using the MS-based method. Data analyses are in progress to determine the specificity of the test. More clinical samples will be collected in the third year of the grant to further assess the sensitivity and specificity of the test.

Using the MS method, we have found that a number of other lysophospholipids, including alkyl-LPA, alkenyl-LPA, LPI, SPC, and LPC are also elevated in ascites from patients with ovarian cancer, compared with ascites from patients with non-malignant diseases (3). The diagnostic, prognostic, and clinic management significance of these lipids is under investigation.

Importantly, we have recently identified the first receptors for SPC and LPC (5-7). These discoveries provide an intriguing opportunity and a novel approach to study the roles of SPC and LPC in ovarian cancer. In addition, we have found Lyso-PLD activity in ovarian cancer ascites. To target these receptors and lyso-PLD as an early intervention strategy is under investigation.

REFERENCES

APPENDICES

Manuscript:
TP53 is involved in the development of de novo high grade serous ovarian carcinomas

Vivian W. Wang,* Debra A. Bell, †‡ Ross S. Berkowitz, *† and Samuel C. Mok *†

From the Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital,* Dana-Farber Harvard Cancer Center,† Department of Pathology,‡ Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115

Running title: TP53 alterations in the stage I of ovarian tumor

Footnotes:
Supported by the Army Ovarian Cancer Research Program grant #DAMD17-99-1-9563, the Adler Foundation, the Morse Family Fund, and the Natalie Pihl Fund.
Address reprint requests to Dr. Samuel C. Mok, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, BLI-449, Boston, Massachusetts 02115. Telephone (617) 278-0196, Fax (617) 975-0818. E-mail: scmok@rics.bwh.harvard.edu.
The *TP53* gene is considered to be a tumor suppressor gene, and frequent mutations of the gene have been found in a wide variety of human cancers. *TP53* gene alterations have been detected in most advanced stages of ovarian cancer. To evaluate the involvement of *TP53* gene in the development of early stage of ovarian carcinoma, mutation and allelic loss of the *TP53* gene and expression of the p53 protein were investigated in microscopically identified de novo epithelial ovarian carcinomas. Formalin-fixed, paraffin-embedded tumor tissues from 7 patients were examined. DNA was isolated from microdissected tumor cells, whole genome amplification was then performed using a primer-extension pre-amplification method. p53 protein expression was detected with an anti-p53 antibody. *TP53* gene mutations in exons 2-11 were determined by direct DNA sequencing. Loss of heterozygosity *TP53* at the locus was studied using fluorescent-labeled microsatellite markers. Overall, three of the 7 cases (1 grade 2, and 2 grade 3 serous carcinomas) displayed p53 positive staining and *TP53* gene mutation. Missense mutations in exon 6 (*CAT* → *CGT*), exon 7 (*TCC* → *TTC*), and exon 8 (*CGT* → *CCT*) were identified in the three cases, respectively. LOH in the *TP53* locus was also frequent with an average rate of 55%. Our findings indicate that alteration of the p53 gene might be early genetic events in the development of ovarian cancer, particularly in high grade serous ovarian carcinomas.
INTRODUCTION

Ovarian carcinoma is the fifth commonest cancer in women and is the leading cause of death among gynecologic cancers.\(^1\) It tends to present late in its clinical course, with limited prospects for treatment and generally poor survival. However, if the disease is diagnosed and treated at early stages, over 90% of ovarian cancer patients may survival for 5 years or longer.\(^1\)

In spite of all the genetic studies in ovarian cancer, the pathogenetic pathways of ovarian cancer remain unclear. There is still a lack of information regarding the histologic features of early carcinoma or its putative precursor lesions. Bell and Scully\(^2\) identified 14 cases of early ovarian carcinoma detected as microscopic findings in grossly normal ovaries and concluded that at least a subset of ovarian epithelial cancers develops de novo from the ovarian surface epithelium or its inclusion cysts rather from the pre-existing benign epithelial tumors or endometriosis. Genetic changes in these de novo carcinomas remain largely unknown.

It is widely accepted that both activation of protooncogenes and inactivation of tumor suppressor genes are involved in the genesis or progression of various types of human cancers. It has been shown that the \(TP53\) gene is located on chromosome 17p13.1, and that its mutations play an important role in the development of a wide variety of human cancers.\(^3\) \(^7\) Furthermore, over-expression of the p53 protein has been shown to be largely due to the presence of mutations in the evolutionarily conserved regions of the gene that increase the stability of the protein.\(^8\) Ovarian cancer, like most human cancers, is thought to be caused by the accumulation of mutations in multiple genes that are
important for normal cell functions. TP53 mutations, p53 protein expression and allelic loss at the TP53 locus have been extensively studied in ovarian cancer. However, these changes have not been demonstrated in the early de novo ovarian carcinomas. Here, we describe the use of laser capture microdissection and whole genome amplification techniques to identify TP53 mutation and allelic loss in these microscopically identified ovarian carcinomas.
MATERIALS AND METHODS

Tissue specimens and microdissection

We examined 7 formalin-fixed, paraffin-embedded microscopically identified stage I sporadic epithelial ovarian carcinoma specimens from our archives. The sections stained with hematoxylin and eosin was reviewed and the diagnosis was confirmed. The ovarian carcinomas studied here included 5 serous carcinomas, 1 endometrioid carcinoma, and 1 clear cell carcinoma. The diameters of these microscopic tumors were 1-8 mm. For each tumor, 10-20 serial sections 5 μm were cut. They were deparaffinized in xylene, rehydrated in graded ethanols, and stained with hematoxylin and eosin. Approximately 5,000 tumor and non-tumor stromal cells were microdissected using a PixCell II Laser Capture Microdissection system (Arcturus Engineering, Mountain View, CA). The dissected cells were collected into 50μl cell lysis buffer (1 x expand high fidelity buffer from Boehringer Mannheim, Mannheim, Germany, containing 4 mg/ml proteinase K, and 1% Tween 20) and incubated for 72 h at 55 °C. The proteinase K was inactivated by heating at 95 °C for 10 min prior to PCR.

Whole genome amplification

Whole genome amplification was carried out by the modified primer extension preamplification (PEP) method as described previously. Briefly, 50 μl PEP PCR reaction mixture consisted of 0.05 mg/ml gelatin, 40 μM 15-mer random primers (Operon Technologies, Alameda, California), 0.2 mM of each dNTP, 2.5 mM MgCl₂, 1 x expand high fidelity buffer, 3.5 units of Taq expand high fidelity polymerase (Boehringer
Mannheim, Mannheim, Germany), and 10 µl of DNA sample. Fifty primer extension cycles were carried out in a Perkin-Elmer 9600 thermocycler after an initial denaturation step at 94 °C for 3 min. Each cycle consisted of 1 min at 94 °C, 2 min at 37 °C, a ramping step of 0.1 °C per second up to 55 °C, a 4 min primer extension step at 55 °C and followed by a 30 s at 68 °C. The PEP reaction products were diluted 2-3 folds, and used as template DNA for TP53 alteration and allelic loss analysis.

Immunohistochemistry

Immunohistochemical staining of formalin-fixed, paraffin-embedded sections of each tumor was conducted using the anti-p53 monoclonal antibody DO-7 (Dako, Santa Barbara, CA) by using microwave antigen retrieval in citrate buffer. Briefly, Sections were deparaffinized, rehydrated, washed for 2 x 5 min with distilled water and boiled in a microwave oven in 0.01 M citrate buffer for 10 min for antigen retrieval. Endogenous peroxidase activity was blocked by 0.3% hydrogen peroxide for 30 min, followed by washing for 20 min with TBS (100 mM Tris-HCl, pH 7.5; 0.15 M NaCl). After blocking the nonspecific staining with normal mouse serum, tissue sections were incubated with the p53-specific mouse monoclonal antibody at a working dilution of 1:50, 1 h at room temperature. Samples were washed twice for 5 min with TBS and incubated for 30 min with biotinylated secondary antibody (Vectastain ABC Elite Kit, Vector Laboratories, Burlingame, CA). After two washings for 5 min in TBS, the sections were incubated for 30 min in avidinbiotinylated peroxidase complex solution. Sections were washed for 2 x 5 min with TBS, developed with diaminobenzidine tetrahydrochloride substrate (DAB substrate kit, Vector Laboratories, Burlingame, CA) for 7 min, followed by washing with
water for 2 x 5 min, dehydrated, cleared and mounted. Known p53-positive sample was used as positive control, and the same sample processed without the primary antibody was used as a negative control.

Mutation analysis

DNA sequence analyses of each exon contributing to TP53 open reading frame (exons 2-11) were evaluated by automated DNA sequence analysis. DNA samples were amplified from the entire coding sequence of the p53 gene. The sequences of the primers used are shown in Table 1. Each amplification was performed in a 20 µl reaction medium containing both sense and antisense primers at a final concentration of 1 µM, 0.25 mM of each dNTP, 1 x buffer (50 mM Tris-HCl, pH 8.3; 10 mM KCl), 2.5 mM of MgCl₂, 0.5 units AmpliTaq Gold DNA polymerase (Applied Biosystems, Foster City, CA) and 1.5 µl of DNA. Amplification was started with 12 min at 95 °C, followed by 35 cycles composed of 30 sec at 94 °C, 30 sec at 55 °C and 45 sec at 72 °C, and with a final extension at 72 °C for 10 min in a Perkin-Elmer 9600 thermocycler. The products were electrophoresed on a 1.5% agarose gel containing ethidium bromide to assess the purity of each anticipated DNA fragment. The products were purified using a gel extraction kit (Sephaglas BandPrep Kit, Amersham Pharmacia Biotech, Piscataway, NJ) and sequenced directly by using BigDye terminator cycle sequencing kit and capillary electrophoresis in an ABI PRISM 310 automated DNA sequencer (Applied Biosystems, Foster City, CA). All samples with mutations were verified by two independent cycle sequencing PCR reactions and analysis of both sense and antisense DNA strands. The TP53 DNA sequence in GenBank (accession number HSP53007) was used as references.
Microsatellite analysis

LOH was detected by a set of 3 microsatellite markers mapping to chromosome 17p13.1. All primers were purchased from the Applied Biosystems, Forster City, CA. PCR reactions were performed in a 10 μl volume using 1 μl of whole genome amplified DNA, 0.25-0.5 μM of each primer, 1 x PCR buffer, 2.5 mM MgCl₂, 0.25 mM of each dNTP, and 0.5 unit AmpliTaq Gold DNA polymerase. Amplification was started with 12 min at 95 °C, followed by 10 cycles composed of 15 sec at 94 °C, 15 sec at 55 °C and 30 sec at 72 °C, and then 25 cycles composed of 15 sec at 89 °C, 15 sec at 55 °C and 30 sec at 72 °C. Amplified PCR products were run on an ABI PRISM 310 automated DNA sequencer (Applied Biosystems, Forster City, CA). The allelic products were assessed for peak height and peak area using Genescan and Genotyper softwares (Applied Biosystems, Forster City, CA), and the ratios of heterozygous, normal and tumor alleles were calculated as described previously.¹²
RESULTS

p53 protein expression was determined in 7 microscopic ovarian carcinomas by immunohistochemistry. Three of the 7 tumors displayed positive p53 protein immunostaining and were regarded as overexpression or accumulation of p53 protein. The percentage of tumor cell nuclei with positive staining was 40%, 90% and 95% in cases 97-7024, 4613 and 99N51, respectively. These 3 cases were high grade serous type (Table 2). The remaining 4 cases were not found to have positive immunostaining in any tumor cell nuclei, and were considered to be lack of p53 overexpression. Furthermore, the p53 protein positive immunostaining was not observed in the benign components of ovarian carcinomas, including fibrous connective tissue, vessels, and inflammatory cells (Figure 1).

Mutation analysis of the TP53 open reading frame including exons 2-11 was conducted in all 7 tumors. TP53 missense mutations were detected in 3 of the 7 (43%) ovarian carcinomas. All these 3 cases showed positive immunostaining for the p53 protein also. The mutations were found in exon 7 (at codon 241 in case 97-7024, grade 2 serous tumor) (Figure 2), exon 6 (at codon 214 in case 99N51, grade 3 serous tumor), and exon 8 (at codon 273 in case 4613, grade 3 serous tumor). Neither TP53 mutation nor positive p53 protein staining were found in the remaining 4 cases.

LOH in the TP53 region at 17p13 was observed in most of these microscopic ovarian tumors. LOH at loci D17S938 (17p13.1), D17S1876 (17p13.1-2), and D17S1876 (17p13.1-2) was detected in 4 of 6 (66%), 4 of 7 (57%), and 3 of 7 (42%) informative cases, respectively. However, LOH was observed but p53 protein expression and TP53
mutation were not detected in two tumors (case 3317 and case 744). TP53 gene mutation, p53 protein expression and LOH on 17p13.1 in these microscopically detected stage I ovarian tumors were summarized in Table 2.

The clinical outcome was evaluated by overall survival that was calculated from the day of treatment or treatment start until the date of died of disease. All of the patients were updated to July 2001. Only one case was lost of follow-up. The mean duration of follow-up was 58 months (range, 8-171 months). Case 3317, grade 1 serous adenocarcinoma, followed up to 122 months, and alive with disease. Case S3854, grade 3 clear cell carcinoma, died of disease after alive for 171 months (Table 2).
DISCUSSION

In this study, we identified TP53 mutations and p53 over-expression in all the early de novo high grade (grade 2 and grade 3) serous carcinoma cases suggesting that high grade serous carcinomas develop directly from ovarian inclusion cysts after acquiring TP53 mutations. The two early de novo well differentiated serous carcinoma cases showed neither TP53 mutations nor p53 overexpression, suggesting well differentiated serous carcinomas might have a different pathogenetic pathway (Figure 3). Interestingly, both TP53 mutation and p53 expression could not be detected in the two high grade endometrioid and clear cell carcinoma cases. Infrequent TP53 mutation and p53 over-expression have been described in non-serous type of ovarian cancer. Ho et al studied p53 over-expression in 38 cases of clear cell ovarian carcinomas and found only one positive case. These data further support the hypothesis that both endometrioid and clear cell carcinomas may have different pathogenetic pathways in comparing to the serous histological type.

Previous reports in the literature indicated high LOH frequencies at the TP53 locus in ovarian tumors. In this study, we demonstrated that 86% (6 of 7) of the early de novo ovarian carcinoma cases showed allelic loss in at least one of the three markers located at the TP53 region. Interestingly, TP53 mutations and p53 over-expression can only be detected in three of the 6 cases. These data suggest that allelic loss at 17p13.1 is an early event during the pathogenesis of different subtypes of ovarian cancer, and there may be another gene(s) other than TP53 located in 17p13.1, which may be important for the development of ovarian cancer.
In conclusion, we have detected TP53 mutation and p53 over-expression in the microscopically detected de novo ovarian carcinoma cases particularly in the high grade serous type. These results strongly suggest that deregulation of p53 function may be one of the early critical events in the development of this type of ovarian carcinoma, and support the notion that different types of ovarian cancer may have different pathogenetic pathways. Genetic changes in a larger set of de novo ovarian carcinoma warrant to be further studied which will provide us insight into the pathogenesis of ovarian cancer and markers for early detection of the disease.
REFERENCES

LEGENDS

Figure 1. p53 expression in microscopically detected stage I ovarian tumors. A, case 3317, grade 1 serous adenocarcinoma, negative for p53 protein staining. B, case 97-7024, grade 2 serous adenocarcinoma, with p53 immunostaining in 40% of tumor cell nuclei. C, case 4613, grade 3 serous adenocarcinoma, with p53 immunostaining in 90% of tumor cell nuclei. D, case S3854, grade 3 clear cell carcinoma, negative for p53 protein staining.

Figure 2. Sequence chromatograms demonstrating mutations in an ovarian carcinoma. A, case 99N51 with exon 6 at codon 214 missense mutation; B, case 97-7024 with exon 7 at codon 241 missense mutation. Upper panel, normal control, lower panel, tumor. Arrows, the position of mutated bases.

Figure 3. Pathogenesis of epithelial ovarian tumors. HOSE, human ovarian surface epithelial cells; IEOC, invasive epithelial ovarian carcinoma.
<table>
<thead>
<tr>
<th>Exon</th>
<th>Sense primer</th>
<th>Antisense primer</th>
<th>Size of fragment</th>
<th>Codon</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 to 3</td>
<td>5'-TCC TCT TGC AGC AGC CAG ACT GC-3'</td>
<td>5'-AAC CCT TGT CCT TAC CAG AAG GTT G-3'</td>
<td>267</td>
<td>1 to 32</td>
</tr>
<tr>
<td>4</td>
<td>5'-CAC CCA TCT ACA GTC CCC CTT GC-3'</td>
<td>5'-CTC AGG GCA ACT GAC CGT GCA AG-3'</td>
<td>307</td>
<td>33 to 125</td>
</tr>
<tr>
<td>5</td>
<td>5'-CTC TTC CTG CAG TAC TCC CCT GC-3'</td>
<td>5'-GCC CCA GCT GCT CAC CAT CGC TA-3'</td>
<td>211</td>
<td>126 to 186</td>
</tr>
<tr>
<td>6</td>
<td>5'-GAT TGC TCT TAG GTC TGG CCC CTC-3'</td>
<td>5'-GGC CAC TGA CAA CCA CCC TTA ACC-3'</td>
<td>185</td>
<td>187 to 224</td>
</tr>
<tr>
<td>7</td>
<td>5'-GTG TTG TCT CCT AGG TTG GCT CTG-3'</td>
<td>5'-CAA GTG GCT CCT GAC CTG GAG TC-3'</td>
<td>139</td>
<td>225 to 260</td>
</tr>
<tr>
<td>8</td>
<td>5'-ACC TGA TTT CCT TAC TGC CTC TGG C-3'</td>
<td>5'-GTC CTG CTT GCT TAC TCT GCT TAG T-3'</td>
<td>200</td>
<td>261 to 306</td>
</tr>
<tr>
<td>9</td>
<td>5'-GCC TCT TTC CTA GCA CTG CCC AAC-3'</td>
<td>5'-CCC AAG ACT TAG TAC CTG AAG GGT G-3'</td>
<td>102</td>
<td>307 to 331</td>
</tr>
<tr>
<td>10</td>
<td>5'-TGG TGC TGC AGA TCC GTC GGC GT-3'</td>
<td>5'-GAG GTC ACT CAC CTG GAG TGA GC-3'</td>
<td>131</td>
<td>332 to 367</td>
</tr>
<tr>
<td>11</td>
<td>5'-TGT GAT GTC ATC TCT CCT CCC TGC-3'</td>
<td>5'-GGC TGT CAG TGG GGA ACA AGA AGT-3'</td>
<td>153</td>
<td>368 to 393</td>
</tr>
<tr>
<td>Case No.</td>
<td>Histology</td>
<td>Tumor Type</td>
<td>Follow up (month)</td>
<td>Immunoreactivity</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>3317</td>
<td>1</td>
<td>Serous</td>
<td>a</td>
<td>Recurrent, 122</td>
</tr>
<tr>
<td>V1834</td>
<td>1</td>
<td>Serous</td>
<td>a</td>
<td>NED, 8</td>
</tr>
<tr>
<td>97-7024</td>
<td>2</td>
<td>Serous</td>
<td>8</td>
<td>Positive</td>
</tr>
<tr>
<td>99N51</td>
<td>3</td>
<td>Serous</td>
<td>6</td>
<td>Positive</td>
</tr>
<tr>
<td>4613</td>
<td>3</td>
<td>Serous</td>
<td>2</td>
<td>NED, 12</td>
</tr>
<tr>
<td>774</td>
<td>3</td>
<td>Endometrioid</td>
<td>6</td>
<td>NED, 15</td>
</tr>
<tr>
<td>S3854</td>
<td>3</td>
<td>Clear cell</td>
<td>2</td>
<td>DOD, 171</td>
</tr>
</tbody>
</table>

a, several tiny foci too small to measure

LOH, loss of heterozygosity; HET, retention of heterozygosity; NI, homozygous

NED, no evidence of disease

DOD, died of disease
Ep-CAM autoantibody is a potential serum marker for epithelial ovarian cancer

Jae-Hoon Kim,1,2 Dorothee Herlyn,3 Kwong-kwok Wong,4 Gary K Yiu,1 John O Schorge,5 Karen H Lu,6 Ross S. Berkowitz,1,7 and Samuel C. Mok1,7

1Department of Obstetrics, Gynecology and Reproductive Biology, Division of Gynecologic Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
2Department of Obstetrics and Gynecology, Saint Vincent Hospital, The Catholic University of Korea, Suwon, Korea,
3The Wistar Institute, Philadelphia, PA,
4Department of Pediatrics, Baylor College of Medicine, Houston, TX,
5Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX,
6Department of Gynecologic Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Tx,
7Dana-Farber Harvard Cancer Center, Boston, MA.

Running Title: Ep-CAM is a valuable biomarker with clinical usefulness.

Key words: Ep-CAM, Ovarian Cancer, cDNA microarray, LCM, ELISA

Grant Support: This study was supported by the Ovarian Cancer Research Program grant #DAMD17-99-1-9563 from the Department of Defense, the Early Detection Research Network Grant CA86381 from National Institute of Health, Department of Health and Human Services,

Reprint request: Dr. Samuel C. Mok,

Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology
Department of Obstetrics, Gynecology and Reproductive Biology,
Brigham and Women’s Hospital,
221 Longwood Avenue, Boston, MA, 02115.

scmok@rics.bwh.harvard.edu
ABSTRACT

Using the MICROMAX cDNA microarray system and RNA isolated from ovarian cancer cell lines and normal ovarian surface epithelial cells (HOSE), we identified a gene called the epithelial cell adhesion molecule (Ep-CAM) that exhibited a cancer-to-HOSE ratio of 444. Real time quantitative PCR analysis revealed significant overexpression of Ep-CAM mRNA in cancer cell lines (P<0.001) and microdissected cancer tissues (p=0.035), compared to that in cultured normal HOSE and microdissected germinal epithelium, respectively. Immuno-histochemical staining of paraffin block sections revealed that Ep-CAM expression was absent in stromal areas of normal ovaries or those with benign disease or cancer. In contrast, a gradient of expression was found in the germinal epithelium with ovaries from women with borderline or invasive cancer displaying the greatest level of expression, normal ovaries the least, and ovaries from women with benign tumors intermediate expression (p<0.05). No significant differences in Ep-CAM immuno-histochemical staining were observed among ovarian cancer samples with different histologic types and grades. Because Ep-CAM auto-antibody levels have been shown to be elevated in other cancers, such as colon, we examined levels of auto-antibody against Ep-CAM in patients with epithelial ovarian cancer and controls by enzyme-linked immunosorbent assay (ELISA). Ep-CAM auto-antibody levels (measured in units of absorbance at 450nm) were: 0.132 in 52 patients with ovarian cancer, 0.098 in 26 cases with benign gynecologic disease, and 0.090 in 26 normal women (p<0.05). When a cut-off value of 0.115 was used, the Ep-CAM auto-antibody assay showed a sensitivity of 71.2% and a specificity of 80.8% whereas the sensitivity and specificity of CA 125 measured in 52% of the same subjects were 84.6% and 88.5% with a CA 125 cut-off of 35U/ml. However, the Ep-CAM auto-antibody assay may be complementary to CA125, as indicated by low correlation coefficient and the fact that combining the test with CA 125 increased the sensitivity to 94.2% and specificity to 100.0%. This investigation has demonstrated the potential value of cDNA microarray analysis in identifying overexpressed
genes in ovarian cancer, and suggests that the Ep-CAM auto-antibody may offer a biomarker for ovarian cancer with clinical usefulness.
INTRODUCTION

Ovarian cancer has the highest mortality rate among all the gynecologic malignancies (1). Every year, 25,000 ovarian cancer cases are being newly diagnosed in the U.S. and approximately 15,000 deaths, secondary to the malignancy, occur annually (2).

Despite intense efforts with cytoreductive surgeries and combined chemotherapeutic modalities, most advanced-stage ovarian cancer patients experience relapses and eventually die from disease (3). There have been continuous efforts in developing new drugs and treatment modalities. Nevertheless, the prognosis for advanced and recurrent ovarian cancers has not substantially changed (4). More than 70% of the patients are in the 3rd or 4th stage at the time of diagnosis (5). Hence, in order to improve survival, it is necessary to develop specific tumor markers that can be used to detect early stages of the disease.

Since most ovarian cancers are of epithelial cell origin, deregulated epithelial antigens may be ideal candidate markers. Ep-CAM has a wide distribution in carcinomas of epithelial origin with exception of squamous cell carcinoma of skin or hepatoma (6). Thus, it has been the focus of immunologic treatment (7-10). Clinical studies in early stage colorectal cancers showed that Ep-CAM could be used as an antigenic target for passive immunotherapy with monoclonal antibody Co 17-1A (9,10). In approaches to active immunotherapy with anti-idiotypic antibodies and recombinant protein, colorectal cancer patients developed humoral and cellular immune responses to the antigen (11,12).

Ep-CAM is a 40-kDa glycoprotein encoded by the GA733-2 gene (13,14). Ep-CAM has been referred to as CO17-1A, MH99, AUA1, MOC31, 323/A3, KS1/4, GA733, HEA125 or KSA, EGP, EGP40 and GA733-2 (14-22). A known biological role of Ep-CAM is its relationship to homophilic cell adhesion (23). Like other adhesion molecules, Ep-CAM is known to be involved in the signaling cascade related to proliferation, differentiation and apoptosis, as well as a regulator of cadherin-mediated functions which is involved in invasion and metastasis (24,25). Furthermore, it has been shown to be associated with proliferation or differentiation secondary to
carcinogenesis and also to play a role in adhesion molecule that suppresses metastasis. Hence, Ep-CAM may have a bi-directional effect in the progression of malignancy.

Here, we demonstrate the use of microarray technology and subsequent validation studies to identify overexpression of Ep-CAM transcript and protein in ovarian cancer cells and tissues, and provide evidence that Ep-CAM autoantibody may be a potential marker for early detection of ovarian cancer.
MATERIALS AND METHODS

Cell lines and culture conditions

All cell lines and cultures were maintained at 37°C in a humidified 5% CO₂ ambient air atmosphere. They were grown in Medium 199 and MCDB 105 (1:1) (Sigma, St Louis, Mo) supplemented with 10% fetal bovine serum (FBS) (Gemini Bio-Products, Calabasas, CA). Normal human ovarian surface epithelial cells (HOSE) cultures were established by scraping the surface of the ovary, as described previously (26). In brief, the scraped cells were spun down, resuspended and cultured in 2.5ml of growth medium. Cells at 75% confluency were then harvested by trypsinization and used for total RNA isolation. Five normal HOSE cells used in this experiment were HOSE695, HOSE697, HOSE713, HOSE726, and HOSE730. Ovarian cancer cell lines were established either by recovery from ascites or explanted from solid tumors as described previously (26). Ten ovarian cancer cell lines were used: OVCA3, OVCA420, OVCA429, OVCA432, OVCA433, OVCA633, CAOV3, DOV13, ALST, as well as SKOV3. All cell cultures and cell lines were established in the Laboratory of Gynecologic Oncology, Brigham and Women’s Hospital, except OVCAR-3 and SKOV-3, which were purchased from American Type culture Collection (Rockville, MD).

Antibody and antigen

Monoclonal antibody GA733 against Ep-CAM has been described (27). Ep-CAM (recombinant baculovirus-derived extracellular domain protein) was purified with monoclonal antibody GA733 as described (28).

Tissue and Serum Samples

All patients were treated at the Brigham and Women’s Hospital between 1992 and 2000. We randomly retrieved patients with ovarian tumors with different histologic types and grades based on the WHO and the International Federation of Gynecology and Obstetrics criteria. All patient-derived biologic specimens were collected and archived under protocols approved by the Brigham and Women’s Human Subjects Committee or studied as an approved use of discarded
human materials. All tumor tissues were collected from the primary ovarian sites and, if possible, metastatic sites from patients undergoing surgery. They contained less than 20% normal tissue.

For fresh frozen sections, fresh specimens collected at the operating room were placed in tissue culture medium, Medium 199 and MCDB 105 (1:1) with 10% FBS, and transported to the laboratory. After removing the nontumorous tissue, the specimens were immediately embedded in Tissue Tek OCT medium (Miles, Elkhart, IN), snap-frozen in liquid nitrogen, and stored at -80 °C until use.

The Archival tissues in paraffin blocks were collected from pathology files in the Laboratory of Gynecologic Oncology at the Brigham and Women’s Hospital.

Preoperative serum samples from women with ovarian cancer, and benign gynecologic disorders, and serum samples from non-diseased normals were obtained between 1999 and 2000. These specimen were stored at -80°C without any incident of thawing.

Laser capture microdissection (LCM)

Tissues stored in Tissue Tek OCT medium at -80°C were sectioned at 7 μm in a cryostat (Leica, Allendale, NJ). Sections were mounted on uncoated glass slides and immediately fixed in 70% and 50% ethanol for 30 seconds in each, stained with Hematoxylin and Eosin, dehydrated in an increased series of alcohol and cleared in xylene for 5 minutes in each microdissection. Once air-dried for 3 minutes, the sections were laser microdissected with the PixCell II system (Arctarus, CA). Morphologically normal ovarian epithelial cells and malignant epithelial ovarian cancer cells were procured.

Microarray Probe and Hybridization

The MICROMAX human cDNA system I (NEN Life Science Products, Inc., Boston, MA), which contains 2400 known human cDNA on a 1X3, slide, was used in this study as described (29). Biotin-labeled cDNA was generated from 3 μg total RNA, which was pooled from HOSE17, HOSE36 and HOSE642. Dinitropheny (DNP)-labeled cDNA was generated from 3 μg total RNA that was pooled from ovarian cancer cell lines OVCA 420, OVCA 433 and SKOV3. Before the
cDNA reaction, an equal amount of RNA control was added to each batch of the RNA samples for normalization. The biotin-labeled and DNP-labeled cDNA were mixed, dried and resuspended in 20 μl hybridization buffer, which was added to the cDNA microarray and covered with a cover slip. Hybridization was carried out overnight at 65°C inside a hybridization cassette (Telechem, Inc. Sunnyvale, CA).

After hybridization, the microarray was washed with 30 ml 0.5X SSC, 0.01% SDS, and then 30 ml 0.06X SSC, 0.01% SDS, and finally, 0.06X SSC alone. The hybridization signal from biotin-labeled cDNA was amplified with streptavidin-horseradish peroxidase and Cy5™-tyramide, while hybridization signal from DNP-labeled cDNA was amplified with anti-DNP-Horseradish peroxidase and Cy3™-tyramide. After the post-hybridization wash, the cDNA microarray was air-dried and signal amplification was detected with a laser scanner.

Laser detection of the Cy3 signal (derived from ovarian cancer cells) and Cy5 signal (derived from HOSE cells) on the microarray was acquired with a confocal laser reader, ScanArray3000 (GSI Lumonics, Watertown, MA). Separate scans were taken for each fluor at a pixel size of 10 μm. cDNA derived from the control RNA hybridized to 12 specific spots within the Microarray. Cy3 and cy5 signals from these 12 spots should theoretically be equal and were used to normalize the different efficiencies in labeling and detection with the two fluors. The fluorescence signal intensities and the Cy3/Cy5 ratios for each of the 2400 cDNAs were analyzed by the software Imagene 3.0 (Biodiscovery inc, Los Angeles, CA).

Real-time Quantitative RT-PCR

RNA was extracted from the cell lines and tissues using a micro RNA extraction kit as described by the manufacturer (Stratagene, Valenica, CA), and quantified by fluorometry (Gemini Bio-Products). Real-time PCR was performed in duplicate using primer sets specific for Ep-CAM (forward primer: 5'-CGTCAATGCCAGTGTACTTCAGTTG-3'; reverse primer: 5'-TCCAGTAGGTTCTCACTGCTCAG-3') and a house keeping gene, GAPDH, in an ABI PRISM 5700 Sequence Detector. mRNA was extracted from normal ovarian epithelial cell
cultures (HOSE 695, 697, 713, 726 and 730), ovarian carcinoma cell lines (OVCA3, OVCA420, OVCA429, OVCA432, OVCA433, OVCA633, CAOV3, DOV13, SKOV3 and ALST), three normal ovarian epithelial tissues, and thirteen ovarian cancer tissues.

cDNA was generated from 1 μg total RNA using the TaqMan reverse transcription reagents containing 1X TaqMan RT buffer, 5.5 mM MgCl$_2$, 500 μM dNTP, 2.5 μM random hexamer, 0.4 U/μl Rnase inhibitor, 1.25 U/μl MultiScribe reverse transcriptase (PE Applied Biosystems, Foster City CA) in 100μl. The reaction was incubated at 25°C for 10 minutes, 48°C for 30 minutes and finally at 95°C for 5 minutes.

A total of 0.5 μl of cDNA was used in a 20 μl PCR mix containing 1X SYBR PCR buffer, 3 mM MgCl$_2$, 0.8 mM dNTP, and 0.025 U/μl AmpliTaq Gold (PE Applied Biosystems, Foster City, CA). Amplification was then performed with denaturation for 10 minutes at 95°C, followed by 40 PCR cycles of denaturation at 95°C for 15 seconds and annealing/extension at 60°C for 1 minute. The ABI5700 system software monitored the changes in fluorescence of SYBR Green I dye in every cycle and the threshold cycle (C$_T$) for each reaction was calculated.

The relative amount of PCR products generated from each primer set was determined based on the threshold cycle or C$_T$ value. GAPDH was used for the normalization of RNA used. Its C$_T$ value was then subtracted from that of each target gene to obtain a ΔC$_T$ value. The difference (ΔΔC$_T$) between the ΔC$_T$ values of the samples for each gene target and the ΔC$_T$ value of the calibrator (HOSE726 and 756HOSE in vitro and in vivo studies, respectively) was determined. The relative quantitative value was expressed as $2^{-\Delta\Delta C_T}$. To confirm the specificity of the PCR reaction, PCR products were electrophoresed on a 1.2% agarose gel.

Immunohistochemistry

Specimens used in this experiment consisted of 5 normal ovaries, 17 benign ovarian tumors, 52 borderline ovarian cancers (29 serous, 21 mucinous, 1 endometrioid, and 1 clear cell), and 67 invasive ovarian cancers (31 serous, 20 mucinous, 12 endometrioid, and 4 clear cell).
Immunostaining was performed by the avidin-biotin method. Sections were deparaffinized in xylene and hydrated with graded ethanol concentrations and water. Endogenous peroxide was blocked with 0.3% hydrogen peroxide in methanol for 30 minutes. After blocking nonspecific antigens with normal horse serum for 20 minutes, the sections were incubated with mouse monoclonal antibody GA733 against Ep-CAM (2.35 µg/ml; DAKO, Carpinteria, CA) for 60 minutes at room temperature. The control sections were treated in parallel but incubated with normal mouse serum (as a negative control) instead of the primary antibodies. All sections were incubated in a moist chamber. After being washed two times with tris-buffered saline (TBS) for 10 minutes, sections were then incubated with a biotinylated goat anti-mouse IgG antibody for 30 minutes (Vector Laboratories, Burlingame, CA). The sections were washed again. After incubation in avidin-biotin complex (Vector Laboratories) for 30 minutes, the reaction product was visualized by 3,3-diaminobenzidine tetrahydrochloride (Vector Laboratories). Finally, sections were dehydrated in ethanol, cleared in xylene, and mounted in SP15-500 Permount (Fisher Scientific).

Representative photomicrographs were recorded by a digital camera (Optronics, Goleta, CA). A single person to alleviate technician-induced discrepancies completed all staining. Slides stained with hematoxylin and eosin were available for all specimens.

To evaluate the result, we established a score corresponding to the sum of both staining intensity (strong positive staining in most of cells, 3+; moderate staining in cells, 2+; weak staining in cells, 1+; no evidence of staining, 0), and percentage of positive cells (most of cells demonstrating staining, 3+; half of cells demonstrating staining, 2+; few cells demonstrating staining, 1+; no cells staining, 0), as described elsewhere (30). Differences between groups were evaluated by the sum of intensity and cell count’s score. The slides were scored in the absence of any clinical data and the final score reported was the average of the 3 observers.

ELISA

ELISA performed Immunodetection of Ep-CAM autoantibody, as described (31).
Flat-bottomed microtiter enzyme-linked immunosorbent assay (ELISA) plates (Alpha Diagnostic, San Antonio, TX) were incubated at 4 °C overnight with 100 μl purified Ep-CAM (2.5 μg/ml) in 0.05 M carbonate buffer, pH 9.7. After washing three times with 5mmol/L Tris buffer, pH 7.80 with 0.15 mol of NaCl, 1 mmol of MgCl$_2$ and 0.5 g of sodium azide per liter, the wells were blocked for 1 hour at 37°C with 200 μl 50 mmol/L Tris Buffer, pH 7.8 with 10 g of bovine serum albumin (BSA) per liter and washed three times. Serum samples were diluted 1:50 in 50 mmol/L Tris Buffer, pH 7.8 with 60 g BSA and 0.5 g of sodium azide and incubated overnight at 4°C. After washing six times, the wells were incubated for 2 hours at room temperature with 100 μl horseradish-peroxidase-conjugated goat anti human IgG (Pierce, Rockford, IL) diluted 1:20,000 in 50 mmol/L Tris buffer, pH 7.8 containing 60 g of BSA and 0.5 g of sodium azide per liter. After washing six times, 100 μl TMB substrate solution (Alpha Diagnostic) was added for development at room temperature for 15 minutes. The absorbance at 450nm was measured by an automatic ELISA reader (Biorad, Hercules, CA).

The CA 125 assay was performed by an immunoradiometric assay according to the manufacturer's instructions (Abbot Diagnostics).

Results were expressed as the mean absorbance of triplicate wells after subtraction of background values. Negative controls include the elimination of purified Ep-CAM, patient’s serum, secondary antibody or substrate for development in the assay.

Statistical Analysis

Data were expressed as mean ± standard deviation (SD). Mann-Whitney U-test tested statistical significance in real time PCR. Immunohistochemistry and ELISA were tested by one-way analysis of variances (ANOVA) and Turkey’s multiple comparison tests among groups. Parameters for tumor marker evaluation were tested by chi-square test and Fisher’s exact test. Partial correlation coefficients were calculated between CA 125 and autoantibodies of Ep-CAM, adjusted by age.
The level of critical significance was assigned at $p < 0.05$. All analyses were performed using SPSS version 9.0 (SPSS Inc., Chicago, IL).
RESULTS

Using RNA isolated from 3 normal HOSE cell lines and three ovarian cancer cell lines, we identified thirty genes with a Cy3/Cy5 ratios greater than 5 (25). One of these, with a Cy3/Cy5 ratio of 444, corresponded to tumor related protein called Ep-CAM. It is selectively illustrated in figure 1.

To validate the expression of Ep-CAM, real time PCR was applied to an expanded series of ovarian cancer cell lines and tissues.

Based on the ΔΔCT relative to the normal cell line, HOSE697, the relative expression levels of Ep-CAM in RNA in other cell lines were calculated. There was a highly significant difference in the expression of Ep-CAM between 5 normal ovarian epithelial cell lines and 10 ovarian cancer cell lines (p<0.001). The mean ± SD of normal and cancer cell lines were 2.63 ± 1.79 and 4265.61 ± 2522.14, respectively. Except for DOV13, the expression of EP-CAM in the other ovarian cancer cell lines was 1000-fold greater than that in HOSE 697 (Fig. 2).

Ep-CAM expression in ovarian cancer tissues was also examined. We found a significant difference between the three normal ovarian surface epithelia and 13 ovarian cancer tissues (p=0.039). The mean ± SD of the two groups was 3.31 ± 3.65 and 140.92 ± 277.91, respectively. Omental metastasis showed a tendency of lower Ep-CAM expression than cancers involving the ovary; 9.24 ± 4.01 vs. 223.21 ± 335.06 (p=0.13). (Fig. 3).

Ep-CAM immunoreactivity was not observed in the stroma of any of the specimens examined. Positive staining was mainly localized to the cellular membrane and cytoplasm (Fig. 4).

The mean ± SD of immunostaining scores in normal ovary, benign ovarian tumor, borderline ovarian tumor, and invasive ovarian cancer were 0.80 ± 1.10, 1.76 ± 1.36, 3.74 ± 1.66, and 3.34 ± 1.47, respectively. This difference among groups was statistically significant (p<0.001). There was no statistical difference between borderline tumors and invasive cancers (p=0.174) (Table 1).

In the cancer group, no difference in Ep-CAM immunoreactivity among different histological types and grades was observed. However, it appeared that mucinous borderline cases represented
relatively higher Ep-CAM expression, compared to any other cancer groups. Stage III and IV cases showed lower Ep-CAM expression, compared to stage I cases \((p=0.007)\) (Table. 1).

We examined the autoantibody of Ep-CAM by ELISA in sera of 26 normal controls, 26 patients with benign ovarian disease and 52 ovarian cancer patients by ELISA. Normal controls matched for age with patients with benign ovarian disease and ovarian cancer with a mean age of 58 years old (range, 45-76).

Reciprocal serum end-point dilutions ranged between 10 and 1000 among 3 cancer patients (fig. 5).

The cut off positive antibody reactivity against Ep-CAM was 0.140, which was defined as an absorbance greater than 2SDs above the mean value of the normal controls. Another cut off value 0.115, which was defined as an absorbance greater than SD above the mean value of the normal controls, was also used.

The schematic results are shown in Figure 6. The mean ± SD of Ep-CAM autoantibody levels in normal controls, benign ovarian disease, and cancer patients were 0.090 ± 0.025, 0.098 ± 0.026, and 0.132 ± 0.032, respectively. The difference between cancer cases and the other cases was statistically significant \((p=0.033)\). Based on the cut off value as 0.140, 22 ovarian cancer cases (42.3%) were positive, whereas none of the control (0%) and 2 (7.7%) benign ovarian disease cases were positive (fig. 6).

Data obtained from Ep-CAM autoantibody screening showed a sensitivity of 42.3%, a specificity of 100.0%, a positive predictive value of 100.0%, and a negative predictive value of 46.4%. CA125, for which the cut off value is 35 U/ml in accordance with the supplier, showed a sensitivity of 84.6%, a specificity of 88.5%, a positive predictive value of 93.8%, and a negative predictive value of 74.2% in this experiment. In combination, the two markers showed a sensitivity of 88.5%, specificity was 100.0%, positive predictive value 100.0%, and negative predictive value 96.8%. The sensitivity was statistically increased when Ep-CAM was used with CA 125 as compared to CA125 alone \((p<0.01)\). When the cut off value of Ep-CAM autoantibody
was lowered to 0.115, combined two markers showed significant increases in sensitivity and negative predictive value than CA125 alone (p<0.01, respectively). The combination of CA 125 and Ep-CAM autoantibody showed 92.3% diagnostic efficiency when the cut-off value is 0.140, and 96.2% when the cut-off value is 0.115, which was higher compared than CA 125 alone, 85.9% (p<0.01, respectively) (Table 2).

In cancer patient’s serum, there were no significant difference in histologic types and grades. The sera of stage IV cases showed lower levels of Ep-CAM autoantibody, compared to either stage I or II (p=0.039) (Table 3).

Figure 7 displays a bivariate plot of the autoantibody of Ep-CAM versus CA-125 for normal control subjects with benign ovarian disease, and epithelial ovarian cancer cases. The correlation coefficient for all cases was 0.181 and p= 0.0073, and for patients with cancers it was -0.076, p= 0.59, respectively (Fig. 7).
DISCUSSION

A tumor marker is generally considered a biochemical substance produced by the tumor and can be used to denote any change in cancer growth behavior. A number of tumor markers are now available to clinical oncologists. They have the potential utility for screening, diagnosis, prognosis, as well as therapeutic monitoring. In epithelial ovarian cancer, many tumor markers have been identified and studied. However, most of these markers have not shown satisfactory sensitivity and specificity, and therefore are not useful as a routine screening method for ovarian cancer. CA 125 is the most extensively researched marker in ovarian cancer, but there is only preliminary evidence that ovarian cancer screening using CA 125 can reduce mortality (32). Therefore, it is of paramount importance to identify new markers, particularly serologic markers, which can be used alone or in combination with CA 125 to improve the sensitivity and the specificity of the screening assay.

Multiple methods have been applied to identify tumor markers. One approach is through the identification of differentially expressed genes in ovarian cancer cells and normal ovarian surface epithelial cells. This is achieved by validation processes to determine whether the differentially expressed protein can be used as a serologic marker. Methods used to identify differentially expressed genes include expression sequencing tags (ESTs) sequencing, serial analysis of gene expression, differential display PCR, and cDNA or oligonucleotide microarray analysis (33-36). In this study, the MICROMAX™ cDNA microarray system, which contains 2,400 known genes with known function, was used. This system, which requires the use of only 1 µg of total RNA, is particularly attractive when small numbers of cells, such as normal HOSE cells are unavoidable. Among all the genes analyzed, Ep-CAM showed the highest Cy3/Cy5 ratio suggesting that it was highly overexpressed in ovarian cancer cells (29).

Ep-CAM is a glycoprotein with a molecular weight of 40 kDa and encoded by the GA733-2 gene located at chromosome 4q (13,15-18). GA733-1 gene product has been known as a unique homologous protein and shares 49% homology with the Ep-CAM amino acid sequence (14). Low
levels of Ep-CAM are detected in all epithelial cells except for squamous stratified epithelium (6). Using real time PCR and immunohistochemistry, we also demonstrate low level of Ep-CAM mRNA and protein expression in normal ovarian surface epithelial cells. Similar to most epithelial derived cancers, ovarian cancers express significantly higher levels of Ep-CAM than normal and benign ovarian epithelia. However, we found no significant difference in Ep-CAM expression in borderline and invasive ovarian tumors with different grades. These data suggest that Ep-CAM may be involved in the development of both borderline and invasive disease and may be associated with an early phase of ovarian carcinogenesis. In contrast to ovarian cancer, other cancers show a different relationship between Ep-CAM expression and degree of differentiation. For example, high-grade transitional cancer of the bladder shows significantly higher Ep-CAM expression than low-grade transitional cancers (37,38). Furthermore, Ep-CAM was expressed at higher level in high-grade cervical intraepithelial neoplasia (CIN) than in low-grade CIN (39).

It is interesting to note that stage III and IV ovarian cancer shows significantly lower Ep-CAM expression than stage I disease. A similar pattern has been observed in laryngeal cancer in which lower expression of Ep-CAM correlates with a high frequency of metastases (40). Furthermore, it has been shown that transfection of murine Ep-CAM into mouse colorectal cancer cells suppressed their metastatic potential (41). These results may be explained by the fact that Ep-CAM also acts as an adhesion protein (23) whose down-regulation may facilitate the metastasis process during cancer progression.

Using an established ELISA, we evaluated the potential of using Ep-CAM autoantibody levels to detect ovarian cancer. Ep-CAM autoantibody levels proved to be significantly higher in ovarian cancer than normal and benign ovarian disease but is less sensitive and less efficient than CA 125 as shown in this experiment. However Ep-CAM autoantibody may be complementary to CA 125 as suggested by the low correlation between the two. Using Ep-CAM autoantibody with CA 125, we found that the sensitivity and diagnostic efficiency were significantly increased as
compared to CA 125 alone without lowering the specificity. Nevertheless, a large study with more cases and controls needs to be performed to confirm the potential diagnostic value of Ep-CAM autoantibody.

In conclusion, this investigation has demonstrated the potential value of the cDNA microarray analysis in identifying overexpressed genes in ovarian cancer, and suggests that Ep-CAM antibodies may be a valuable biomarker with clinical usefulness.
REFERENCE

FIGURE LEGENDS

Fig. 1 Microarray analysis using pooled RNA isolated from three normal HOSE cultures and three ovarian cancer cell lines. Arrows indicate spots on two microarrays, which correspond to Ep-CAM.

Fig. 2 Relative quantitation of Ep-CAM mRNA in normal and malignant epithelial ovarian cancer cell lines. Statistically significant difference was obtained between normal (HOSE 695, HOSE 697, HOSE 713, HOSE 726, and HOSE 730) and cancer cell lines (ALST, CAOV3, DOV13, OVCA3, OVCA 420, OVCA429, OVCA432, OVCA433, OVCA633) by Mann-Whitney U-test (p < 0.001). Each value was expressed as the mean of duplicate determinations.

Fig. 3 Relative quantitation of Ep-CAM mRNA in normal and malignant ovarian cancer tissues. Statistically significant difference was obtained between normal (756HOSE, 757HOSE, and 763HOSE) and cancer tissues (330A, 333A, 426C, 427A, 466A, 489C, 629A, 683A, 690C, 720C, 721C, 734A, and 834A; A: ovary, C: omentum) by Mann-Whitney U-test (p = 0.039). Each value was expressed as the mean of duplicate determinations.

Fig. 4 Immunolocalization of Ep-CAM in normal and malignant ovarian tissues. (A) Ovarian surface epithelial cells (arrowheads) (B) Benign serous cystadenoma (C) Serous borderline tumor. (D) Serous cystadenocarcinoma. (E) Mucinous borderline ovarian tumor (F) Mucinous cystadenocarcinoma (G) Endometrioid cystadenocarcinoma (H) Clear cell cystadenocarcinoma. Scale bar represents 50 mm.

Fig. 5 Absorbance values (mean ± SD) of diluted sera of 3 patients against the Ep-CAM protein. Each value was expressed as the mean ± SD of triplicate determinations.
Fig. 6 Absorbance values of diluted sera of Ep-CAM autoantibody normal controls (n=26), cases with benign lesions (n=26), and cancer (n=52). The results shown are the mean values of triplicate wells. There is a significant difference among three groups by ANOVA (p=0.033) and the differences are significant between cancer cases and the other groups based on Tukey’s multiple comparison test.

Fig. 7 Correlation between the Ep-CAM autoantibody and CA-125 (on log scales) in the sera of ovarian cancer cases and controls by partial correlation coefficient. R=partial correlation coefficient adjusted by age. ●: normal (n=26), □: benign ovarian disease (n=26), ▲: cancer (n=52) The horizontal and vertical lines indicate the cut off value for positivity (0.140 for Ep-CAM autoantibody and ≥35 U/ml for CA 125)
Table 1. The expression of Ep-CAM protein in relation to histopathologic characteristics of ovarian tumor

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No. of Cases</th>
<th>Scores*</th>
<th>T#</th>
<th>p value$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>5</td>
<td>0.80 ± 1.10</td>
<td>a</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Benign</td>
<td>17</td>
<td>1.76 ± 1.36</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Borderline</td>
<td>52</td>
<td>3.67 ± 1.66</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Invasive</td>
<td>67</td>
<td>3.34 ± 1.47</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Histology of Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serous</td>
<td>60</td>
<td>3.36 ± 1.39</td>
<td></td>
<td>p = 0.32</td>
</tr>
<tr>
<td>Mucinous</td>
<td>41</td>
<td>3.88 ± 1.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endometrioid</td>
<td>13</td>
<td>3.31 ± 1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear cell/Other</td>
<td>5</td>
<td>3.00 ± 2.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor differentiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borderline</td>
<td>51</td>
<td>3.65 ± 1.79</td>
<td></td>
<td>p = 0.61</td>
</tr>
<tr>
<td>Well</td>
<td>26</td>
<td>3.83 ± 1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>14</td>
<td>3.29 ± 1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>28</td>
<td>3.36 ± 1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIGO stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>54</td>
<td>4.11 ± 1.40</td>
<td>a</td>
<td>p = 0.007</td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>4.33 ± 1.58</td>
<td>a,b</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>43</td>
<td>3.20 ± 1.70</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>14</td>
<td>2.90 ± 2.17</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>
* Values are given as mean ± standard deviation

$ Statistical significances were tested by ANOVA among groups.

The same letters indicate non-significant difference between groups based on Tukey’s multiple comparison test.
Table 2. Parameters of the diagnostic evaluation of tumor markers for epithelial ovarian cancer

<table>
<thead>
<tr>
<th></th>
<th>CA125</th>
<th>Ep-CAM antibody</th>
<th>CA125</th>
<th>Ep-CAM antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥35 U/ml</td>
<td>≥0.115</td>
<td>≥0.140</td>
<td>≥35 U/ml</td>
</tr>
<tr>
<td>Sensitivity (%)</td>
<td>84.6</td>
<td>71.2</td>
<td>42.3</td>
<td>94.2*</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>88.5</td>
<td>80.8</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Positive predictive value (%)</td>
<td>93.8</td>
<td>90.2</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Negative predictive value (%)</td>
<td>74.2</td>
<td>58.3</td>
<td>46.4</td>
<td>87.1*</td>
</tr>
<tr>
<td>Diagnostic efficiency (%)*</td>
<td>85.9</td>
<td>74.4</td>
<td>61.5</td>
<td>96.2</td>
</tr>
</tbody>
</table>

* true positive + true negative / total patients with or without disease

p < 0.01 versus CA 125 alone
Table 3. The levels of Ep-CAM autoantibody in sera in relation to histopathologic characteristics of ovarian cancer

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No. of Cases</th>
<th>Scores*</th>
<th>T*</th>
<th>p value$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology of Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serous</td>
<td>26</td>
<td>0.126 ± 0.033</td>
<td></td>
<td>p = 0.083</td>
</tr>
<tr>
<td>Mucinous</td>
<td>10</td>
<td>0.129 ± 0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endometrioid</td>
<td>10</td>
<td>0.151 ± 0.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear cell/Other</td>
<td>6</td>
<td>0.120 ± 0.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor differentiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borderline</td>
<td>8</td>
<td>0.119 ± 0.018</td>
<td></td>
<td>p = 0.061</td>
</tr>
<tr>
<td>Well</td>
<td>6</td>
<td>0.163 ± 0.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>12</td>
<td>0.135 ± 0.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>26</td>
<td>0.128 ± 0.035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIGO stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>16</td>
<td>0.137 ± 0.030</td>
<td>a</td>
<td>p = 0.039</td>
</tr>
<tr>
<td>II</td>
<td>6</td>
<td>0.150 ± 0.043</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>26</td>
<td>0.131 ± 0.028</td>
<td>a, b</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>0.094 ± 0.016</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

* Values are given as mean ± standard deviation

$ Statistical significances were tested by ANOVA among groups.

The same letters indicate non-significant difference between groups based on Tukey's multiple comparison test
Reciprocal serum dilutions
Molecular profiling of stage I epithelial ovarian carcinomas by high throughput allelotyping

Vivian W. Wang¹, Debra A. Bell²,³, Tony K. H. Chung⁴, Yick-Fu Wong⁴, Kathleen Hasselblatt¹, John D. Minna⁵, John O Schorge⁶, Ross S. Berkowitz¹,², and Samuel C. Mok¹,²

¹Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,
²Dana-Farber Harvard Cancer Center, Boston, MA,
³Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA,
⁴Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Shatin.
⁵Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
⁶Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas

Reprint Request: Samuel C. Mok, Ph.D.

Laboratory of Gynecologic Oncology
Brigham and Women’s Hospital
221 Longwood Avenue, BLI 449
Key Words: Epithelial ovarian cancer, allelotyping, chromosome 17, microdissection.

Abbreviations: LCM, laser capture microdissection; LOH, loss of heterozygosity; FAL, fractional allelic loss; PCR, polymerase chain reaction; MSI, microsatellite instability.

Footnotes: This work was supported by the Army Ovarian Cancer Research Program grant #DAMD17-99-1-9563, the Adler Foundation, the Morse Family Fund, and the Natalie Pihl Fund.
ABSTRACT

Background: Epithelial ovarian cancer represents multiple diseases with different histological types and grades exhibiting various degrees of aggressiveness and clinical outcomes. These phenomena may result from different genetic backgrounds in ovarian cancer. Therefore, genetic analyses performed on ovarian cancer, which has been stratified into different histological types and grades, should provide us a more accurate picture in the pathways involved in ovarian pathogenesis.

Methods: DNA was first isolated from microdissected normal and malignant ovarian tissues obtained from forty-eight stage I sporadic epithelial ovarian cancers including 15 serous, 9 mucinous, 12 endometrioid, and 12 clear cell carcinomas. Whole genome amplification was then performed using an improved primer-extension pre-amplification method. High-throughput allelotyping was performed on the amplified DNA using 27 fluorescent-labeled microsatellite markers spanning chromosome 17. The percentage of loss of heterozygosity (LOH) for each marker and the fractional allelic loss (FAL) for each sample were calculated and compared among different histological types.

Results: Allelotyping on all 48 tumors showed high frequencies of LOH (>45%) at loci D17S849 (17p13.2), D17S799 (17p12), and D17S1862 (17q24.3). Increased number of loci showed more than 45% LOH rate when the four histological subtypes were analyzed separately. Serous tumors demonstrated significantly higher LOH rate in 7 of 27 loci examined than other tumor types (p<0.05-0.001). Significant difference in LOH rate was also observed in 18 of 27 loci screened when tumors with different differentiations were compared (P<0.05-0.001). When the average FAL rate was compared among different tumor types,
there was no significant difference among grade I tumors. However, grade 2 clear cell tumors showed significantly higher FAL rate than endometrioid tumors (p<0.05); and grade 3 serous and endometrioid tumors showed significantly higher FAL rate than clear cell types (p<0.05).

Conclusions: Different histological types and grades of sporadic epithelial cancers have different allelic loss profiles suggesting that they may have different pathogenetic pathways.
INTRODUCTION

Ovarian cancer is the fifth most common form of cancer in females in the United States. It accounts for 4 percent of the total number of cases and 25 percent of cases occurring in the female genital tract (1). Because of its low rate of cure, it is responsible for 5 percent of all cancer deaths in women and approximately half of the deaths due to cancers of the female genital tract. Epithelial ovarian cancer comprises 97% of ovarian cancer cases. They are classified into four main histological types: serous, mucinous, endometrioid, and clear cell. Serous and mucinous types comprise 50% and 30% of all tumor types respectively. Each histological type can be further grouped into three pathological grades: well differentiated lesion (grade 1), moderately differentiated lesion (grade 2), and poorly differentiated lesion (grade 3).

Due to their relative abundance, most of the molecular genetic studies in ovarian cancer have focused on high grade and late stage serous lesions. However, recent studies show that a significant difference in genetic changes can be identified in ovarian cancer with different histological types and pathological grades. For example, KRAS mutation rate is significantly higher in mucinous than in serous adenocarcinoma (2-4). Furthermore, comparative genomic hybridization analysis showed that under-representation of 11p and 13q, and over-representation of 8q and 7p correlated with high grade tumors, while 12p under-representation and 18p overrepresentation were significantly more frequent in well and moderately differentiated tumors (5). These data suggest that the single entity of ovarian cancer represents multiple diseases with different pathogenetic pathways.
In this study, we used an established high throughput PCR based method in combination with LCM and whole genome amplification techniques to generate a high density deletion map on chromosome 17 in 48 stage I epithelial ovarian cancers. In addition, LOH profiles were compared among cases to evaluate whether they correlated with the histological subtype and pathological grade of the tumor.
MATERIALS AND METHODS

Eighteen frozen and 30 formalin-fixed, paraffin-embedded ovarian cancer samples were obtained from the Division of Gynecologic Oncology, Brigham and Women's Hospital, the Department of Pathology, Massachusetts General Hospital, and the Department of Obstetrics and Gynecology, The Chinese University of Hong Kong. All identifying information was removed from each sample prior to its receipt for analysis. According to International Federation of Gynecology and Obstetrics criteria, all 48 cases were stage I epithelial ovarian cancer. Of them, 4 were microscopically identified microinvasive carcinomas. The diameters of these microscopic tumors ranged from 1 to 8 mm. Histologic subtype and pathological grade of the tumors were determined according to the World Health Organization criteria. Fifteen were serous, 9 were mucinous, 12 were endometrioid, and 12 were clear cell adenocarcinomas. Eighteen cases were well differentiated (Grade 1), 14 were moderately differentiated (Grade 2), and 16 were poorly differentiated tumors (Grade 3).

Six-micrometer sections from frozen tissue or paraffin-embedded tissue blocks were cut, mounted onto plain glass slide, and stained with hematoxylin and eosin. Histologic diagnosis for each specimen was confirmed prior to microdissection. Tumor and normal stromal cells were procured by the PixCell II LCM system (Arcturus Engineering, Mountain View, CA). DNA was isolated from the LCM procured cells, microdissected tumor cells and paired stromal cells, and whole genome amplification was carried out as described previously (6). The 27 fluorescent microsatellite markers spanning chromosome 17 used in this study were obtained from the ABI PRISM Linkage
Mapping Set HD-5 (Applied Biosystems, Foster City, CA). Cytogenetic location of the markers was determined by data obtained from the following three websites including UCSC's Genome Browser (http://genome.ucsc.edu), NCBI's Map Viewer (http://www.ncbi.nlm.nih.gov/genome/guide), and Ensemble (http://www.ensembl.org). PCR reactions were performed in a 10 μl volume using 1 μl of whole genome amplified DNA, 0.25-0.5 μM of each primer, 1 x PCR buffer, 2.5 mM MgCl₂, 0.25 mM of each dNTP, and 0.5 unit AmpliTaq Gold DNA polymerase. Amplification was started with 12 min at 95 °C, followed by 10 cycles composed of 15 sec at 94 °C, 15 sec at 55 °C and 30 sec at 72 °C, and then 25 cycles composed of 15 sec at 89 °C, 15 sec at 55 °C and 30 sec at 72 °C. Amplified PCR products for multiple loci were pooled, and run on an ABI PRISM 310 automated capillary electrophoresis DNA sequencer (Applied Biosystems, Foster City, CA).

The allelic products were assessed for peak height and peak area using Genescan and Genotyper softwares (Applied Biosystems, Foster City, CA), and the ratios of heterozygous normal and tumor alleles were calculated as described previously (6). LOH was imputed if the effective decrease in one allele was > 50% (normal : tumor allelic ratios, < 0.5 or >2.0). Retention of both alleles was scored as retention of heterozygosity. A unique peak in both the tumor cells and non-tumor stromal cells was scored as homozygote or not informative. Microsatellite instability (MSI) was defined as a shift of electropherogram tracing in tumor sample when compared with that in the corresponding normal tissue. Representative output of an ovarian cancer case demonstrating allelotyping patterns at loci D17S784, D17S1876, D17S949, and D17S785 are shown in Figure 1.
Both LOH percentage for each marker and the FAL for each sample were calculated, and a detailed deletion map was generated using a LOH clustering software as described (7). LOH percentage was measured as the number of samples showing LOH present in a marker divided by the total number of informative (heterozygous) samples. The FAL is a measure of the extent of allele loss in a given tumor sample and was defined as the number of LOH events in a sample divided by the total informative (heterozygous) markers in the corresponding normal DNA sample (8). Pearson's chi-square test and One Way Analysis of Variance were used to evaluate the association between LOH rate or FAL and tumor histologic subtype or pathological grade. Fisher exact test was used to compare FAL among the four microscopically detected tumors. Statistical algorithms were from SPSS 9.0 for windows software (SPSS Inc., Chicago, IL). Probability value was two-tailed, with p < 0.05 regarded as statistically significant.
RESULTS

LOH analysis revealed regions of frequent allelic loss in stage I epithelial ovarian cancer. In this study, DNA samples extracted from 48 stage I ovarian cancer cases and their corresponding controls were allelotyped with 27 markers, with an average genetic distance of 5 cM, on chromosome 17. The allelotyping results are shown in Figure 2 and Table 1. Forty-four of 48 (91%) epithelial ovarian cancers displayed LOH of at one or more informative markers. Of these, 5 tumors (3 cases of grade 3 serous adenocarcinoma and 2 cases of grade 3 endometrioid adenocarcinoma) showed LOH at all informative loci. Four tumors (1 case of grade 1 serous adenocarcinoma and 3 cases of grade 1 endometrioid adenocarcinoma) showed all informative alleles on chromosome 17 were retained. The remaining 39 tumors showed partial deletions, suggesting regional losses. The allele loss frequencies of the marker used in all 48 early stage epithelial ovarian tumors are shown in Figure 3. They varied from 13% (D17S928 at 17qter) to 50% (D17S849 at 17p13.3 and D17S799 at 17p12). Frequent losses (>35%) were seen at 12 loci including D17S849 (17p13.3, 50%), D17S831 (17p13.3, 37%), D17S1828 (17p13.2, 42%), D17S1876 (17p13.2, 49%), D17S799 (17p12, 50%), D17S921 (17p11.2, 43%), D17S1857 (17p11.2, 45%), D17S787 (17q22, 45%), D17S944 (17q23.1, 44%), D17S1816 (17q24.1, 38%), D17S1862 (17q24.3, 47%), and D17S836 (17q25.3, 42%). The most prominent regions of allelic loss (>45% loss) were at 17p13.3, 17p13.2, 17p12 and 17q24.3. These regions of loss were confined to one marker or located between two markers. The FAL at 27 loci of chromosome 17 in this set of stage I epithelial ovarian cancers ranged from 0 to 1.0. The average FAL was 0.349.
LOH in different histologic subtypes of stage I epithelial ovarian cancer.

LOH of chromosome 17 markers was analyzed according to the histological type as shown in Table 1. A total of 15 serous, 9 mucinous, 12 endometrioid, and 12 clear carcinomas were analyzed. In serous adenocarcinoma, high frequency of LOH (>45%) was detected in 19 loci including D17S1876, D17S1876, D17S799, D17S1857, D17S1824, D17S798, D17S927, D17S1868, D17S1795, D17S787, D17S957, D17S944, D17S1816, D17S1862, D17S1807, D17S785, D17S1847, D17S836 and D17S784. In mucinous adenocarcinoma, high frequency of LOH was detected in 5 loci including D17S849, D17S1828, D17S1876, D17S799 and D17S921. Allelic loss was not detected in any of the markers on 17q21.2-q21.32, and 17q25-qter. In endometrioid adenocarcinoma, only one marker, D17S849 at 17p13.3, showed more than 45% LOH rate. In clear cell adenocarcinoma, high frequency of LOH was detected in 7 loci including D17S849, D17S1791, D17S799, D17S921, D17S787, D17S1862 and D17S836. The average FAL in serous, mucinous, endometrioid, and clear cell adenocarcinoma was 0.447, 0.240, 0.258, and 0.293 respectively. There were significant differences in LOH frequency at 7 individual loci including D17S1824, D17S798, D17S927, D17S1868, D17S944, D17S1807 and D17S785 among the 4 subtypes of cancer (p<0.05-0.001) (figure 4). Without further stratification into different pathological grades, the difference of FAL among different histological types of ovarian cancer was not significant (p>0.05).

LOH in different pathological grades of stage I epithelial ovarian cancer.

LOH of chromosome 17 markers was analyzed according to pathological grades as
shown in Table 1. A total of 14 grade 1, 16 grade 2 and 18 grade 3 tumors were examined. High frequency of LOH (>45%) was detected at 22 loci in poorly differentiated grade 3 cancer, at 3 loci in grade 2 cancer, and at no one locus in grade 1 cancer. There was significant difference in LOH frequency at 18 of 27 loci examined among three pathological grades of stage I ovarian tumor (p<0.05-0.001). The LOH frequency at these 18 loci was higher in poorly differentiated tumor than that in other grades (Figure 5). Furthermore, LOH can only be detected at D17S957 on 17q23.1, and D17S928 on 17qter in grade 3 tumors. The average FAL in grade 1, grade 2, and grade 3 was 0.157, 0.208, and 0.624, respectively. Grade 3 tumor showed significantly higher average FAL than grade 2 and grade 1 tumors (p<0.05-0.001). When the average FAL was compared among tumors with different grades that were further stratified into different histological types, grade 2 endometrioid tumors showed significantly lower FAL than grade 2 clear cell tumors (p<0.05), and lower than grade 2 mucinous and serous tumors (p=0.051). Furthermore, grade 3 serous and endometrioid tumors showed significantly higher FAL than grade 3 clear cell tumor (p<0.05) (Figure 6).

LOH in microscopically detected stage I epithelial ovarian cancer. To evaluate whether chromosome 17 LOH is an early event in ovarian carcinogenesis, the allelotype profiles from the four microscopically detected ovarian carcinomas were examined (Figure 2). Both grade 3 serous (case 99N51) and endometrioid (case 774) adenocarcinomas showed significantly higher FAL than the grade 1 serous adenocarcinoma (case 3317) (p<0.001) and the grade 2 serous adenocarcinoma (case 7024) (p<0.05). Significant difference in FAL between the microscopically detected
carcinomas and other stage I invasive ovarian carcinomas with the same grade was not detected.

Microsatellite instability in stage I epithelial ovarian cancer. Fifteen of 48 tumors (31%) exhibited MSI at least in one locus (Figure 2). The number of loci with MSI in these tumors ranged from 1 to 5. One tumor displayed MSI in 5 markers, five tumors had MSI in two markers, while nine tumors had MSI in one marker only. Recurrent changes were not observed in any loci.
DISCUSSION

In this study, we used 27 fluorescent-labeled microsatellite markers and DNA isolated from microdissected normal and malignant ovarian tissues obtained from 48 sporadic stage I epithelial ovarian cancer to generate a high resolution deletion map on chromosome 17. The percentage of LOH for each marker and the FAL for each sample were calculated and compared among different histological types and pathological grades.

Due to their relative abundance, most of the allelotyping have focused on the study of high grade and late stage serous ovarian carcinomas. Detailed deletion mapping of chromosome 17q in ovarian cancers identified at least three distinct commonly deleted regions. They are located at 17q 11.2 (the \textit{NF1} locus), 17q21 (including the \textit{BRCA1} locus) and between 17q25.1 and 17qter (9-11). Multiple common loss regions were also identified on 17p. More than 50\% LOH rate at the p53 locus was identified in all types of high grade carcinomas but significantly lower in low grade and early stage tumors (12-14). A site of the chromosome 17p deletions was narrowed to 17p13 where 17 of 21 tumors showing deletions of 17p did not show evidence of \textit{TP53} mutations (15). This suggests that 17p deletions may occur early and precede any \textit{TP53} mutations. Further mapping of the common loss region identified a 15 kB region at 17p13.3 where a number of genes including \textit{OVCA1} and \textit{OVCA2} with potential tumor suppressor function are located (16, 17).

Controversies in LOH percentage exist in ovarian tumors with different histological subtypes and pathological grades. Pieretti \textit{et al.} (18) reported that grade 3
serous tumors had the highest percentage of chromosome 17 loss (89%), followed by grade 2 serous tumors (44%) and grade 3 endometrioid carcinomas (43%). Overall, they detected LOH at 17q in 49% serous, 15% endometrioid, and 4% mucinous neoplasms. Moreover, total loss of chromosome 17 was almost exclusively detected in high grade serous carcinomas. They concluded that chromosome 17 loss is a molecular alteration almost exclusively confined to high-grade and late stage tumors. In contrast, Eccles et al. (19) reported high LOH rate at chromosome 17 in early stage ovarian carcinomas. Moreover, Papp et al. (20) reported that LOH at 17q was infrequent in tumors with endometrioid, mucinous and clear cell histology. Furthermore, Dodson et al. (21) reported a higher percentage of chromosome 17 LOH in low grade tumors. We believe that these controversies are mainly due to the distribution of different histological subtypes and histological grades in their analyses. Using stage I tumor cases with a more even distribution of subtype and grade, our studies clearly demonstrate that within the same stage, ovarian cancers with different pathological grades have different allelic loss profiles. Furthermore, within the same pathological grade, tumors with histological types have different allelic profiles. Both LOH frequency and FAL change dramatically when these tumors are analyzed separately. These data strongly suggest that ovarian tumors with different grades and histological types need to be analyzed separately, and the entity of ovarian cancer represents multiple diseases with different pathogenetic pathways.

In this study, we showed that both microscopic grade 3 serous and endometrioid carcinomas demonstrated significantly higher FAL than the grade 1 serous tumors. These tumors were incidental microscopic findings. The indications for the operations that included oophorectomy were leiomyomas, menorrhagia, and pyometra. None of the
oophorectomies were performed as prophylaxis in women with a family history of ovarian cancer. These tumors represent very early lesions. The identification of significantly higher FAL in the grade 3 serous and endometrioid carcinomas than the low grade microscopic tumors suggests that allelic loss in chromosome 17 is an early event in the pathogenesis of high grade ovarian tumors. Furthermore, it also supports the notion that high grade tumors may develop de novo from premalignant lesions such as inclusion cysts or endosalpingosis without progressing through borderline or low grade stages.

Our study showed that MSI in chromosome 17 is uncommon in stage I ovarian carcinomas. It was identified in tumors with different histological types and pathological grades. One of the tumors (98R2224) showed evidence of MSI at multiple loci. The precise significance of this finding is not yet clear. It may represent an indirect evidence of a mutator phenotype.

In conclusion, this study showed that different histological types and grades of sporadic stage I epithelial ovarian cancers have different allelic loss profiles. Allelic loss on chromosome 17 is an early event in the pathogenesis of high grade serous and endometrioid carcinomas. These data support the notion that ovarian cancer represents multiple diseases with different pathogenetic pathways and therefore warrants to be studied separately.
REFERENCES

(6) Wang VW, Bell DA, Berkowitz RR, Mok SC. Whole genome amplification and high-throughput allelotyping identified five distinct deletion regions on chromosomes 5 and 6 in microdissected early stage ovarian tumors. Cancer Res 2001;61(in press).

LEGENDS

Figure 1. Electropherogram traces on four chromosome 17 loci (D17S784, D17S1876, D17S949, and D17S785) in a clear cell adenocarcinoma (case 98C1755). Top, stromal cells; Bottom, cancer cells. The four panels from left to right show loss of heterozygosity, retention of heterozygosity, homozygous, and microsatellite instability, respectively.

Figure 2. Detailed deletion map of 48 stage I epithelial ovarian cancer cases. Samples are grouped according to tumor grade and histological subtype. Chromosome 17 genetic linkage map and microsatellite markers are shown on the left. Chromosome regional location is shown on the right. S, serous; M, mucinous; E, endometrioid; C, clear cell.

Figure 3. Frequency of allele loss in 27 markers on chromosome 17 in 48 stage I epithelial ovarian tumors.

Figure 4. Graphical representation of LOH frequency at 27 loci on chromosome 17 in 4 histological subtypes of stage I epithelial ovarian tumors.

Figure 5. Graphical representation of LOH frequency at 27 loci on chromosome 17 in varying grades of stage I epithelial ovarian tumors.
Figure 6. Average FAL of each histological subtype and pathological grade on chromosome 17. The error bar depicts the standard deviation of the mean.
Table 1. Correlation of LOH in each locus with pathological features in stage I epithelial ovarian tumors.

<table>
<thead>
<tr>
<th>Markers</th>
<th>Histology (LOH informative%)</th>
<th>Differentiation (LOH informative%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serous (n=15)</td>
<td>Mucinous (n=9)</td>
</tr>
<tr>
<td>D17S849</td>
<td>5/12 (42%)</td>
<td>3/6 (50%)</td>
</tr>
<tr>
<td>D17S831</td>
<td>5/12 (42%)</td>
<td>4/9 (44%)</td>
</tr>
<tr>
<td>D17S1828</td>
<td>10/15 (67%)</td>
<td>4/8 (50%)</td>
</tr>
<tr>
<td>D17S1876</td>
<td>8/13 (62%)</td>
<td>5/9 (56%)</td>
</tr>
<tr>
<td>D17S938</td>
<td>4/10 (40%)</td>
<td>0/7 (0)</td>
</tr>
<tr>
<td>D17S1791</td>
<td>5/12 (42%)</td>
<td>1/9 (11%)</td>
</tr>
<tr>
<td>D17S1852</td>
<td>4/12 (33%)</td>
<td>4/9 (44%)</td>
</tr>
<tr>
<td>D17S799</td>
<td>7/14 (50%)</td>
<td>4/6 (67%)</td>
</tr>
<tr>
<td>D17S921</td>
<td>4/9 (40%)</td>
<td>3/6 (67%)</td>
</tr>
<tr>
<td>D17S1857</td>
<td>5/10 (50%)</td>
<td>4/9 (44%)</td>
</tr>
<tr>
<td>D17S1824</td>
<td>9/13 (69%)</td>
<td>2/8 (25%)</td>
</tr>
<tr>
<td>D17S798</td>
<td>7/8 (88%)</td>
<td>0/5 (0)</td>
</tr>
<tr>
<td>D17S927</td>
<td>6/11 (55%)</td>
<td>0/7 (0)</td>
</tr>
<tr>
<td>D17S1868</td>
<td>6/13 (46%)</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td>D17S1795</td>
<td>7/12 (58%)</td>
<td>1/7 (14%)</td>
</tr>
<tr>
<td>D17S787</td>
<td>7/10 (70%)</td>
<td>3/8 (38%)</td>
</tr>
<tr>
<td>D17S967</td>
<td>2/4 (50%)</td>
<td>0/3 (0)</td>
</tr>
<tr>
<td>D17S944</td>
<td>9/11 (82%)</td>
<td>2/7 (29%)</td>
</tr>
<tr>
<td>D17S1816</td>
<td>7/12 (58%)</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td>D17S949</td>
<td>4/13 (31%)</td>
<td>1/8 (13%)</td>
</tr>
<tr>
<td>D17S1862</td>
<td>8/14 (57%)</td>
<td>2/9 (22%)</td>
</tr>
<tr>
<td>D17S1807</td>
<td>6/12 (50%)</td>
<td>0/5 (0)</td>
</tr>
<tr>
<td>D17S785</td>
<td>7/15 (47%)</td>
<td>0/5 (0)</td>
</tr>
<tr>
<td>D17S1847</td>
<td>4/8 (50%)</td>
<td>0/5 (0)</td>
</tr>
<tr>
<td>D17S836</td>
<td>7/12 (58%)</td>
<td>0/2 (0)</td>
</tr>
<tr>
<td>D17S784</td>
<td>6/11 (55%)</td>
<td>0/5 (0)</td>
</tr>
<tr>
<td>D17S928</td>
<td>4/11 (36%)</td>
<td>0/5 (0)</td>
</tr>
</tbody>
</table>

* Well differentiated, grade 1; moderately differentiated, grade 2; poorly differentiated, grade 3.
* Statistical significances were tested by Pearson's Chi-Square.
* ns: non-significant.
Diagram showing genetic markers D17S784, D17S1876, D17S949, and D17S785 with peak intensities for normal and tumor samples.

- **98C1755 Normal**
- **98C1755 Tumor**

Key annotations include:
- **Loss of heterozygosity**
- **Retention of heterozygosity**
- **Homozygous**
- **Microsatellite instability**
* Microscopically detected epithelial ovarian carcinoma.

- Retention of heterozygosity
- Loss of heterozygosity
- Homozygous
- No data
- Microsatellite instability with both alleles retained
- Microsatellite instability with loss of one allele
- Microsatellite instability with homozygous
Prostasin, a Potential Serum Marker for Ovarian Cancer: Identification Through Microarray Technology

Samuel C. Mok, Julie Chao, Steven Skates, Kwong-kwok Wong, Gary K. Yiu, Michael G. Muto, Ross S. Berkowitz, Daniel W. Cramer

Background: Screening biomarkers for ovarian cancer are needed because of its late stage at diagnosis and poor survival. We used microarray technology to identify overexpressed genes for secretory proteins as potential serum biomarkers and selected prostasin, a serine proteinase normally secreted by the prostate gland, for further study. Methods: RNA was isolated and pooled from three ovarian cancer cell lines and from three normal human ovarian epithelial (HOSE) cell lines. Complementary DNA generated from these pools was hybridized to a microarray slide, and genes overexpressed in the cancer cells were identified. Real-time quantitative polymerase chain reaction was used to examine prostasin gene expression in ovarian cancer and HOSE cell lines. Anti-prostasin antibodies were used to examine prostasin expression and to measure serum prostasin by an enzyme-linked immunosorbent assay in 64 case patients with ovarian cancer and in 137 control subjects. Previously determined levels of CA 125, an ovarian cancer marker, were available from about 70% of all subjects. All statistical tests were two-sided. Results: Prostasin was detected by immunostaining more strongly in cancerous epithelial cells and stroma than in normal ovarian tissue. The mean level of serum prostasin was 13.7 μg/mL (95% confidence interval [CI] = 10.5 to 16.9 μg/mL) in 64 case patients with ovarian cancer and 7.5 μg/mL (95% CI = 6.6 to 8.3 μg/mL) in 137 control subjects (P < .001, after adjustment for the subject's age, year of collection, and specimen quality). In 15 of 16 case patients with both preoperative and postoperative serum samples, postoperative prostasin levels were statistically significantly lower than preoperative levels (P = .004). In 37 case patients with nonmucinous ovarian cancer and in 100 control subjects for whom levels of CA 125 and prostasin were available, the combination of markers gave a sensitivity of 92% (95% CI = 78.1% to 98.3%) and a specificity of 94% (95% CI = 87.4% to 97.7%) for detecting ovarian cancer. Conclusions: Prostasin is overexpressed in epithelial ovarian cancer and should be investigated further as a screening or tumor marker, alone and in combination with CA 125. [J Natl Cancer Inst 2001;93:000-000]

Ovarian cancer ranks closely behind pancreatic cancer as the fifth leading cause of death from cancer in U.S. women and is the most lethal of the gynecologic cancers (1). The majority of women with ovarian cancer are diagnosed when they have distant disease, and the proportion surviving after 5 years is around 28% (2). Alternatively, for the minority of women diagnosed with the disease confined to the ovaries, the proportion surviving after 5 years is about 90% (depending on the tumor grade). Thus, ovarian cancer is an obvious target for better approaches to early detection, including the identification of appropriate molecular markers.

Microarray technology permits the simultaneous comparison of the expression of thousands of genes in samples to allow identification of those that are differentially expressed. The technique has been applied to the molecular classification of tumors (3-5) and may also be able to identify overexpressed complementary DNA (cDNA) corresponding to secretory proteins that might serve as serum markers for cancer. In this article, we describe the application of microarray technology to identify novel molecular markers for ovarian cancer and explore the potential clinical value of one of the candidate markers (called prostasin) thus identified.

MATERIALS AND METHODS

Biologic Specimens

All patient-derived biologic specimens were collected and archived under protocols approved by the Human Subjects Committee of the Brigham and Women's Hospital, Boston, MA, or were approved for study under guidelines covering discarded human materials. Ovarian tissue and cells were freshly collected from women undergoing surgery at the Brigham and Women's Hospital for a diagnosis of primary ovarian cancer or from control subjects having hysterectomy and oophorectomy for benign disease. Cultures of normal human ovarian surface epithelial (HOSE) cells were established by scraping the surface of the ovary and growing recovered cells in a mixture of medium 199 and MCDB105 medium supplemented with 10% fetal calf serum (Sigma Chemical Co., St. Louis, MO) as described previously (6). The following seven normal HOSE cells were used: HOSE17, HOSE636, HOSE642, HOSE697, HOSE713, HOSE726, and HOSE730. Ovarian cancer cell lines were established by recovery from ascitic fluid or explanted from solid tumors as described previously (6). The following 10 ovarian cancer cell lines were used: OVCA1, OVCA420, OVCA429, OVCA502, OVCA633, OVCA633, CAOV3, DOV19, ALST, and SKOV3. All of the cell cultures and cell lines were established in the Laboratory of Gynecologic Oncology, Brigham and Women's Hospital, with the exception

A affiliations of authors: S. C. Mok, G. K. Yiu, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; J. Chao, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston; S. Skates, Gillette Center for Women's Cancer, Dana-Farber Cancer Institute, and Biostatistics Center, Massachusetts General Hospital, Boston; K. Yiu, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston; M. G. Muto, R. S. Berkowitz, D. W. Cramer, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, and Gillette Center for Women's Cancer, Dana-Farber Cancer Institute.

Correspondence to: Samuel C. Mok, Ph.D., Laboratory of Gynecologic Oncology, Brigham and Women's Hospital, 221 Longwood Ave., BLI 449, Boston, MA 02115 (e-mail: smok@hms.harvard.edu).

See "Notes" following "References."
of SKOV3, which was purchased from the American Type Culture Collection, Manassas, VA. RNA was extracted from individual or pooled cell lines by using a micro RNA extraction kit as described by the manufacturer (Qiagen, Valencia, CA) and quantified by fluorometry (GeneQuant Bio-Products, Inc., Califhronia, VA).

Strom specimens from women with ovarian cancer, other gynecologic can-

cers, and benign gynecologic disorders requiring hysterectomy and from non-
diseased normal women were obtained from discarded specimens and from
dissected specimens that were archived during the period from 1983 through
1988 or from specimens collected under more recent protocols since 1995. The
archived samples were collected from several studies, from 1983 through 1988,
assessing the performance of CA 125 in a variety of diagnostic circumstances,
including gynecologically normal subjects as well as subjects having exploratory
surgery for pelvic masses that proved to be ovarian, cervical, or endometrial
cancer or a benign disease such as fibroid tumors (7-8). These archived speci-
mens were stored at -70°C. However, during relocation of the Laboratory of
Gynecologic Oncology, thawing was known to have occurred once for each of
the archived specimens. Archived specimens that had been obtained preopera-
tively from the case patients and from the surgical control subjects were iden-
tified and recovered. The recently collected specimens are those being obtained
with written informed consent as part of ongoing studies of ovarian cancer
sponsored by the Obstetrics/Gynecology Epidemiology Unit (10) and the Labora-
tory of Gynecologic Oncology, Brigham and Women’s Hospital. These specimens
were obtained within the past 5 years and were stored at -70°C without any
incident of thawing. In both specimen banks, serum from case patients with
ovarian cancer and serum from control patients were collected concurrently.

Microarray Probe and Hybridization

The MICROMAXTM human cDNA microarray system I (NEN Life Science
Products, Inc., Boston, MA), which contains 2400 known human cDNA on a
slide 1 inch x 3 inches, was used in this study. Bisulfinylated cDNA was
generated from 3 μg of total RNA that was pooled from HOS217, HOS636,
and HOS151 cells. Dinitrophenyl labeled DNA was generated from 3 μg of
total RNA that was pooled from ovarian cancer cell lines OVC4230, OVC4331,
and SKOV3. Before the cDNA reaction, equal amounts (5 ng) of Antibody
control RNA were added to each batch of the RNA samples for the normalization
of hybridization signals. The bisulfinylated cDNA and the dinitrophenyl-
labeled cDNA were mixed, denatured, and resuspended in 20 μL of hybridization buffer (5x standard saline citrate [SSC], 0.1% sodium dodecyl sulfate [SDS], and salmon sper-
mRNA at 0.1 mg/mL [1 x SSC = 0.15 M NaCl-0.15 M sodium citrate, pH 7]).
This mixture was added to the cDNA microarray and was covered with a
cover slip. Hybridization was carried out overnight at 65°C inside a hybridization
cassette (Telechem, Inc., Sonnysdale, CA).

After hybridization, the microarray was washed with 30 mL of 0.5x SSC-
0.1% SDS, with 30 mL of 0.06x SSC-0.01% SDS, and then with 30 mL of
0.006x SSC-0.001% SDS. The hybridization signal from bisulfinylated cDNA was
amplified with streptavidin-horseradish peroxidase and a fluorescent dye, Cy3/T-
Cy5 (NEN Life Science Products, Inc.), and the hybridization signal from
the dinitrophenyl-labeled cDNA was amplified with anti-dinitrophenyl-
horseradish peroxidase and another fluorescent dye, Cy3D/Cy5 (NEN Life
Science Products, Inc.). After signal amplification and a posthybridization wash
in TNT buffer (i.e., 0.1 M Tris-EDC [pH 7.5]-0.1 M NaCl-0.1% Tween 20), the microarray was air-dried, and signal amplification was detected with a laser
scanner.

Laser detection of the Cy3 signal (derived from ovarian cancer cells) and the
Cy5 signal (derived from HOS3 cells) on the microarray was acquired with a
coupled laser reader, ScanArray X000 (GSI Lumonics, Watertown, MA). Sepa-
rate scans were taken for each fluor at a pixel size of 10 μm. Flow cytometry
was performed on the captured images for each of the 4200 cDNAs. Flow cy-
tometry analysis was performed using the software ImageJ 3.0 (Biodiscovery
Inc., Los Angeles, CA).

Real-Time Quantitative Reverse Transcription–Polymerase Chain

Real-time reverse transcription-polymerase chain reaction (RT-PCR) was
performed in duplicate by using primer sets specific for the overexpressed gene
encoding the secretory protein called prostatic secretory protein (forward primer —
ATGAGAGACAGTCTGCTTCCAGT-3') and a housekeeping gene, GAPDH, in as at 53°
(T72-ACAGAGAAACAGGACAGAT-3') and a housekeeping gene, GAPDH, in as
were fixed in 4% paraformaldehyde and embedded in paraffin. Sections (5 μm)
were cut, mounted on Superfrost Plus microscope slides (Fisher Scientifics, Pittsburg, PA), and incubated at 50°C overnight. They were then transfectiont
in Tris-buffered saline (TBS) and quenched in 0.2% H2O2 for 30 minutes. After
quenching, the sections were washed in TBS for 20 minutes, incubated with normal horse serum for 20 minutes, and then incubated with anti-prostatic polyclonal antibody (diluted 1:400) at room temperature for 1 hour. The slides were then washed in TBS for
10 minutes, incubated with diluted biotinylated second antibody horseradish
peroxidase solution for 30 minutes, washed again in TBS for 10 minutes, incubated
with avidin-biotin complex reagent (Vector Laboratories, Inc., Burlingame, CA)
for 30 minutes, and washed in TBS for 10 minutes. Stain development was
performed by using a diaminobenzidine kit (Vector Laboratories, Inc.). Finally, the sections were washed in water for 10 minutes. They were then counterstained with hematoxylin, dehydrated with an ascending series
of alcohol solutions, cleared in xylene, and mounted in Permount (Fisher Scien-
tifics). The specificity of the staining was confirmed by using preimmunization
rabbit serum and by preabsorbing the antibody with the purified peptide (60
mg/mL; Genosys, Woodlands, TX) or prostatic acid for 30 minutes at 23°C before
applying the adsorbed antiserum to the sections.

Immunohistochemical Localization of Prostasins

Immunostaining with an anti-prostatin antibody was performed on sections
prepared from two normal ovaries, from two scrotal borderline ovarian tumors,
and from two grade 1, two grade 2, and two grade 3 ovarian cystadenocarci-
massoms. This rabbit polyclonal antibody (provided by Dr. Julie Choo's labora-
red in semen fluid as described previously (11). Tissues fixed in 4%
formaldehyde and embedded in paraffin. Sections (5 μm) were cut, mounted
on Superfrost Plus microscope slides (Fisher Scientifics, Pittsburgh, PA), and
incubated at 50°C overnight. The antibodies were then transferred to the
mitochondria of the TBS and quenched with 0.2% H2O2 for 30 minutes. After
quenching, the sections were washed in TBS for 20 minutes, incubated with
tional horse serum for 20 minutes, and then incubated with anti-prostatic polyclonal antibody (diluted 1:400) at room temperature for 1 hour. The
slides were then washed in TBS for 10 minutes, incubated with biotinylated second antibody horseradish
peroxidase solution for 30 minutes, washed again in TBS for 10 minutes, incubated
with avidin-biotin complex reagent (Vector Laboratories, Inc., Burlingame, CA)
for 30 minutes, and washed in TBS for 10 minutes. Stain development was
performed by using the diaminobenzidine kit (Vector Laboratories,
Inc.). Finally, the sections were washed in water for 10 minutes. They were then counterstained with hematoxylin, dehydrated with an ascending series
of alcohol solutions, cleared in xylene, and mounted in Permount (Fisher Scien-
tifics). The specificity of the staining was confirmed by using preimmunization
rabbit serum and by preabsorbing the antibody with the purified peptide (60
mg/mL; Genosys, Woodlands, TX) or prostatic acid for 30 minutes at 23°C before
applying the adsorbed antiserum to the sections.

Measurement of Prostasins and CA 125 in Sera

Sera were available from a total of 201 subjects (64 case patients with ovarian
cancer and 137 control subjects, including 34 with other gynecologic cancers, 42
with benign gynecologic diseases, and 71 with no known gynecologic diseases).
In all of the case patients and in the 68 control subjects who had surgery,
neoplasia were evaluated. Serum levels of immunoreactive human
prostasins were determined by enzyme-linked immunoassay (ELISA) as
prepared with the previously described antibody to human prostasins (11).
Microarray plates (96-well) were coated with anti-prostatin immunoglobulin G

2 ARTICLES
RESULTS

Fig. 1 shows a selected portion of the microarray analysis of pooled RNA isolated from three normal HOSE cell lines (labeled with the fluorescent dye Cy5) and from three ovarian cancer cell lines (labeled with the fluorescent dye Cy3). Thirty genes with Cy3/Cy5 signal ratios ranging from 5 to 444 were identified, suggesting that these genes were overexpressed in ovarian cancer cells compared with normal HOSE cells, and have been described previously (12). Among them, both prostatin and osteopontin encode secretory proteins, which may be potential serum markers. Another gene, creatine kinase B, has been shown to produce a serum marker associated with renal carcinoma and lung cancer (13,14). We selected the prostatin gene, with a Cy3/Cy5 ratio of 170, for further study because this gene had an available antibody assay.

To evaluate the differential expression of prostatin in individual normal and malignant ovarian epithelial cell lines from normal and neoplastic ovaries, we performed quantitative PCR analysis on four normal HOSE cultures and on 10 ovarian cancer cell lines (Table 1). The VAC value, which represents relative prostatin gene expression, ranged from 120.3-fold to 410.1-fold greater for seven of the 10 ovarian cancer cell lines compared with that for HOSE697 cells, but it was only marginally greater for the other three ovarian cancer cell lines (ALST, DOV13, and SKOV3). Overall, there was a highly statistically significant difference between the mean 2(-DeltaCt) values for the four normal cell lines compared with those for the 10 ovarian cancer lines (P<0.001).

For further validation of the expression of prostatin in actual tumor tissue, sections from two normal ovaries, from two serous borderline ovarian tumors, and from two grade 1, two grade 2, and two grade 3 serous ovarian cystadenocarcinomas were immunostained with an anti-prostatin polyclonal antibody. Stronger cytoplasmic staining was detected in cancer cells than in normal HOSE cells, suggesting that prostatin is overexpressed by the ovarian cancer cells (Fig. 2). Prostatin was, however, also detected in normal ovarian tissue by immunostaining.

We next examined prostatin levels detected by ELISA in sera from case patients and control subjects (Table 2). The mean (and 95% CI) prostatin level for all of the case patients was 13.7 μg/mL (95% CI = 10.5 to 16.9 μg/mL) compared with 7.5 μg/mL (95% CI = 6.6 to 8.3 μg/mL) in all of the control subjects. Based on log-transformed values, this difference was statistically significant (P<0.001) and persisted after adjustment for the subject’s age, year of collection, and quality of specimen (possible freeze-thaw damage). Among case patients, there was considerable variability by stage; however, notably, women with stage II disease had the highest level of prostatin, suggesting that
prostasin may be of use for early-stage detection. It also appeared that women with mucinous-type ovarian tumors had lower levels of prostasin than women with ovarian tumors of other epithelial types. Among control subjects, there was a statistically significant tendency for the archived specimens to have lower prostasin levels than the current specimens (P<.001), but there was no evidence for an effect of age or diagnostic category (i.e., normal tissue, benign gynecologic disease, or other gynecologic cancer). In addition, 60.5% of the archived case specimens and 66.2% of the control specimens had been in the freezer in which freezing and thawing had occurred. There was no evidence of a tendency for these samples to have lower prostasin levels (Table 2).

Fig. 3 shows a box plot of serum prostasin level for case patients with nonmucinous ovarian cancers and for the various control subgroups. Concerning the two control subgroups with benign gynecologic disease, who were outliers in Fig. 3, one had uterine fibroid tumors and the other had an extensive family history of ovarian cancer and had been referred to a gynecologic oncologist because pelvic washings at laparoscopy contained "suspicious" mesothelial cells. She was found to have extensive endosalpingiosis at prophylactic oophorectomy.

In 16 women with nonmucinous epithelial ovarian cancers, preoperative and postoperative specimens were available for comparison (Fig. 4). For 14 of these women, a decreased prostasin level was observed after surgery, and, in the entire group of 16, postoperative P levels were statistically significantly lower compared with preoperative levels with the use of a paired t test on the log-transformed values (P = .004).

Fig. 5 displays a bivariate plot of prostasin versus CA 125 for the 37 case patients with nonmucinous ovarian cancers and for the 100 control subjects who had both measurements available. For the case patients with nonmucinous cancers, the correlation was .217 (P = .20). For the control subjects, the correlation was −.004 (P = .97). This lack of correlation suggests that the two may provide complementary information. Indeed, as shown by the curved line in Fig. 5 illustrating the separation that can be obtained between case patients and control subjects with both variables, the combined markers achieved a sensitivity of 34/37 = 92% (95% CI = 78.1% to 98.3%) and a specificity of 94/100 = 94% (95% CI = 87.4% to 97.7%). In contrast, the sensitivity of CA 125 alone at the same specificity was 24/37 = 64.9% (95% CI = 47.5% to 79.8%), and the sensitivity of prostasin alone at the same specificity was 19/37 = 51.4% (95% CI = 34.4% to 68.1%).

Table 1. Relative quantitation of prostasin in normal and malignant ovarian epithelial cells

| Cell Line | Prostasin | GAPDH | ΔCp | ΔΔCp | y^2 | y^2−2
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOSE697</td>
<td>30.97</td>
<td>17.09</td>
<td>13.88</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HOSE697</td>
<td>31.37</td>
<td>14.32</td>
<td>17.25</td>
<td>-0.63</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>HOSE697</td>
<td>30.49</td>
<td>17.26</td>
<td>13.22</td>
<td>-0.65</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>HOSE697</td>
<td>30.28</td>
<td>18</td>
<td>12.28</td>
<td>-1.6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ALSIF</td>
<td>28.26</td>
<td>16.95</td>
<td>11.21</td>
<td>-3.61</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>CAOV3</td>
<td>23.2</td>
<td>16.24</td>
<td>6.96</td>
<td>-6.92</td>
<td>121.1</td>
<td></td>
</tr>
<tr>
<td>DOV13</td>
<td>29.78</td>
<td>17.64</td>
<td>12.14</td>
<td>-1.74</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>OVCA3</td>
<td>24.07</td>
<td>17.91</td>
<td>6.16</td>
<td>-7.72</td>
<td>210.8</td>
<td></td>
</tr>
<tr>
<td>OVCA420</td>
<td>25.65</td>
<td>18.68</td>
<td>6.97</td>
<td>-6.91</td>
<td>120.3</td>
<td></td>
</tr>
<tr>
<td>OVCA420</td>
<td>24.21</td>
<td>17.57</td>
<td>6.64</td>
<td>-7.24</td>
<td>151.2</td>
<td></td>
</tr>
<tr>
<td>OVCA420</td>
<td>23.31</td>
<td>18.31</td>
<td>5.2</td>
<td>-8.66</td>
<td>410.1</td>
<td></td>
</tr>
<tr>
<td>OVCA420</td>
<td>25.7</td>
<td>19.01</td>
<td>6.79</td>
<td>-8.30</td>
<td>345.3</td>
<td></td>
</tr>
<tr>
<td>OVCA420</td>
<td>24.27</td>
<td>18.6</td>
<td>5.67</td>
<td>-8.21</td>
<td>296.1</td>
<td></td>
</tr>
<tr>
<td>SKOV3</td>
<td>30.67</td>
<td>19.33</td>
<td>11.34</td>
<td>-2.54</td>
<td>5.8</td>
<td></td>
</tr>
</tbody>
</table>

*ΔΔCp = ΔCp relative to HOSE697 (ΔCp for target gene in HOSE697 cells - ΔCp for target gene in test cell line). ΔCp = cycle threshold; ΔΔCp = ΔCp for target gene - ΔCp for the GAPDH gene; y^2 = measure of the overexpression of prostasin relative to HOSE697 cells. HOSE = human ovarian surface epithelial.

Figure 2. Immunolocalization of prostasin in normal and malignant ovarian tissues. Normal ovarian surface epithelial cells (arrowheads) (A) and a section of serous borderline ovarian tumor (B) showed low levels of prostasin expression. Increased levels of prostasin expression were observed in a grade 3 tumor (C). A positive signal was not detected in the case sample shown in panel C when preimmune rabbit serum was used (D). S = stroma. Scale bar = 30 μm.
Table 2. Preoperative prostasin levels by selected characteristics of case patients with ovarian cancer and control subjects without ovarian cancer

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Case patients</th>
<th>Control subjects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Mean</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><55</td>
<td>27</td>
<td>9.8</td>
<td>7.2 to 12.5</td>
</tr>
<tr>
<td>>55</td>
<td>37</td>
<td>16.5</td>
<td>11.3 to 21.6</td>
</tr>
<tr>
<td>Specimen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archived 1983-1986</td>
<td>28</td>
<td>13.2</td>
<td>6.8 to 19.4</td>
</tr>
<tr>
<td>Archived 1987-1988</td>
<td>10</td>
<td>4.1</td>
<td>3.6 to 10.3</td>
</tr>
<tr>
<td>Current</td>
<td>26</td>
<td>16.4</td>
<td>12.2 to 20.5</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serous borderline</td>
<td>7</td>
<td>7.6</td>
<td>4.1 to 11.1</td>
</tr>
<tr>
<td>Serous invasive</td>
<td>34</td>
<td>16.2</td>
<td>11.7 to 20.6</td>
</tr>
<tr>
<td>Mucinous</td>
<td>7</td>
<td>7.1</td>
<td>5.2 to 9.0</td>
</tr>
<tr>
<td>Other</td>
<td>16</td>
<td>13.9</td>
<td>5.0 to 22.8</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>19</td>
<td>8.5</td>
<td>5.8 to 11.1</td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>20.1</td>
<td>14.4 to 25.8</td>
</tr>
<tr>
<td>III</td>
<td>31</td>
<td>15.3</td>
<td>11.3 to 19.5</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>8.8</td>
<td>3.6 to 14.0</td>
</tr>
<tr>
<td>Diagnostic category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal GYN</td>
<td>71</td>
<td>7.1</td>
<td>6.4 to 7.9</td>
</tr>
<tr>
<td>Benign GYN</td>
<td>42</td>
<td>8.3</td>
<td>5.9 to 10.7</td>
</tr>
<tr>
<td>Other GYN cancers</td>
<td>24</td>
<td>7.0</td>
<td>5.0 to 8.2</td>
</tr>
<tr>
<td>All subjects</td>
<td>137</td>
<td>7.5</td>
<td>6.6 to 8.3</td>
</tr>
</tbody>
</table>

*CI = confidence interval; GYN = gynecologic.
10Of the archived specimens, 23 (60.5%) of 38 case specimens were subjected to freezing and thawing compared with 57 (66.3%) of 86 control specimens. The mean value for case specimens with a freeze-thaw episode was 14.4 µg/mL compared with 7.9 µg/mL without. The mean value for control specimens with a freeze-thaw episode was 6.5 µg/mL compared with 6.3 µg/mL without.
11Stage 1 disease is confined to the ovaries; stage II is confined to the pelvis; stage III has spread to the bowel, omentum, or abdominal peritoneum; and stage IV involves distant metastases including liver parenchyma.

Fig. 3. Box plot of log-transformed prostasin levels in case patients with serous/clear-cell ovarian cancer and control subject subgroups. The box is bounded above and below by the 25% and 75% percentiles, the median is the line in the box, and the upper and lower error bars indicate about 99% of values. GYN = gynecologic cases.

descending levels of prostasin after surgery for ovarian cancer. Prostasin was isolated originally from human seminal fluid and is present at the highest level in the prostate gland (10). Immunohistochemical studies (15) have demonstrated that prostasin is localized in the epithelial cells and ducts of the prostate gland, and it is postulated that prostasin is synthesized in prostatic epithelial cells, secreted into the ducts, and finally excreted into the seminal fluid. The high levels of prostasin found in the prostate gland and in seminal fluid suggest that it may perform important physiologic functions during fertilization, such as liquefaction of semen or activation of other proteinases such as acrosin. Prostasin is also expressed at much lower levels in a variety of human tissues, including kidney, liver, pancreas, salivary gland, lung, bronchus, and colon, but its functions in these...
tissues have not yet been determined (15). Curiously, prostatin has not been detected in the testis or ovary.

Chemically, prostatin is a trypsin-like serine proteinase with an apparent molecular mass of 40 kd (11). The 20-amino acid sequence at the amino terminus of prostatin is 50%-55% identical to that of human α-trypsin, elastase 2A and 2B, chymotrypsin, acrosin, and the catalytic chains of hepsin, plasma kallikrein, and coagulation factor XI (11). Like the enzymatic activity of other serine proteinases, the enzymatic activity of prostatin is dependent on a catalytic triad of the amino acids histidine, aspartic acid, and serine (13), which are present in motifs that are highly conserved among serine proteinases (16). Similar to acrosin and testisin (17,18), prostatin is likely to be a membrane-anchored protein because there is a putative transmembrane domain of 19 amino acids at the carboxyl terminus that is believed to anchor the protein to the plasma membrane of prostate epithelial cells, from which it is released by cleavage. In view of prostatin's homology with other serine proteinases, it is not surprising that several serine proteinases are elevated in patients with ovarian cancer; these proteinases include certain kallikreins such as protease M/kallikrein 6 (19), prostate-specific antigen (20), hepsin (21), and testisin (18). Our current understanding of prostatin does not provide an explanation of why it or other serine proteinases might be overexpressed in ovarian cancer.

Although we believe that we have demonstrated prostatin's potential value as a biomarker for ovarian cancer, this study has several potential limitations. First, our sample size is relatively small and not ideal for demonstrating the value of prostatin as a screening marker. Although all blood samples were drawn pre-operatively, all of the women with ovarian cancer had symptomatic disease and about 55% had stage III disease or greater.
In addition, a majority of the sera were obtained from an archival bank, and some of the specimens had undergone freezing and thawing. We observed no tendency for freezing and thawing to produce lower prostatic values; however, there was evidence that specimens kept in the freezer longer may have had lower values for prostatic. For this reason, we adjusted for length of freezing storage in the multivariate model, and this adjustment did not negate the difference between case patients with ovarian cancer and control subjects. Our sample did not address prostatic potential as a marker for tumor recurrence because sera preceding recurrences were not available. Finally, we can only partially address how prostatic might be complementary to other markers for ovarian cancer. It may be complementary to CA 125 as suggested by the low correlation between the two.

We believe that our study also demonstrates the potential value of microarray technology to identify tumor biomarkers that may have clinical usefulness. In this study, we used the MICROMAX cDNA microarray system that contained the 2400 genes with known function at the time of development of this chip (13). We selected this chip because it was the only chip available at the time that we began this research. Subsequently, microarrays with an even larger collection of genes or expression sequencing tags have become available, such as the GeneChip™ U95 set (Affymetrix Inc., Santa Clara, CA) and the GeneAlbum™ GEM™ 1–6 (IncyteGenomics, San Francisco, CA), which represent more than 50,000 genes or expression sequencing tags. Besides choice of the microarray chip, an important technical issue is the source of the tumor and the normal cDNA for comparison. In this study, we pooled cDNA from several cancer cell lines and compared it with cDNA from normal HOS5 cells. The principal advantage of using cell lines is that they provide an abundant source of RNA from the precise cell types involved in epithelial ovarian cancer. Their chief disadvantage is that they are a step removed from the actual cancer in vivo and would not detect genes that might be differentially expressed in the stroma of ovarian cancer specimens and that might be important.

Our study also provides a case illustration of the types of validation studies, which are necessary once a differentially expressed gene has been identified through microarray technology. Overexpression of a gene should be confirmed in individual cell lines or in tissues from individuals with cancer or from normal control subjects. Under ideal circumstances, an assay will be available to detect the gene product through either immunostaining of tissues or detection in sera. At each step, these validation studies must be consistent with differential expression associated with the cancer. Thus, although our preliminary study described 30 genes overexpressed in ovarian cancer cell lines when we used the MICROMAX cDNA microarray system (13), we have focused on one of the candidate genes in this study, which we believe has satisfied these additional elements of validation.

In conclusion, we believe that our study demonstrates the potential value of the powerful new technology of cDNA microarray in identifying overexpressed genes in ovarian cancer, and we suggest that prostatic may be a biomarker with clinical potential. Thus, larger studies that can yield more precise estimates of the sensitivity and specificity of prostatic, either alone or in combination with CA 125, will be necessary.

REFERENCES

Journal of the National Cancer Institute. Vol. 93, No. 19, October 3, 2001

ARTICLES 7

NOTES

Supported in part by Public Health Service grant U01CA6361 from the National Cancer Institute, National Institutes of Health, Department of Health and Human Services; by Army Ovarian Cancer Research Program grant DAMD17-99-1-9563 from the U.S. Department of Defense; by the Adler Foundation; by the Ovarian Cancer Research Fund, Inc.; by the Morse Family Fund; and by the Nastol Phil Fund.

Manuscript received December 26, 2000; revised July 23, 2001; accepted August 1, 2001.
Whole Genome Amplification and High-Throughput Allelotyping Identified Five Distinct Deletion Regions on Chromosomes 5 and 6 in Microdissected Early-Stage Ovarian Tumors

Vivian W. Wang, Debra A. Bell, Ross S. Berkowitz, and Samuel C. Mok

ABSTRACT

Investigation of genetic changes in tumors by loss of heterozygosity is a powerful technique for identifying chromosomal regions that may contain tumor suppressor genes. In this study, we determined allelic loss on chromosomes 5 and 6 in 29 primary early-stage epithelial ovarian carcinomas including 3 microscopically identified adenocarcinomas using a high-throughput PCR-based method combined with laser capture microdissection and whole genome amplification techniques. Twenty microsatellite markers spanning chromosomes 5 and 6 at an average distance of 20 cM were examined. High frequencies of loss on chromosome 5 were identified at loci D5S128 (48%), D5S242 (32%), and D5S630 (32%). Our study also showed that chromosome 6 exhibited high frequencies of loss of heterozygosity at loci D6S1574 (46%), D6S287 (42%), D6S441 (45%), D6S264 (60%), and D6S281 (35%). These results suggest that multiple tumor suppressor genes are located on five distinct regions on chromosomes 5 and 6, i.e., 5p15.2, 5q13-21, 6p24-25, 6q21-23, and 6q25.1-27, and may be involved in the early development of ovarian carcinomas.

INTRODUCTION

Ovarian cancer is a common gynecological malignancy. Because ovarian cancer is often asymptomatic in its early stages, most patients have widespread disease at the time of diagnosis. Consequently, annual mortality is approximately 65% of the incidence rate (1). Furthermore, patients with early stages of the disease can usually be cured. In recent years, the genetic basis of human tumors has become increasingly elucidated. A growing number of studies have shown that the molecular events controlling tumorigenesis involve abnormal cell growth promoted by activation of proto-oncogenes and/or inactivation of tumor suppressor genes (TSGs) (2, 3). Identification of novel TSGs has been facilitated by LOH studies that have guided the localization of minimally deleted regions on chromosomes. In ovarian carcinoma, the search for LOH has resulted in the identification of several chromosomal regions which may harbor ovarian cancer TSGs (4–5). The majority of studies on genetic alterations in malignancies rely on post hoc analysis of tumors identified histologically in sections of fixed, paraffin-embedded tissue. Often, the quantity of material available from paraffin sections is limited, particularly if a tumor lesion is in early stage. Moreover, LOH studies usually require multiple markers. To overcome such limitations, whole genome amplification strategy using PEP has been devised to increase the quantity of target DNA obtained from small samples to facilitate multiple loci analyses (6–9). Neoplastic and nonneoplastic cells are always mixed to some degree in most tumor lesions, necessitating the use of a variety of microdissection techniques to separate the tumor from normal cells (10–12). Such strategy will improve the specificity and reduce the amount of target tissue required for analysis.

In the present study, we have successfully established a protocol combining LCM and whole genome amplification to determine LOH profile in small quantities of archival tumor tissue samples. Using this protocol, we performed a detailed LOH analysis in 29 early-stage epithelial ovarian carcinomas, using 20 microsatellite markers spanning chromosomes 5 and 6. We also correlated LOH with clinicopathological features in these neoplasms.

MATERIALS AND METHODS

Specimen Preparation. Sixteen frozen and 13 formalin-fixed, paraffin-embedded ovarian cancer specimens were obtained from the Division of Gynecologic Oncology, Brigham and Women's Hospital, and the Department of Pathology, Massachusetts General Hospital. According to the International Federation of Gynecology and Obstetrics criteria, all 29 cases were stage I epithelial ovarian cancer (Table I). Among these 29 cases, 3 were microscopically identified microinvasive carcinomas. The diameters of these microscopical tumors were 1–8 mm. Based on the WHO criteria of histological classification, 14 were serous, 5 mucinous, 3 endometrioid, 3 clear cell, and 4 mixed adenocarcinomas. Twelve cases were well-differentiated, 5 were moderately differentiated, and 12 were poorly differentiated tumors. Six-micrometer sections of frozen or formalin-fixed, paraffin-embedded tissue were cut and mounted onto plain glass slides. Paraffin tissue was deparaffinized by incubating the slides in xylene for 2 × 10 min and rehydrating in absolute ethanol for 2 × 10 min. In 95% ethanol for 2 × 10 min, and in 70% ethanol for 2 × 10 min. Both slides were stained with H&E.

Microdissection. Stained sections were microdissected using a PixCell II LCM system (Arcturus Engineering, Mountain View, CA). Tumor cells and adjacent nonmalignant stromal cells were visualized under the microscope and selectively procured by activation of the laser (Fig. 1). Approximately 5000 tumor and nonmalignant stromal cells were dissected, respectively, in each case. Dissected cells were collected into 50 μl of cell lysis buffer (1X expand high-fidelity polymerase (Boehringer Mannheim), and 10 μl of DNA sample. Fify primer extension cycles were carried out in a Peltier-Elmer 9600 thermocycler (Perkin-Elmer, Norwalk, CT) after an initial 94°C, 3-min denaturation step. Each cycle consisted of 1 min at 94°C, 2 min at 37°C, a ramping step of 0.1°C/s up to 55°C, a 4-min primer extension step at 55°C, followed by 30 s at 68°C. The PEP reaction products were diluted by 3-fold and used as template DNA for LOH analysis.

LOH Analysis. The 20 microsatellite markers used in this study were obtained from the Applied Biosystems Prism Linkage Mapping Set LD-20 (Applied Biosystems, Foster City, CA). The average interval of the loci was...
about 20 cM. They consisted of fluorescent primer pairs end labeled with fluorochromes 6-carboxyfluorescein, hexachlorinated analogues, or NED that amplify dinucleotide repeat fragments. Optimized PCR were performed in 10 µl of solution with 1 µl of PEP DNA, 0.25–0.5 µl of each primer, 1X PCR buffer, 2.5 mM MgCl₂, 0.25 µM of each dNTP, and 0.5 units of AmpliTaq Gold DNA polymerase (Applied Biosystems). All reactions were carried out in a Perkin-Elmer 9600 thermocycler. Amplification was started with 12 min at 95°C, followed by 10 cycles composed of 15 s at 94°C, 15 s at 55°C, and 30 s at 72°C, and then 25 cycles composed of 15 s at 89°C, 15 s at 55°C, and 30 s at 72°C. Amplified PCR products for multiple loci were pooled and run on an Applied Biosystems Prism 310 automated capillary electrophoresis DNA sequencer (Applied Biosystems). The systems automated size determination, linear quantification of alleles, and computerized discrimination of true alleles. Data were initially processed using Genescan 2.1 software (Applied Biosystems). The systems automated size determination, linear quantification of alleles, and computerized discrimination of true alleles. Data were initially processed using Genescan 2.1 software (Applied Biosystems). Result files were then imported into Genotyper (version 2.5, Applied Biosystems), and the data were tabulated according to allele size and allele fluorescence. In 29 cases studied, 3 were microscopically identified microinvasive adenocarcinomas. Their tumor size was 48% (case 99N5), 60% (case 3317A), 24% (case 97-7024) in diameter, respectively. LOH was detected in all three tumors at locus D6S441 (5p15.2; 45%), D5S630 (5q14-21; 32%), and D6S281 (6q25.2-25.3; 45%). Other loci with frequent LOH (>30%) were D6S264 (5p15.2; 45%), D5S630 (5q14-21; 48%), D6S1574 (6p24-25; 42%), D6S441 (6q25-25.3; 45%), and D6S281 (6q27; 35%).

In 29 cases studied, 3 were microscopically identified microinvasive adenocarcinomas. Their tumor size was 1 mm (case 3317A), 2 mm (case 99N5), and 8 mm (case 97-7024) in diameter, respectively. LOH was detected in all three tumors at locus D6S560. Two of three cases showed LOH at loci D5S428, D5S333, D6S287, D6S624, and D6S281. Total LOH rate showed a trend to increase with tumor size, which was 28, 39, and 53% in cases 3317A, 99N5, and 97-7024, respectively. The LOH rate did not appear to be correlated with cell differentiation in these three tumors.

Table 2 shows correlation between LOH and clinicopathological features. The LOH frequency in these eight loci was ≥30%. Tumors

<table>
<thead>
<tr>
<th>Tumor code</th>
<th>Age (yr)</th>
<th>Histological classification</th>
<th>Tumor grade</th>
<th>Clinical Stage</th>
<th>Tumor size (cm)</th>
<th>Survival duration (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>309</td>
<td>74</td>
<td>Endometrioid</td>
<td>1</td>
<td>Ia</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>333</td>
<td>59</td>
<td>Serous</td>
<td>1</td>
<td>le</td>
<td>15</td>
<td>88</td>
</tr>
<tr>
<td>334</td>
<td>59</td>
<td>Endometrioid</td>
<td>1</td>
<td>lc</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>385</td>
<td>50</td>
<td>Mixed (serous + mucinous)</td>
<td>2</td>
<td>le</td>
<td>5</td>
<td>98</td>
</tr>
<tr>
<td>398</td>
<td>52</td>
<td>Serous</td>
<td>3</td>
<td>lc</td>
<td>12</td>
<td>86</td>
</tr>
<tr>
<td>403</td>
<td>66</td>
<td>Serous</td>
<td>3</td>
<td>la</td>
<td>14.5</td>
<td>94</td>
</tr>
<tr>
<td>404</td>
<td>62</td>
<td>Mixed (mucinous + endometrioid)</td>
<td>3</td>
<td>lc</td>
<td>13</td>
<td>78</td>
</tr>
<tr>
<td>416</td>
<td>40</td>
<td>Serous</td>
<td>1</td>
<td>la</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>426</td>
<td>56</td>
<td>Serous</td>
<td>3</td>
<td>lc</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>433</td>
<td>42</td>
<td>Serous</td>
<td>3</td>
<td>la</td>
<td>5</td>
<td>84</td>
</tr>
<tr>
<td>440</td>
<td>56</td>
<td>Mucinous</td>
<td>2</td>
<td>la</td>
<td>32</td>
<td>84</td>
</tr>
<tr>
<td>442</td>
<td>36</td>
<td>Mixed (endometrioid + mucinous)</td>
<td>3</td>
<td>le</td>
<td>9.5</td>
<td>19</td>
</tr>
<tr>
<td>471</td>
<td>43</td>
<td>Mucinous</td>
<td>1</td>
<td>la</td>
<td>4</td>
<td>65</td>
</tr>
<tr>
<td>484</td>
<td>54</td>
<td>Serous</td>
<td>3</td>
<td>lb</td>
<td>11</td>
<td>73</td>
</tr>
<tr>
<td>526</td>
<td>30</td>
<td>Serous</td>
<td>1</td>
<td>le</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>529</td>
<td>73</td>
<td>Endometrioid</td>
<td>1</td>
<td>lb</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>533</td>
<td>59</td>
<td>Mixed (endometrioid + mucinous)</td>
<td>1</td>
<td>la</td>
<td>5</td>
<td>48</td>
</tr>
<tr>
<td>539</td>
<td>57</td>
<td>Clear cell</td>
<td>3</td>
<td>le</td>
<td>9</td>
<td>44</td>
</tr>
<tr>
<td>565</td>
<td>68</td>
<td>Serous</td>
<td>1</td>
<td>la</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>627</td>
<td>58</td>
<td>Serous</td>
<td>1</td>
<td>la</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>698</td>
<td>43</td>
<td>Serous</td>
<td>3</td>
<td>le</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>700</td>
<td>78</td>
<td>Mucinous</td>
<td>2</td>
<td>la</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>3317A</td>
<td>—</td>
<td>Serous</td>
<td>1</td>
<td>la</td>
<td>0.1</td>
<td>—</td>
</tr>
<tr>
<td>3317B</td>
<td>—</td>
<td>Serous</td>
<td>3</td>
<td>la</td>
<td>0.2</td>
<td>—</td>
</tr>
<tr>
<td>99N5</td>
<td>—</td>
<td>Serous</td>
<td>2</td>
<td>la</td>
<td>0.8</td>
<td>—</td>
</tr>
<tr>
<td>97-7024</td>
<td>—</td>
<td>Serous</td>
<td>2</td>
<td>la</td>
<td>0.8</td>
<td>—</td>
</tr>
<tr>
<td>97G002</td>
<td>47</td>
<td>Clear cell</td>
<td>1</td>
<td>la</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>98G007</td>
<td>33</td>
<td>Mucinous</td>
<td>1</td>
<td>la</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>98G018</td>
<td>43</td>
<td>Clear cell</td>
<td>3</td>
<td>la</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>99G010</td>
<td>50</td>
<td>Mucinous</td>
<td>1</td>
<td>la</td>
<td>19</td>
<td>—</td>
</tr>
</tbody>
</table>

* Grade 1, well differentiated; grade 2, moderately differentiated; grade 3, poorly differentiated.

** Staging based on International Federation of Gynecology and Obstetrics classification.

* Data not available.

** Microscopically identified microinvasive carcinoma.

RESULTS

The informative rates of 20 microsatellite markers used in this study were between 52 and 90%. Representative patterns of allelic loss by fluorescent-labeled microsatellite analysis are illustrated in Fig. 2. Fig. 3 shows allelic loss frequencies on chromosomes 5 and 6. Fig. 4 shows common regions of allelic loss found. Among these markers studied, the highest incidence of LOH was at locus D6S560 (6q25-25.2-27; 60%). Other loci with frequent LOH (>30%) were D5S630 (5p15.2; 42%), D5S428 (5q14-21; 48%), D6S1574 (6p24-25; 46%), D6S287 (6q21-23.3; 42%), and D6S441 (6q25-25.3; 45%), and D6S281 (6q27; 35%).

In 29 cases studied, 3 were microscopically identified microinvasive adenocarcinomas. Their tumor size was 1 mm (case 3317A), 2 mm (case 99N5), and 8 mm (case 97-7024) in diameter, respectively. LOH was detected in all three tumors at locus D6S560. Two of three cases showed LOH at loci D5S428, D5S333, D6S287, D6S624, and D6S281. Total LOH rate showed a trend to increase with tumor size, which was 28, 39, and 53% in cases 3317A, 99N5, and 97-7024, respectively. The LOH rate did not appear to be correlated with cell differentiation in these three tumors.

Table 2 shows correlation between LOH and clinicopathological features. The LOH frequency in these eight loci was ≥30%.
were evaluated for LOH with respect to clinical stage, histological subtype, and tumor grade. No significant difference in LOH in a particular locus was found among different subtypes, histological subtypes, and tumor grades ($P > 0.05$).

DISCUSSION

Over the past decade, it has been shown that LOH is common to most solid neoplasms and that it allows the expression of recessive loss-of-function mutations in TSGs. The detection of nonrandom LOH at a chromosomal region is seen to be prima facie evidence for the localization of candidate TSGs. Several studies have shown that gene alterations appear to play a major role in the development of ovarian cancer. In an effort to identify genomic sites harboring potentially relevant TSGs in ovarian cancer, several groups have studied allelic loss on specific chromosomes. Recent studies have found allelic aberrations on chromosomes 1p, 3p, 5q, 6q, 7p, 8p, 9q, 11p, 13q, 14q, 17p, 17q, 18q, 21q, 22q, and Xp (14-19). In this study, we chose to study allelic loss on chromosomes 5 and 6, which have been shown to have high LOH rates in late-stage tumors. We also correlated LOH with clinicopathological features in these cancers to define the role of allelic loss in the early stage of epithelial ovarian cancer development.

Detection of LOH requires a homogeneous population of tumor cells, because any contamination by adjacent nontumor cells (lymphocytes or stromal cells) would lead to erroneous underestimation of the LOH frequency. LOH can reliably be detected in tumor samples only if the content of tumor cells exceeds 70-80%. Ovarian tumor tissues are often heterogeneous, containing nontumoral as well as neoplastic cells. The technology LCM provides a method whereby individual cells can be harvested from complex tissue. Because the method is reliable and efficient, individual cell capture can be performed rapidly and distinct cell populations can be collected from tissues. However, the screening of multiple loci in tumor cells isolated from microdissected archival tumor specimens is limited by the number of cells available. Most LOH studies need DNA from ~3000 to 6000 cells per genotype, making detailed somatic genetic analyses of small clinical samples impossible (20). Because LOH studies must be done with multiple markers, preamplification of the entire DNA by whole genome amplification would be very helpful. PEP amplification a single cell to an estimated minimum of 30 times and may allow as many as 20 locus-specific LOH analyses on as few as 1000 cells (20, 21). This technique has already been shown to be useful in intact sperm cells (6), blastomeres (22, 23), and fetal nucleated erythrocytes (24). Recently, Chung et al. (25) reported that PEP amplification...
could produce accurate and reproducible profiles of LOH in cervical cancers.

We developed a high-throughput strategy for the detection of LOH for this study. LCM was used to enrich the neoplastic cell population and PEP to ensure that adequate amounts of DNA can be produced from a small quantity of archival ovarian tissue. In this study, five minimal deleted regions, including 5p15.2, 5q13-21, 6p24-25, 6q21-23, and 6q25.1-27, were identified on chromosomes 5 and 6. High LOH frequencies on chromosome 5 were identified at loci D5S610 (32%), D5S424 (12%), and D5S428 (48%). The presence of two deleted regions, 5p15.2 and 5q13-21 in the tumors studied, supports the hypothesis that more than one TSG on chromosome 5 may be involved in the development of early-stage ovarian cancer. Several investigators have reported infrequent LOH on chromosome 5q (26-29), whereas others have reported frequent deletions (4, 17, 28). Chuaqui et al. examined LOH on 5q 21-22 (D5S46 locus) in 12

Table 2. LOH and correlation with histopathological features in epithelial ovarian carcinomas

<table>
<thead>
<tr>
<th>Stage</th>
<th>No. of LOH</th>
<th>% of informative cases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microinvasive*</td>
<td>3/3 (100%)</td>
<td>3/3 (100%)</td>
</tr>
<tr>
<td>In</td>
<td>1/1 (50%)</td>
<td>1/1 (50%)</td>
</tr>
<tr>
<td>In</td>
<td>1/2 (50%)</td>
<td>1/2 (50%)</td>
</tr>
<tr>
<td>LC</td>
<td>1/7 (14%)</td>
<td>1/7 (14%)</td>
</tr>
<tr>
<td>Histological type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serous</td>
<td>4/12 (33%)</td>
<td>4/12 (33%)</td>
</tr>
<tr>
<td>Mucinous</td>
<td>1/2 (50%)</td>
<td>1/2 (50%)</td>
</tr>
<tr>
<td>Endometrioid</td>
<td>1/2 (50%)</td>
<td>1/2 (50%)</td>
</tr>
<tr>
<td>Clear</td>
<td>0/2 (0%)</td>
<td>0/2 (0%)</td>
</tr>
<tr>
<td>Mixed</td>
<td>0/2 (0%)</td>
<td>0/2 (0%)</td>
</tr>
<tr>
<td>Differentiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well</td>
<td>3/9 (33%)</td>
<td>3/9 (33%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>1/2 (50%)</td>
<td>1/2 (50%)</td>
</tr>
<tr>
<td>Poor</td>
<td>1/6 (17%)</td>
<td>1/6 (17%)</td>
</tr>
</tbody>
</table>

*Microscopically identified.
synchronous ovarian and appendiceal mucinous lesions and did not detect it in any (29). Weitzel et al. (17) found a 50% (10 of 20) LOH rate using markers near the adenomatous polyposis coli gene at 5q21. They showed LOH at more than one locus and that most cases showing LOH were stage III or IV (17). Findings from this study are not consistent with the other report, which concluded that 5q LOH was a late event in ovarian carcinogenesis (28). One of the notable findings of this study is the frequent LOH at D5S560 mapped on 5p15.2. LOH at this locus was detected in all three microscopic serous adenocarcinomas and their pathological grade was well differentiated (case 3317A3), moderately differentiated (case 97-2074), and poorly differentiated (case 99N51). Whether such a molecular change represents an early event in the development of ovarian cancer deserves further investigation.

We used eight microsatellite markers on chromosome 6. The LOH patterns were often complex, with a number of stage I cancers exhibiting multiple interstitial losses. LOH patterns of deletion suggesting the existence of three distinct regions of allelic loss were observed. They were defined by 6p24-25 (D6S5179), 6q21-23.3 (D6S287), and 6q25.1-27 (D6S441 and D6S524). Dodson et al. (16) reported chromosome 6q to be frequently lost in low-grade as well as high-grade ovarian epithelial neoplasms, but they did not define deletion regions on 6p (16). Using Southern blot analysis, Gallion et al. (33) found a frequent cent DNA technology. Br. J. Cancer, 74: 115-119, 1996.

ALLELIC DELETION ON CHROMOSOMES 5 AND 6 IN OVARIAN TUMORS

This difficulty is overcome with the ASPE assay, which allows multiplexed SNP analysis for any mixtures of allelic variants. This advantage is possible because the "query" nucleotide is part of the ASPE capture probe, while the signal-generating "labeled" nucleotide is free biotin-dCTP. In the SBCE assay, the biotin-dNTP serves as both "query" and "labeled" nucleotide. Another advantage conferred by the ASPE assay is simplification of the reaction protocol. The residual dNTPs from the target-generating PCR are used for the primer extension, thereby eliminating both the necessity of post-PCR cleanup and the addition of unlabeled nucleotides to the ASPE reaction.

It can be difficult to establish an assay cost per SNP because that cost will vary dramatically depending on how the assay is employed. Cost parameters include the total number of assays run, the number of simultaneous assays performed (multiplex factor), and whether many SNPs are assayed on few patients (genome-wide scan) or whether few SNPs are assayed on many patients (targeted genomic region). The microspheres and coupling reagents are inexpensive compared to reagents such as enzymes or fluorescent nucleotides. We estimate our average cost is less than US $0.20 per SNP, excluding the cost of generating the PCR target. SBCE and ASPE reactions are comparable in cost. Attempts to reduce assay costs further have concentrated on minimizing reagent consumption, especially that of the enzyme and fluorochrome. Recently, we have successfully generated short target DNAs in 50-plex PCRs and have also migrated from 20-plex to 50-plex SBCE reactions. Even higher levels of complexity are theoretically possible using the complete 100-microsphere set.

In an attempt to minimize the subjectivity of genotypic calls, various data clustering algorithms are currently under development that will allow automatic assignment of genotypes to the different clusters. Observed challenges to automated allele scoring include variability in tightness of data clustering, dissimilar signal intensities between the two alleles, and the formation of extraneous data clusters due to previously undetected polymorphisms within the probe sequence. Extensive testing on large data sets will not only allow refinement of these algorithms but also may identify characteristics of problematic markers that can be avoided in future probe design.

ACKNOWLEDGMENTS

The authors thank Terri Fleming for the bioinformatics support for high-throughput operations, the Glaxo Wellcome Genotyping Facility, and the Glaxo Wellcome Sequencing Core Facility for their services. Thanks also are due to Dan Burns of the Genetics Directorate and Ralph McDade, Van Chandler, Mark Chandler, Jim Jacobson, and Christy Weiss of Luminex Corporation for many helpful discussions.

REFERENCES

Received 20 April 2000, accepted 13 October 2000.

Address correspondence to:

J. David Taylor
Glaxo Wellcome, Inc.
3 Mount Drive
Research Triangle Park
NC 27709-1508, USA
E-mail: jdt@glaxowelcome.com
ABSTRACT

Using the MICROMAX™ cDNA microarray system, we were able to identify genes that are differentially overexpressed in ovarian cancer. A total of 30 putative genes, which are differentially overexpressed in ovarian cancer cell lines, were identified. The differential expression of some of these genes was further confirmed by real-time RT-PCR. Using this strategy, we have identified genes that either overexpress in all cancer cell lines or in only some cancer cell lines. Further characterization of these genes will allow them to be exploited in diagnosis, prognosis, anticancer therapy, and molecular classification of ovarian cancer.

MATERIALS AND METHODS

Cell Culture

Cultures of the normal human ovarian surface epithelial (HOSE) cells were established by scraping the HOSE cells from the ovary and growing in a mixture of Medium 199 and MCDB105 supplemented with 10% fetal calf serum (Sigma, St. Louis, MO, USA) as described previously (7). The seven HOSE cells used were HOSE17, HOSE636, HOSE642, HOSE695, HOSE697, HOSE713, and HOSE726. The ovarian cancer cell lines used were OVCA3, OVCA420, OVCA432, OVCA433, OVCA633, SKOV3, and ALST. All cell cultures and cell lines were established in the Laboratory of Gynecologic Oncology, Brigham and Women’s Hospital, except SKOV3, which was purchased from ATCC (Manassas, VA, USA).

Microarray Probe and Hybridization

MICROMAX human cDNA microarray system, which contains 2400 known human cDNA on a 1 x 3 inch slide, was used in this study. Microarray probe and hybridization were performed as described in the instruction manual. In brief, biotin-labeled cDNA was generated from 3 μg total RNA, which was pooled from HOSE17, HOSE636, and HOSE642. Dinitrophenyl (DNP)-labeled cDNA was generated from 3 μg total RNA that was pooled from ovarian cancer cell lines OVCA 420, OVCA 433, and SKOV3. Before the cDNA reaction, an equal amount of RNA control was added to each batch of the RNA samples for normalization during data analysis. Biotin-labeled and DNP-labeled cDNA were mixed, dried, and resuspended in 20 μL hybridization buffer, which was added to the cDNA microarray and covered with a cover-
Table 1. List of Genes Differentially Overexpressed in Ovarian Cancer Cells More than Tenfold

<table>
<thead>
<tr>
<th>Accession No.</th>
<th>Description</th>
<th>Before Extensive Washing (Cy3/Cy5)</th>
<th>After Extensive Washing (Cy3/Cy5)</th>
<th>Cy3 Signal Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M33011</td>
<td>Carcinoma-associated antigen GA733-2</td>
<td>472</td>
<td>444</td>
<td>1249</td>
</tr>
<tr>
<td>J04765</td>
<td>Osteopontin</td>
<td>156</td>
<td>184</td>
<td>11851</td>
</tr>
<tr>
<td>L41351</td>
<td>Prostasin</td>
<td>44</td>
<td>170</td>
<td>3172</td>
</tr>
<tr>
<td>L19783</td>
<td>GPI-H</td>
<td>4</td>
<td>88</td>
<td>916</td>
</tr>
<tr>
<td>U96759</td>
<td>Von Hippel-Lindau binding protein (VBP-1)</td>
<td>60</td>
<td>59</td>
<td>1377</td>
</tr>
<tr>
<td>M57730</td>
<td>B61</td>
<td>20</td>
<td>49</td>
<td>5514</td>
</tr>
<tr>
<td>L33930</td>
<td>CD24 signal transducer and 3' region</td>
<td>24</td>
<td>47</td>
<td>26722</td>
</tr>
<tr>
<td>D55672</td>
<td>hnRNP D</td>
<td>45</td>
<td>44</td>
<td>950</td>
</tr>
<tr>
<td>U97188</td>
<td>Putative RNA binding protein KOC</td>
<td>223</td>
<td>38</td>
<td>3599</td>
</tr>
<tr>
<td>L19871</td>
<td>ATF3</td>
<td>9</td>
<td>37</td>
<td>3507</td>
</tr>
<tr>
<td>J04991</td>
<td>p18</td>
<td>15</td>
<td>34</td>
<td>9914</td>
</tr>
<tr>
<td>D00762</td>
<td>mRNA for proteasome subunit HCB</td>
<td>17</td>
<td>29</td>
<td>4703</td>
</tr>
<tr>
<td>U17989</td>
<td>Nuclear autoantigen GS2NA</td>
<td>5</td>
<td>28</td>
<td>721</td>
</tr>
<tr>
<td>U43148</td>
<td>Patched homolog (PTC)</td>
<td>10</td>
<td>28</td>
<td>4155</td>
</tr>
<tr>
<td>AF010312</td>
<td>Pig7 (PIG7)</td>
<td>13</td>
<td>23</td>
<td>17379</td>
</tr>
<tr>
<td>M80244</td>
<td>E16</td>
<td>18</td>
<td>21</td>
<td>4180</td>
</tr>
<tr>
<td>X99802</td>
<td>mRNA for ZYG homologue</td>
<td>14</td>
<td>21</td>
<td>2086</td>
</tr>
<tr>
<td>U05598</td>
<td>Dihydriodiol dehydrogenase</td>
<td>10</td>
<td>18</td>
<td>21595</td>
</tr>
<tr>
<td>L47647</td>
<td>Creatine kinase B.</td>
<td>7</td>
<td>18</td>
<td>787</td>
</tr>
<tr>
<td>M55284</td>
<td>Protein kinase C-L (PRKCL)</td>
<td>7</td>
<td>16</td>
<td>863</td>
</tr>
<tr>
<td>X15722</td>
<td>mRNA for glutathione reductase</td>
<td>23</td>
<td>14</td>
<td>794</td>
</tr>
<tr>
<td>S54005</td>
<td>Thymosin beta-10</td>
<td>6</td>
<td>13</td>
<td>1476</td>
</tr>
<tr>
<td>AB006965</td>
<td>mRNA for Dnmt1p/Vps1p-like protein</td>
<td>7</td>
<td>13</td>
<td>4183</td>
</tr>
<tr>
<td>M83653</td>
<td>Cytoplasmic phosphotyrosyl protein phosphatase</td>
<td>6</td>
<td>13</td>
<td>2156</td>
</tr>
<tr>
<td>X12597</td>
<td>mRNA for high mobility group-1 protein (HMG-1)</td>
<td>7</td>
<td>12</td>
<td>2785</td>
</tr>
<tr>
<td>M18112</td>
<td>poly(ADP-ribose) polymerase</td>
<td>6</td>
<td>12</td>
<td>9277</td>
</tr>
<tr>
<td>U56816</td>
<td>Kinase Myt1 (Myt1)</td>
<td>4</td>
<td>11</td>
<td>1773</td>
</tr>
<tr>
<td>X06233</td>
<td>mRNA for calcium-binding protein in macrophages (MRP-14)</td>
<td>7</td>
<td>11</td>
<td>3007</td>
</tr>
<tr>
<td>D85181</td>
<td>mRNA for fungal sterol-C5-desaturase homolog</td>
<td>6</td>
<td>11</td>
<td>3571</td>
</tr>
<tr>
<td>M31627</td>
<td>X box binding protein-1 (XBP-1)</td>
<td>5</td>
<td>10</td>
<td>12151</td>
</tr>
</tbody>
</table>

slip. Hybridization was carried out overnight at 65°C inside a hybridization cassette (Telechem, Sunnyvale, CA, USA).

Posthybridization and Cyanine-3 (Cy3™) and Cyanine-5 (Cy5™) TSA

After hybridization, the microarray was washed with 30 mL 0.5x SSC, 0.01% SDS, and then with 30 mL 0.06x SSC, 0.01% SDS. Finally, the microarray was washed with 0.06x SSC. Hybridization signal from biotin-labeled cDNA was amplified with streptavidin-horseradish peroxidase (HRP) and Cy5-tyramide, while hybridization signal from DNP-labeled cDNA was amplified with anti-DNP-HRP and Cy3 tyramide. After signal amplification and posthybridization wash, the cDNA microarray was air-dried and detected with a laser scanner.

Image Acquisition and Data Analysis

Cy3 signal was derived from ovarian cancer cells, and Cy5 signal was derived from HOSE cells. Laser detection of the Cy3 and Cy5 signal on the microarray was acquired with a confocal laser reader, ScanArray® 3000 (GSI Lumonics, Vol. 30, No. 3 (2001) BioTechniques 671
Table 2. Cy3 versus Cy5 Ratio for a Set of Genes that Are Previously Shown to Express at Relatively Constant Level (2)

<table>
<thead>
<tr>
<th>Accession No.</th>
<th>Description</th>
<th>Before Extensive Washing (Cy3/Cy5)</th>
<th>After Extensive Washing (Cy3/Cy5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X06323</td>
<td>MRL3 mRNA for ribosomal protein L3 homologue</td>
<td>3.31</td>
<td>5.22</td>
</tr>
<tr>
<td>AF006043</td>
<td>3-phosphoglycerate dehydrogenase</td>
<td>3.8</td>
<td>4.8</td>
</tr>
<tr>
<td>M37400</td>
<td>Cytosolic aspartate aminotransferase</td>
<td>3.03</td>
<td>3.66</td>
</tr>
<tr>
<td>D30655</td>
<td>mRNA for eukaryotic initiation factor 4AII</td>
<td>4.17</td>
<td>3.48</td>
</tr>
<tr>
<td>J04208</td>
<td>inosine-5'-monophosphate dehydrogenase (IMP)</td>
<td>1.13</td>
<td>2.15</td>
</tr>
<tr>
<td>M17885</td>
<td>Acidic ribosomal phosphoprotein P0</td>
<td>2.74</td>
<td>2.09</td>
</tr>
<tr>
<td>X54326</td>
<td>mRNA for glutaminyl-tRNA synthetase</td>
<td>1.17</td>
<td>2.01</td>
</tr>
<tr>
<td>J04973</td>
<td>Cytochrome bc-1 complex core protein II</td>
<td>0.98</td>
<td>1.6</td>
</tr>
<tr>
<td>D13900</td>
<td>mitochondrial short-chain enoyl-CoA hydratase</td>
<td>0.91</td>
<td>1.52</td>
</tr>
<tr>
<td>Z11531</td>
<td>mRNA for elongation factor-1-gamma</td>
<td>0.76</td>
<td>0.89</td>
</tr>
<tr>
<td>D78361</td>
<td>mRNA for ornithine decarboxylase antizyme</td>
<td>0.51</td>
<td>0.82</td>
</tr>
<tr>
<td>U13261</td>
<td>elf-2-associated p67 homolog</td>
<td>0.41</td>
<td>0.82</td>
</tr>
<tr>
<td>X15183</td>
<td>mRNA for 90-kDa heat-shock protein</td>
<td>0.8</td>
<td>0.75</td>
</tr>
<tr>
<td>M36340</td>
<td>ADP-ribosylation factor 1 (ARF1)</td>
<td>0.5</td>
<td>0.66</td>
</tr>
<tr>
<td>X91257</td>
<td>mRNA for seryl-tRNA synthetase</td>
<td>0.75</td>
<td>0.52</td>
</tr>
<tr>
<td>AF047470</td>
<td>Malate dehydrogenase precursor (MDH) mRNA</td>
<td>0.41</td>
<td>0.51</td>
</tr>
<tr>
<td>D13748</td>
<td>mRNA for eukaryotic initiation factor 4AI</td>
<td>0.33</td>
<td>0.43</td>
</tr>
<tr>
<td>L36151</td>
<td>Phosphatidylinositol 4-kinase</td>
<td>0.26</td>
<td>0.38</td>
</tr>
<tr>
<td>X04297</td>
<td>mRNA for Na,K-ATPase alpha-subunit</td>
<td>0.27</td>
<td>0.34</td>
</tr>
<tr>
<td>X79535</td>
<td>mRNA for beta tubulin, clone nuk_278</td>
<td>0.18</td>
<td>0.28</td>
</tr>
<tr>
<td>J04173</td>
<td>Phosphoglycerate mutase (PGAM-B)</td>
<td>0.14</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Watertown, MA, USA). Separate scans were taken for each fluor at a pixel size of 10 μm. cDNA derived from the control RNA hybridized to 12 specific spots within the microarray. Cy3 and Cy5 signals from these 12 spots should theoretically be equal and were used to normalize the different efficiencies in labeling and detection with the two fluoros. The fluorescence signal intensities and the Cy3/Cy5 ratios for each of the 2400 cDNAs were analyzed by the software Imogene 3.0™ (Biodiscovery, Los Angeles, CA, USA).

Real-Time Quantitative RT-PCR

Real-time PCR was performed in duplicate using primers sets specific to GA733-2, osteopontin, prostatin, creatine kinase B, CEA, KOC, and a housekeeping gene, cyclosporin, in an ABI PRISM™ 5700 Sequence Detector (Applied Biosystems, Foster City, CA, USA). RNA was first extracted from normal ovarian epithelial cell cultures (HOSE 695, 697, 713, and 726) and six ovarian carcinoma cell lines (OVCA3, OVCA432, OVCA433, OVCA633, SKOV3, and ALST). cDNA was generated from 1 μg total RNA using the TaqMan® reverse transcription reagents containing 1× TaqMan reverse transcription buffer, 5.5 mM MgCl₂, 500 μM dNTP, 2.5 μM random hexamer, 0.4 U/μL RNase inhibitor, 1.25 U/μL Multi-Scribe™ reverse transcriptase (Applied Biosystems) in 100 μL. The reaction was incubated at 25°C for 10 min, 48°C for 30 min, and finally at 95°C for 5 min. Briefly, 0.5 μL cDNA was used in a 20-μL PCR mixture containing 1× SYBR® PCR buffer, 3 mM MgCl₂, 0.8 mM dNTP, and 0.025 U/μL AmpliTaq Gold® (Applied Biosystems). Amplification was then performed with denaturation for 10 min at 95°C, followed by 40 cycles of denaturation at 95°C for 15 s and annealing/extension...
at 60°C for 1 min. The changes in fluorescence of SYBR Green I dye in every cycle was monitored by the ABI 5700 system software, and the threshold cycle (C_T) for each reaction was calculated. The relative amount of PCR products generated from each primer set was determined based on the C_T value. Cyclosporin was used for the normalization of quantity of RNA used. Its C_T value was then subtracted from that of each target gene to obtain a ΔC_T value. The difference (ΔΔC_T) between the ΔC_T values of the samples for each gene target and the ΔC_T value of the calibrator (HOSE726) was determined. The relative quantitative value was expressed as 2^{-ΔΔC_T}.

RESULTS AND DISCUSSION

The MICROMAX System

The MICROMAX system allows the simultaneous analysis of the expression level of 2400 known genes. The use of TSA in the MICROMAX system after hybridization reduces the amount of total RNA needed to a few micrograms, which is about 20–100 times less than currently used method. The detail of TSA has been described previously for chromosome mapping of PCR-labeled probes less than 1 kb by FISH (10). In this study, we were able to identify 30 putative differentially overexpressed genes (excluding nine ribosomal genes) in ovarian cancer cell lines (Table 1). Using high-density cDNA array on membrane, Schummer et al. (11) have identified 32 known genes that exhibit tumor-to-HOSE ratios of more than 2.5-fold. Fourteen of these 32 genes were present in the MICROMAX cDNA microarray, but only five of them were more than threefold in our study. This difference may be due to the use of cancer cell lines in our study versus the use of bulk tumor tissues in the study by Schummer et al. (11).

In this study, biotin-labeled cDNA was made from ovarian cancer cell lines, while DNP-labeled cDNA was made from HOSE cells. The differential TSA of the hybridization signal depends on the use of streptavidin-HRP conjugate or anti-DNP-HRP conjugate in a sequential step. At each step, Cy5-Tyramide or Cy3-Tyramide can be added, and the HRP will then catalyze the deposit of Cy3 or Cy5 onto the hybridized cDNA nonspecifically. As a result, we can choose to have either Cy3 or Cy5 signal for the cDNA derived from ovarian cancer cell lines, and vice versa for HOSE cells. Thus, we do not have to make two different sets of probes if we want to compare the effect of Cy3 or Cy5 fluorescence as a result of their differences in extinction coefficients and quantum yields. We also found that the Cy3 and Cy5 signals on the processed slides were stable for more than six months.

Normalization of Signals

The MICROMAX system has three nonhuman genes as internal controls. Each of the control genes has been spotted four times on the microarray. Equal amounts of polyA RNA derived from these control genes were spiked into the total RNA samples derived from both HOSE and ovarian cancer cell lines during cDNA synthesis. Thus, hybridization signals from these control genes in two RNA samples should theoretically be the same. The Cy3-to-Cy5 ratios for these control genes varied from 0.4 to 4.0, and the average ratio was 1.5 ± 1.1 (data not shown). From a prior microarray analysis of human cancer cells, 88 genes have been identified to express at a relatively constant level in different cell types. The set of nonhuman control genes will be useful as control for other custom-designed chips.

Figure 1. Effect of extensive washing on signal-to-noise ratios.
Table 3. Real-Time Quantitative RT-PCR Analysis of a Few Selected Genes

<table>
<thead>
<tr>
<th></th>
<th>GA733-2</th>
<th>Osteopontin</th>
<th>KOC</th>
<th>Prostasin</th>
<th>Creatine kinase B</th>
<th>CEA</th>
<th>RGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal ovarian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOSE695</td>
<td>4</td>
<td>21</td>
<td>5</td>
<td>28</td>
<td>0.4</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>HOSE697</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0.4</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>HOSE713</td>
<td>1</td>
<td>20</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>HOSE726</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Average (HOSE)</td>
<td>2</td>
<td>11</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cell lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVCA3</td>
<td>419</td>
<td>6</td>
<td>4</td>
<td>61</td>
<td>393</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>OVCA432</td>
<td>136</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>OVCA433</td>
<td>2048</td>
<td>0</td>
<td>52</td>
<td>57</td>
<td>12</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>OVCA633</td>
<td>2917</td>
<td>13777</td>
<td>3</td>
<td>228</td>
<td>4</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>SKOV3</td>
<td>2856</td>
<td>265</td>
<td>10</td>
<td>2</td>
<td>31</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>ALST</td>
<td>3875</td>
<td>6081</td>
<td>78</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Average (OVCA)</td>
<td>2042</td>
<td>3355</td>
<td>24</td>
<td>62</td>
<td>75</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>OVCA/HOSE (average)</td>
<td>1361</td>
<td>310</td>
<td>6</td>
<td>7</td>
<td>103</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

a Each gene was analyzed using an identical panel of 10 cDNA samples that were comprised of our normal ovarian surface epithelial cells and six ovarian cancer cell lines. The expression of each gene for each cDNA sample was normalized against cyclosporin. Duplicated reactions were performed for each of the genes, and similar results were obtained.

Effect of Background Signal on the Identification of Differentially Expressed Genes

In our study, 1357 of the 2400 genes on the microarray have Cy3 signals (from ovarian cancer cell lines) that were at least twofold higher than the background, or 740 genes have Cy3 signals that were at least threefold higher than the background. After posthybridization washes, there was still significant background intensity for the Cy3 signal (Figure 1) but very low background for Cy5 (data not shown). Subsequently, we washed the microarray again in 30 mL TNT buffer at 42°C for 20 min instead of at room temperature, followed by 30 mL 0.006x SSC for 1 min. The washed microarray was then dried and rescanned. This process was repeated several times until the number of genes with signal-to-noise ratios at least threefold remained the same. The extensive washing steps decreased the background intensity significantly, but there were no obvious changes in the signal intensity. As a result, the number of genes with at least threefold signal-to-noise ratios has increased from 740 to 791 genes. Moreover, the differential expression ratios, in general, have increased as shown in both Table 1 and Table 2. More importantly, after the extensive washing, we were able to detect the differential expression of two weakly expressed genes, thiol-specific antioxidant protein (4.5-fold) and elongation factor-1-β (9.7-fold), which were previously identified by Schummer et al. (11). Thus, we suggest that extensive posthybridization washing and rescanning of signals may be necessary to decrease background signal, especially in the case of differentially expressed genes with low expression level.

Confirmation of Differential Expression by Real-Time Quantitative PCR

To further validate the differential expression, we chose five interesting genes, GA733-2, osteopontin, koc, prostasin, and creatine kinase B, for real-time PCR analysis. All of these genes are either surface antigens or secreted proteins. Thus, they may be useful as tumor markers for ovarian cancer. GA733-2 is a cell surface 40-kDa glycoprotein associated with human carcinomas of various origins (13). Osteopontin is a secreted glycoprotein with a conserved Arg-Gly-Asp (RGD) integrin-binding motif and is expressed predominantly in bone but has been found in breast cancer and thyroid carcinoma with enhanced invasiveness (12,15). Prostasin is a novel secreted serine proteinase that was originally identified in seminal fluid (16). The koc transcript is highly overexpressed in pancreatic cancer cell lines and in pancreatic cancer. It is speculated that koc may assume a role in the regulation of tumor cell proliferation by interfering with tran-
scriptional and or posttranscriptional processes (8). Creatine kinase B is a serum marker associated with renal carcinoma and lung cancer (4,14). Moreover, two randomly selected genes, CEA and RGS, were used as negative controls.

The results (Table 3) showed that all the tested ovarian cancer cell lines expressed higher levels of GA733-2. However, osteopontin, prostasin, KOC, and creatine kinase B were overexpressed in only some of the cancer cell lines. Since we were using pools of RNA, the differential expression that we have observed is an average of the gene expression from three independent HOSE cells or three different cancer cell lines. This strategy allows us to capture genes that overexpress in either some or all of the cell lines. Genes that only overexpress in some of the ovarian cancer cell lines may be useful for molecular classification of ovarian cancer cells. Since as little as 10 ng cDNA is enough for real-time quantitative RT-PCR, RNA extracted from microdissected tissue would be enough for thousands of such real-time quantitative RT-PCR analyses.

ACKNOWLEDGMENTS

This work is partly supported by Laboratory Directed Research and Development from Department of Energy under contract no. DE-AC06-76RLO 1830, and by Department of Defense under contract no. DAMD17-99-1-9563. We also thank Dr. Walter Tian for reading the manuscript.

REFERENCES

Address correspondence to Dr. Kwong-Kwok Wong, Molecular Biosciences, P7-56, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA. e-mail: kk.wong@pnl.gov

Turn any Scanner into a Gel Densitometer

UN-SCAN-IT®

Digitizes Gels

Software Turns any Scanner into a Gel Densitometer System for Only $450!

UN-SCAN-IT® gel automatically determines band densities, relative percentages, band locations, band sequences, molecular weight values, and other parameters for electrophoresis gels. The digitized gel data can be saved to disk, and imported into almost any spreadsheet or data analysis program.

UN-SCAN-IT® gel can also digitize strip charts, old graphs, instrumental output, published graphs, or any other scanned graph. The digitized (x,y) data can be saved to disk, and imported into almost any spreadsheet or graphics program.

Silk Scientific, Inc.
P.O. Box 537
Orem, UT 84059 USA
Tel: (801) 377-6775 • Fax: (801) 378-5743
www.silkscientific.com/geldata

Circle Reader Service No. 223
Expression of Gonadotropin Receptor and Growth Responses to Key Reproductive Hormones in Normal and Malignant Human Ovarian Surface Epithelial Cells

Viqar Syed, Gregory Ulinski, Samuel C. Mok, Gary K. Yiu, and Shuk-Mei Ho

ABSTRACT

Epidemiological data have implicated reproductive hormones as probable risk factors for ovarian cancer (OCA) development. Although pituitary and sex hormones have been reported to regulate OCA cell growth, no information is available regarding whether and how they influence normal ovarian surface epithelial (OSE) cell proliferation. To fill this data gap, this study has compared cell growth responses to gonadotropins and sex steroids in primary cultures of human OSE (HOSE) cells with those observed in immortalized, nontumorigenic HOSE cells and in OCA cell lines. Both malignant and normal cell lines/cultures responded equally well to the stimulatory actions of luteinizing hormone and follicle-stimulating hormone and to 17β-estradiol and estrone, although the latter estrogen has a much lower affinity for estrogen receptor than does the former estrogen. In normal HOSE cell cultures/lines, 5α-dihydrotestosterone was found to be more effective than testosterone in stimulating cell growth, but in OCA cell lines, 5α-dihydrotestosterone and testosterone are equally potent. One OCA cell line, OVCA 433, was found to be nonresistant to androgen stimulation. In general, primary cultures of normal HOSE cells exhibited the greatest hormone-stimulated growth responses (>10-fold enhancement), followed by immortalized HOSE cell lines (4-5-fold enhancement) and by OCA cell lines (2-4-fold enhancement). Interestingly, progesterone (P4), at low concentrations (10^{-11} to 10^{-10} M), was stimulatory to HOSE and OCA cell growth, but at high doses (10^{-8} to 10^{-6} M), P4 exerted marked inhibitory effects. In all cases, cotreatment of a cell culture line with a hormone and its specific antagonist blocked the effect of the hormone, confirming specificity of the hormonal action. Taken together, these data support the hypothesis that reproductive states associated with rising levels of gonadotropins, estrogen, and/or androgen promote cell proliferation in the normal OSE, which favors neoplastic transformation. Conversely, those states attended by high levels of circulating P4, such as that seen during pregnancy, induce OSE cell loss and offer protection against ovarian carcinogenesis.

INTRODUCTION

OCAs vary widely in frequency among different geographic regions and ethnic groups, with high incidences observed in the Scandinavian, Western Europe, and North American and low incidences found in Asian countries (1). The majority of cases are sporadic, whereas about 5-10% of OCAs cases are familial. Although all cell types of the human ovary may undergo neoplastic transformation, the vast majority (80-90%) of benign and malignant tumors are derived from the OSE and its cystic derivatives (2). The origin of OSE could be traced to the mesothelium of the embryonic gonads, or the Mullerian epithelium; therefore, ovarian tumors often resemble those of the fallopian tube, endometrium, and endocervix (2, 3).

Although the etiology of OCAs remains poorly understood, evidence is mounting to indicate the involvement of gonadotropins and/or sex hormones in its etiology. Because OCA incidence increases dramatically in women above the age of 45 years and peaks at 10-20 years after menopause, it has been suggested that elevated levels of gonadotropins during this reproductive period are risk factors for the cancer (4-7). The gonadotropin theory is further supported by several case studies reporting development of OCAs shortly after ovulation induction with fertility drugs such as clomiphene citrate or gonadotropins (7, 8). It has also been proposed that entrainment of OSE cells in inclusion cysts increases the odds of OSE neoplastic transformation, possibly due to exposure of these cells to a stromal hormonal milieu rich in androgens (2, 9, 10). In support of the androgen theory is the observation that women with polycystic ovary syndrome have a higher risk of developing OCAs, which is likely attributable to the higher levels of androgen present in their circulation. With regard to estrogens, earlier data are in inconclusive in demonstrating a positive relationship between estrogen usage and OCAs risk (11-15). However, recent large-scale epidemiological studies (16-18) consistently demonstrate that postmenopausal usage of estrogen elevates OCAs incidence in a manner dependent on usage duration. Finally, epidemiological data have established pregnancy, particularly one that occurs in late life, as a protective factor against OCAs development (19). These findings, in conjunction with laboratory studies (20, 21) demonstrating induction of apoptosis in OCA cell lines by P4, raise the possibility that progestins are protective against ovarian carcinogenesis. Taken together, these theories strongly argue for major roles played by reproductive hormones, such as those associated with the female cycle, pregnancy, perimenopause, and postmenopause, in ovarian carcinogenesis.

According to modern concept of hormonal carcinogenesis (22), endogenous and exogenous hormones enhance cell proliferation and thus enhance the opportunity for the accumulation of random genetic errors and the emergence of malignancy. Previous studies on hormones and OCAs were focused primarily on the effects of pituitary and/or sex hormones on OCAs cell growth (23-38). To the best of our knowledge, no information is available regarding whether and how key reproductive hormones regulate the growth of normal OSE cells. Answers to these questions are critical to our understanding of hormone-induced tumor initiation in the OSE. To fill this data gap, in this study, we have simultaneously compared the impacts exerted by gonadotropins and key sex steroids on primary cultures of HOSE cells with those observed in immortalized, nontumorigenic HOSE cells (39, 40) and in OCAs cell lines (39). Because women are exposed to a great variety of endogenous hormones at wide concentration ranges during their lifetime, we have chosen to study the growth responses of HOSE/OCAs cells to the predominant premenopausal estrogen, E2, the major postmenopausal estrogen, E3, the circulating androgen, T, the cellular androgen, DHT, the pregnancy hormone P4, and the gonadotropins FSH and LH at a wide dose range (10^{-11} to 10^{-6} M).
cell well, and plates were incubated for 4 h in a humidified atmosphere. Finally, 100 μl of solubilization solution were added to each well, and plates were incubated overnight at 37°C. Cell growth was measured based on the cellular conversion of a tetrazolium compound to a colored formazan product over a period of 18 h. At the end of the incubation period, the amount of formazan formed was measured as absorbance at 570 nm in a spectrophotometer to determine the cell number in each well. Assays were performed in triplicate to generate mean values for the control and for each treatment group. Cell number, as measured by the rate of formazan formation, in control wells with untreated cells was arbitrarily assigned a value of 1. Relative cell growth was expressed as the fold increase over control untreated cultures. Data points in all figures are reported as mean ± SDs from three separate experiments.

Treatment of Normal and Malignant HOSE Cells with Hormones in the Absence and Presence of Hormone Receptor Antagonists

Primary cultures of normal HOSE cells (HOSE 693, HOSE 770, HOSE 783, and HOSE 785), **immortalized normal HOSE cell lines** (HOSE 642, HOSE 301, HOSE 306, and HOSE 12-12), and **four OCA cell lines** (OVCA 420, OVCA 429, OVCA 432, and OVCA 433) were used in this study. The normal HOSE cell primary cultures, HOSE 693, HOSE 770, HOSE 783, and HOSE 785, were obtained from surface scrapings of normal ovaries removed from a 32-year-old patient with adenocarcinoma of the cervix, a 42-year-old patient with moderately differentiated squamous cell carcinoma of the cervix, a 42-year-old patient with leiomysarcoma, and a 72-year-old patient with inflamed bladder mucosa, respectively. The immortalized normal HOSE cell lines, HOSE 642, HOSE 301, HOSE 306, and HOSE 12-12, were established by human papillomavirus E6/E7 immortalization (39) of normal HOSE cells obtained from a 46-year-old patient with normal tissue, a 47-year-old patient with endometrioid adenocarcinoma of the ovary, a 53-year-old patient with breast cancer, and 39-year-old patient with ovarian stromal hyperplasia, respectively. OCA cell lines (OVCA 420, OVCA 429, OVCA 432, and OVCA 433) were established cell lines derived from freshly isolated ascites or tumor explants obtained from patients with late-stage serous ovarian adenocarcinomas according to Tsoa et al. (39). The epithelial nature of the HOSE cell primary cultures and the HOSE cell lines was verified by immunostaining for K7, K8, K18, and K19 cytokeratins and vimentin as described previously (39). The HOSE cell primary cultures and immortalized cell lines exhibited uniform epithelial-like morphology; immunopositivity for cytokeratins K7, K8, K18, and K19; and immunonegativity for vimentin. The immortalized HOSE cell lines were shown to be non-transformed in nude mice and express no CA-125 (39). In addition, they responded to transforming growth factor β-induced growth inhibition (39). In contrast, the OCA cell lines (OVCA 420, OVCA 429, OVCA 432, and OVCA 433) expressed high levels of CA-125 and failed to respond to transforming growth factor β-induced growth arrest (39).

These cell lines were cultured and maintained at 37°C in a 5% CO₂ humidified atmosphere in medium 199 (Sigma Chemical Co., St. Louis, MO) and MCDB 105 (1:1; Sigma Chemical Co.) supplemented with 10% FCS (Sigma Chemical Co.), 100 units/ml penicillin (Sigma Chemical Co.), and 100 μg/ml streptomycin (Sigma Chemical Co.) under 5% CO₂. Normal and malignant cells grown in this medium after two or more passages exhibited uniform epithelial-like morphology.

Cell Proliferation Assay. Cell lines or primary cultures cultured in medium 199:MCDB 105 (1:1) were harvested when they reached 80% confluence, washed twice in PBS, and then plated into the wells of 96-well microplates at a density of 1000 cells/well in medium containing 10% semiquantitative RT-PCR amplification of the 18S rRNA at low cycle numbers to investigate the relative expression levels of FSH-R and LH-R mRNA, as well as the integrity and intensity of the 18S and the 28S rRNA signals; and (c) conducting linearity of the semiquantitation method. The quality of each cellular RNA was quantified cell growth responses, and specific hormone antagonists were used to demonstrate specificity. Semiquantitative RT-PCR was used to demonstrate expression of FSH-R and LH-R in normal HOSE cells for the first time. Our data now show that gonadotropins, estrogens, and androgens are positive regulators of HOSE and OCA cell growth, whereas P4 is a negative regulator for both cell types.

MATERIALS AND METHODS

Primary Cell Cultures and Cell Lines. Four normal primary HOSE cell cultures (HOSE 693, HOSE 770, HOSE 783, and HOSE 785), four immortalized normal HOSE cell lines (HOSE 642, HOSE 301, HOSE 306, and HOSE 12-12), and four OCA cell lines (OVCA 420, OVCA 429, OVCA 432, and OVCA 433) were used in this study. The normal HOSE cell primary cultures, HOSE 693, HOSE 770, HOSE 783, and HOSE 785, were obtained from surface scrapings of normal ovaries removed from a 32-year-old patient with adenocarcinoma of the cervix, a 42-year-old patient with moderately differentiated squamous cell carcinoma of the cervix, a 42-year-old patient with leiomysarcoma, and a 72-year-old patient with inflamed bladder mucosa, respectively. The immortalized normal HOSE cell lines, HOSE 642, HOSE 301, HOSE 306, and HOSE 12-12, were established by human papillomavirus E6/E7 immortalization (39) of normal HOSE cells obtained from a 46-year-old patient with normal tissue, a 47-year-old patient with endometrioid adenocarcinoma of the ovary, a 53-year-old patient with breast cancer, and 39-year-old patient with ovarian stromal hyperplasia, respectively. OCA cell lines (OVCA 420, OVCA 429, OVCA 432, and OVCA 433) were established cell lines derived from freshly isolated ascites or tumor explants obtained from patients with late-stage serous ovarian adenocarcinomas according to Tsoa et al. (39). The epithelial nature of the HOSE cell primary cultures and the HOSE cell lines was verified by immunostaining for K7, K8, K18, and K19 cytokeratins and vimentin as described previously (39). The HOSE cell primary cultures and immortalized cell lines exhibited uniform epithelial-like morphology; immunopositivity for cytokeratins K7, K8, K18, and K19; and immunonegativity for vimentin. The immortalized HOSE cell lines were shown to be non-transformed in nude mice and express no CA-125 (39). In addition, they responded to transforming growth factor β-induced growth inhibition (39). In contrast, the OCA cell lines (OVCA 420, OVCA 429, OVCA 432, and OVCA 433) expressed high levels of CA-125 and failed to respond to transforming growth factor β-induced growth arrest (39).

These cell lines were cultured and maintained at 37°C in a 5% CO₂ humidified atmosphere in medium 199 (Sigma Chemical Co., St. Louis, MO) and MCDB 105 (1:1; Sigma Chemical Co.) supplemented with 10% FCS (Sigma Chemical Co.), 100 units/ml penicillin (Sigma Chemical Co.), and 100 μg/ml streptomycin (Sigma Chemical Co.) under 5% CO₂. Normal and malignant cells grown in this medium after two or more passages exhibited uniform epithelial-like morphology.

Cell Proliferation Assay. Cell lines or primary cultures cultured in medium 199:MCDB 105 (1:1) were harvested when they reached 80% confluence, washed twice in PBS, and then plated into the wells of 96-well microculture plates at a density of 1000 cells/well in medium containing 10% activated charcoal (Sigma Chemical Co.)/dextran-70 (Pharmacia)-treated FBS. Forty-eight h after cell plating, the medium was replaced with the same medium containing either human FSH (Calbiochem, San Diego, CA; purity, 99%; contamination with growth factors, <1%), human LH (Calbiochem; purity, 99%; contamination with growth factors, <1%), E₂ (Sigma Chemical Co.), E₃ (Sigma Chemical Co.), DHT (Sigma Chemical Co.), T (Sigma Chemical Co.), or P₄ (Sigma Chemical Co.). To study the synergistic action of FSH and E₂ on cell growth, cells were cultured with a combination of E₂ and FSH. Steroids were solubilized in absolute ethanol. The exposure concentrations ranged from 10⁻¹¹ to 10⁻⁶ M for each hormone. The final concentration of ethanol in the medium was 0.1%. The control wells were exposed to ethanol vehicle without the testing hormone. The cells were treated with hormones for 5 days, with a fresh addition of hormone to ensure stable bioavailability. Because DHT was metabolized rapidly, cells were subjected to DHT treatment every 12 h. Cell proliferation was measured by a MTT cell proliferation kit (Roche Diagnostics, Indianapolis, IN). After the incubation period, 10 μl of the MTT labeling reagent (final concentration, 0.5 mg/ml) were added to each well, and plates were incubated overnight at 37°C. Cell growth was measured based on the cellular conversion of a tetrazolium compound to a colored formazan product over a period of 18 h. At the end of the incubation period, the amount of formazan formed was measured as absorbance at 570 nm in a spectrophotometer to determine the cell number in each well. Assays were performed in triplicate to generate mean values for the control and for each treatment group. Cell number, as measured by the rate of formazan formation, in control wells with untreated cells was arbitrarily assigned a value of 1. Relative cell growth was expressed as the fold increase over control untreated cultures. Data points in all figures are reported as mean ± SDs from three separate experiments.
HORMONAL REGULATION OF OSE CELL GROWTH

to hot-start PCR using AmpliTaq Gold DNA polymerase (Perkin-Elmer). The enzyme was activated by preheating the reaction mixtures at 95°C for 6 min before thermal cycling. This protocol was chosen to minimize nonspecific product amplification. Initially, to determine the conditions under which PCR amplification for FSH-R, LH-R, and 18S ribosomal mRNA was in the logarithmic phase, different amounts of total RNA were reverse transcribed, and aliquots were amplified using a different number of cycles. A linear relationship was observed between the amount of RNA and PCR products when 3 μg of total RNA were used in the reverse transcription reaction and when 35, 30, and 18 PCR amplification cycles were performed for FSH-R, LH-R, and 18S rRNA, respectively. PCR for 18S rRNA was used as a control to rule out the possibility of RNA degradation and to control the variation in mRNA concentration in the RT reaction. The PCR program was 1 min at 94°C, 1 min at 60°C (annealing temperature), and 1 min at 72°C. mRNA-specific modifications included an annealing temperature of 58°C for amplification of FSH-R cDNA and an annealing temperature of 55°C for amplification of LH-R. The PCR products were fractionated on a 2% agarose gel and visualized by ethidium bromide staining. The fluorescence images were visualized under UV transillumination, captured on 665 negative film (Polaroid Co., Cambridge, MA), and converted into digitized signals with an image scanner, and the intensities of each band, which were derived from the area under each peak, were quantified by ImageQuant (Molecular Dynamics, Sunnyvale, CA). Signal intensities of FSH-R and LH-R amplimers were normalized to those of 18S rRNA products. Message levels were expressed as the ratio of the signal intensity of the PCR product of the receptor message to that of the 18S rRNA to produce arbitrary units of relative abundance. The reproducibility of the quantitative measurements was evaluated by three independent cDNA synthesis and PCR runs from each preparation of RNA. The means of the replicated measurements were calculated and are shown in the figures.

Statistical Analyses. Statistical analysis was carried out using ANOVA, followed by Tukey’s post hoc test. Values are presented as the mean ± SD and are considered significant at P < 0.05.

RESULTS

Transcripts of FSH-R and LH-R Are Expressed in Normal and Malignant HOSE Cells. The expression of FSH-R mRNA and LH-R mRNA in normal and malignant HOSE cells was investigated by semiquantitative RT-PCR. RT-PCR analyses of total cellular RNA prepared from four primary cultures of normal HOSE cells, four immortalized normal HOSE cell lines, and four OCa cell lines revealed that transcripts of FSH-R and LH-R were present in all cell cultures/lines (Fig. 1A and C). Relative FSH-R mRNA expression levels in the four OCa cell lines were higher than those found in normal HOSE cells in primary cultures or in immortalized cell lines (Fig. 1B). Conversely, relative LH-R mRNA expression levels in normal HOSE cell cultures/lines were higher than those observed in OCa cell lines (Fig. 1D). Nonetheless, the differences in receptor expression levels between normal and malignant HOSE cell lines were not dramatic.

Because we have used four different cell lines in each group, a representative cell line from each group (primary cultures, immortalized normal HOSE cells, and OCa cells) is shown in Figs. 2–5. In addition to the representative cell lines, any cell line that showed divergence in response to hormones compared with the other cell lines in the group is shown under the respective group.

FSH and LH Are Equally Potent in Stimulating Normal and Malignant HOSE Cell Growth. The effects of a 5-day treatment with FSH or LH at a dose range between 10−11 and 10−6 M on the proliferation of normal and malignant HOSE cells were investigated. FSH and LH enhanced cell proliferation in primary cultures of normal HOSE cells (HOSE 693, HOSE 770, HOSE 783, and HOSE 785), in immortalized normal HOSE cell lines (HOSE 642, HOSE 301, HOSE 306, and HOSE 12-12), and in OCa cell lines (OVCA 420, OVCA 429, OVCA 432, and OVCA 433) compared with cell growth in the absence of hormonal stimulation. A representative cell line from primary cultures (HOSE 770), immortalized normal HOSE cells (HOSE 642), and OCa cell lines (OVCA 420) is shown in Fig. 2A. The hormone-induced cell growth exhibited a clear dose dependency, and both gonadotropins were found to be equally potent in stimulating cell growth in all cell cultures/lines. However, in the immortalized HOSE 12-12 cell lines, FSH might be more effective than LH in stimulating cell growth (Fig. 2A). Although gonadotropin significantly enhanced cell growth of all normal and cancerous HOSE cell cultures/lines, normal HOSE cells in primary cultures exhibited the best responses (8–14-fold increases), followed by those displayed in
immortalized normal HOSE cell lines (5–7-fold increases) and in OCa cell lines (3–4-fold increases; results not shown).

It is now well accepted that gonadotropins interact with their cognate receptors and activate a stimulatory G-protein that leads to an induction of cyclic AMP, followed by activation of PKA and subsequent biological responses. To ascertain whether the observed gonadotropin-stimulated cell growth is mediated via a receptor-triggered PKA signaling pathway, cells were treated with FSH or LH (at 10 \(-8 \) m) for 5 days in the presence or absence of a PKA-selective antagonist, H89 (at either 10 \(-5 \) or 10 \(-4 \) m). Exposure of cells to H89 abolished the gonadotropin-induced cell growth enhancement in normal and malignant HOSE cell cultures in a manner dependent on the dose of the PKA antagonist (Fig. 2B). Furthermore, H89 by itself had no effect on cell growth.

E2 and Eá Are Equally Effective in Stimulating Normal and Malignant HOSE Cell Growth. When increasing concentrations (10 \(-11 \) to 10 \(-6 \) m) of E2 or Eá were added to primary cultures of normal HOSE cells (HOSE 639, HOSE 783, HOSE 785, and HOSE 770; HOSE 770, representative cell line shown in Fig. 3A), immortalized normal HOSE cell lines (HOSE 642, HOSE 301, HOSE 306, and HOSE 12-12; HOSE 642, representative cell line shown in Fig. 3A), and OCa cell lines (OVCA 420, OVCA 426, OVCA 432, and OVCA 433; OVCA 420, representative cell line shown in Fig. 3A), a dose-dependent increase in cell growth was observed in cell cultures challenged with an estrogen. An approximately 10–14-fold increase in cell growth was noted in primary cultures of normal HOSE cells exposed to the highest concentration (10 \(-6 \) m) of E2 or Eá (results not shown). In contrast, both estrogens at this dose only induced a 6-fold increase in cell growth in immortalized normal HOSE cell lines and a 3–4-fold increase in cell growth in OCa cell lines (results not shown). E2 and Eá were equally effective in enhancing cell proliferation in all cell lines studied, with the exception of HOSE 12-12 cells, which responded better to E2 than to Eá (Fig. 3A).

Simultaneous treatment of cell cultures with E2 and FSH induced proliferation of cells in a dose-dependent manner. Cotreatment with PKA blocker H89 abolished the response of normal HOSE cells to gonadotropins. The data are shown as the means of two experiments with triplicate samples and represent the mean ± SD. *P < 0.05.

Differential Responsiveness of Normal and Malignant HOSE Cells to DHT- and T-Induced Cell Growth Enhancement. Testosterone and DHT significantly stimulated cell growth in primary cultures of normal HOSE cells (HOSE 639, HOSE 783, HOSE 785, and HOSE 770), immortalized normal HOSE cell lines (HOSE 642, HOSE 301, HOSE 306, and HOSE 12-12), and malignant OCa cell lines (OVCA 420, OVCA 429, OVCA 432, and OVCA 433; OVCA 420, representative cell line shown in Fig. 3A). The responses of HOSE 770, the representative cell line for primary
HOSE cells, HOSE 642, the representative cell line for immortalized HOSE cells, and OVCA 420, the representative cell line for malignant cells, are shown in Fig. 4A. Primary cell cultures of normal HOSE cells (HOSE 770, Fig. 4A) and immortalized normal HOSE cell lines (HOSE 642, Fig. 4A) were more responsive to DHT than T, whereas the OCa cell lines (Fig. 4A) responded equally well to both androgens. Although all of the immortalized normal HOSE cell lines were extra receptive to DHT, HOSE 770 showed a greater sensitivity to DHT (Fig. 4A). The OCa cell line OVCA 433 failed to respond to both T and DHT stimulation (Fig. 4A). The androgen-induced cell growth enhancement was found to be dose dependent (Fig. 4A) and reversible by cotreatment of cells with the antiandrogen 4-hydroxy flutamide (Fig. 4B) in all of the cell lines tested.

P4 Exerts Both Stimulatory and Inhibitory Effects on Normal and Malignant HOSE Cell Growth. The effects of P4 on cell proliferation in normal and malignant HOSE cell cultures/lines were investigated over a wide concentration range of 10^{-11} to 10^{-6} M. Results revealed that the steroid could stimulate and inhibit cell growth of normal and malignant HOSE cells depending on the dosage of exposure. All of the primary cell cultures of normal HOSE cells (HOSE 783, HOSE 785, and HOSE 770; HOSE 770 is shown as the representative cell line in Fig. 5A) except HOSE 693 (Fig. 5A) showed stimulation of cell growth when exposed to low concentrations of P4. Exposure to low concentrations (10^{-11} to 10^{-8} M) of P4 induced cell growth enhancement in two immortalized normal HOSE cell lines [HOSE 306 (Fig. 5A) and HOSE 301 (data not shown)], whereas the other two cell lines, HOSE 642 (shown in Fig. 5A) and HOSE 12-12 (data not shown), did not show any increase in cell number. OCa cell lines OVCA 432, OVCA 433, and OVCA 420 (OVCA 420 is the representative cell line shown in Fig. 5A) showed enhancement of cell proliferation in response to low concentrations (10^{-11} to 10^{-9} M) of P4, whereas the OCa cell line OVCA 429 failed to show proliferation of cells in response to low doses of P4 (Fig. 5A). However, when normal and malignant HOSE cell cultures/lines were challenged with higher doses of P4 (10^{-8} to 10^{-6} M), the steroid consistently led to growth inhibition (Fig. 5A, see the representative lines shown for each group). Interestingly, the lowest dose of P4 (10^{-11} M) induced the most cell growth enhancement in responsive cell cultures/lines, whereas the growth-inhibitory effect of P4 was clearly dose dependent, with the higher doses being more effective. Cotreatment of normal and malignant HOSE cells with the progesterin antagonist, RU 38486, at 10^{-5} or 10^{-4} M reversed the growth-inhibitory effects of 10^{-8} M P4 in all cell lines/cultures (Fig. 5B). The latter finding suggests that the antiproliferative effect of P4 on all of the cell cultures/lines is mediated via the P4 receptor.

DISCUSSION

A major goal of this research was to fill a data gap regarding the lack of information on hormonal regulation of normal HOSE cell growth. Additionally, an equally important aim was to generate investigational data to explain epidemiological findings that have implicated hormones as risk factors for OCa. In this investigation, we capitalized on our unique access to normal HOSE cells as primary
cultures or immortalized lines to conduct a comparative study to determine cell growth responses induced by gonadotropins and key sex steroids in these cells and in their malignant counterparts. We reported here, for the first time, coexpression of LH-R and FSH-R in normal HOSE cell cultures and immortalized lines. Both gonadotropins (LH and FSH) and the two estrogens (E1 and E2) were equally potent in enhancing cell growth in normal and malignant HOSE cells.

The cellular androgen, DHT, was more effective than the circulating androgen, T, in stimulating the growth of normal HOSE cells in normal HOSE cell cultures and immortalized lines. Both gonadotropins (LH and FSH) and the two estrogens (E1 and E2) were equally potent in enhancing cell growth in normal and malignant HOSE cells. The cellular androgen, DHT, was more effective than the circulating androgen, T, in stimulating the growth of normal HOSE cells in primary cultures, but the two androgens were equally potent in enhancing cell growth in normal and malignant HOSE cells. Overall, primary cultures of normal HOSE cells exhibited the greatest responses to gonadotropin-, estrogen-, or androgen-stimulated cell growth when compared with those observed in immortalized HOSE cell lines or in OCa cell lines. Importantly, P4 at low doses was a promoter, but at higher doses, it was an unvaried growth inhibitor of normal and malignant HOSE cell growth.

Indirect evidence suggests that gonadotropins may have a role in the genesis and promotion of epithelial OCa (7, 9, 16). The incidence of OCa peaks 10–20 years after menopause, when gonadotropin levels are elevated. Case studies have reported development of epithelial OCa in women undergoing fertility treatment, and an increased OCa risk has been reported in association with the use of fertility drugs in population studies (7, 8). A handful of laboratory studies have demonstrated that gonadotropins influence cell growth in some but not all OCa cell lines (23, 25, 26). In early studies (47–50), gonadotropin-binding sites were found in OCa cells. In recent studies (26, 51), transcripts of FSH-R and LH-R were detected in the great majority of ovarian tumors. In this study, we reported coexpression of FSH-R and LH-R transcripts in normal HOSE cells at levels comparable with those found in OCa cells. Both FSH and LH, at doses as low as 10^-11 to 10^-10 M, were stimulatory for normal and malignant HOSE cell growth. These doses translate to approximately 20–200 mIU/ml gonadotropin, concentrations that are well within the ranges of circulating FSH and LH reported in women. The circulating levels of FSH and LH in cycling women fluctuate between 10–25 and 18–50 mIU/ml, respectively (52). After menopause, circulating gonadotropins are elevated to levels around 66 mIU/ml for FSH and 23 mIU/ml for LH (53).

Importantly, in our experiments, the effects of FSH and LH on cell growth enhancement were blocked by the selective PKA inhibitor, H89, providing evidence of specificity for the gonadotropin action. When compared over a wide dose range, FSH and LH were found to be equally potent in stimulating normal and malignant HOSE cell growth. The latter finding is clearly in disagreement with a recent study (26) that found FSH and LH to have opposite effects in the growth regulation of two OCa cell lines, AO and 3AO, with FSH as the stimulator and LH as the inhibitor. Interestingly, we found normal HOSE cells in primary cultures to be more responsive to gonadotropin stimulation, producing a 10–14-fold increase in cell growth enhancement, as compared with a 3–5-fold increase in immortalized normal HOSE cell lines and OCa cell lines. This observation suggests that normal HOSE cells are hypersensitive to gonadotropin stimulation and may therefore undergo excessive cell proliferation under a postmenopausal hormonal milieu and be susceptible to malignant transformation. All in all, our findings are in accord with the theory that suggests rising levels of gonadotropins as a risk factor for OCa and are in disagreement with the hypothesis that high levels of gonadotropins are protective against OCa development (54).
HORMONAL REGULATION OF OSE CELL GROWTH

<table>
<thead>
<tr>
<th>Primary Cells</th>
<th>Immortalized Normal Cells</th>
<th>Malignant Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOSE 770</td>
<td>HOSE 642</td>
<td>OVCA 420</td>
</tr>
<tr>
<td>HOSE 693</td>
<td>HOSE 306</td>
<td></td>
</tr>
<tr>
<td>HOSE 783</td>
<td>HOSE 420</td>
<td></td>
</tr>
<tr>
<td>HOSE 785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOSE 785</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5. Effect of P4 on cell growth in primary HOSE, immortalized normal HOSE, and malignant cell lines. Primarily HOSE (HOSE 693, HOSE 770, HOSE 783, and HOSE 785), immortalized HOSE (HOSE 642, HOSE 306, and HOSE 12-12), and OCa (OVCA 420, OVCA 429, OVCA 432, and OVCA 433) cell lines were cultured as described in the legend of Fig. 2. A, the cells were treated with different concentrations (10^{-11} to 10^{-5} M) of P4 (A) for 5 days. The cell growth was assessed by MTT assay as described in “Materials and Methods.” The absorbance of wells not exposed to hormones was arbitrarily set as 1, and P4-treated cell growth was expressed as the fold increase/decrease as compared with the control. The representative cell line from primary HOSE (HOSE 770), immortalized HOSE (HOSE 642), and malignant (OVCA 430) cells is shown. The primary cell line (HOSE 693), immortalized HOSE cell line (HOSE 306), and malignant cell line (OVCA 433) that showed divergence from the other cell lines in their respective groups are shown under the representative line. B, to confirm the specificity of P4, 2 × 10^6 cells/T-25 flask were cultured alone (C) or treated with 10^{-8} M P4 (D) and two doses of RU 38486 (10^{-5} M, 10^{-6} M, B, and DHT (37), at concentrations between 10^{-11} to 10^{-6} M, are well within the range capable of stimulating HOSE and OCa cell growth. According to the inclusion cysts theory, normal HOSE cells entrapped into inclusion cysts are predisposed to undergo neoplastic transformation, probably due to exposure to an androgen-rich stromal environment (2, 9, 10). In the present study, we observed an AR- and dose-dependent enhancement of cell growth in all normal and malignant HOSE cell cultures/lines. The cellular androgen, DHT, is apparently more potent than the circulating androgen, T, in stimulating normal HOSE cell growth. However, both androgens are equally effective in stimulating OCa cell growth. The differential cellular responses to T and DHT may be related to differential activities of 5α-reductase in these cell lines (65). Our finding that OVCA 433 fails to respond to both androgens could be explained by our previous report of a complete loss of AR mRNA expression in this OCa cell line (66). In addition, we have observed loss of AR expression in several other OCa cell lines (66). Hence, although androgens may play a significant role in the early genesis of OCa, such as when the OSE is entrapped in inclusion cysts, their contribution in OCa growth regulation may be significantly reduced during tumor progression in postmenopausal women with declining androgen levels (67) and in ovarian tumors with notable loss of AR expression (63).

It has become clear with data from recent large case-control studies that OCa risk is significantly increased in postmenopausal women following long-duration ERT (18, 55-61). However, the mechanisms underlying this association have not been established. Findings from our present investigation have provided the first evidence that estrogens directly promote normal HOSE cell growth, which may favor malignant transformation. Interestingly, normal HOSE cells were found to be much more responsive to estrogen stimulation than their immortalized or transformed counterparts. In addition, the major postmenopausal estrogen, E_{2}, (62), displayed equal potency as the dose-dependent enhancement of cell growth in all normal and malignant HOSE cell growth. Because E_{2} is a weak ligand for estrogen receptors (63), the popular view maintains that this estrogen exerts little estrogenic effect on target cells. Our data therefore provide a contrary perspective that suggests the effectiveness of postmenopausal estrogen in promoting OSE cell proliferation. In premenopausal women, circulating E_{2} ranges from 10-20 pg/ml during the follicular and luteal phases and peaks at 200 pg/ml during ovulation (52). These circulating E_{2} levels, at 3 × 10^{-11} to 6 × 10^{-10} M, are definitely effective in stimulating normal and malignant HOSE cell growth under our culture conditions. In perimenopausal women, E_{1} sulfate, which serves as a stable circulating reservoir of estrogen, reaches levels as high as 100 pg/ml or 10^{-9} M. Ovaries of postmenopausal women do not secrete estrogens, but postmenopausal women have significant levels of E_{1} (9 pg/ml or 3 × 10^{-11} M) and E_{1} (13.3-350 pg/ml or 4 × 10^{-11} to 1 × 10^{-9} M) in their circulation (64). These levels are still high enough to promote HOSE and OCa cell growth, based on the results of the current study.

Appreciable evidence implicates androgen in the pathogenesis of OCa. In premenopausal women, the circulating T levels are around 380 pg/ml or 10^{-9} M (52). Postmenopausal ovary is rich in androgen, as evidenced by T concentrations seen in ovarian veins. T (21) and DHT (37), at concentrations between 10^{-11} to 10^{-6} M, are well within the range capable of stimulating HOSE and OCa cell growth. According to the inclusion cysts theory, normal HOSE cells entrapped into inclusion cysts are predisposed to undergo neoplastic transformation, probably due to exposure to an androgen-rich stromal environment (2, 9, 10). In the present study, we observed an AR- and dose-dependent enhancement of cell growth in all normal and malignant HOSE cell cultures/lines. The cellular androgen, DHT, is apparently more potent than the circulating androgen, T, in stimulating normal HOSE cell growth. However, both androgens are equally effective in stimulating OCa cell growth. The differential cellular responses to T and DHT may be related to differential activities of 5α-reductase in these cell lines (65). Our finding that OVCA 433 fails to respond to both androgens could be explained by our previous report of a complete loss of AR mRNA expression in this OCa cell line (66). In addition, we have observed loss of AR expression in several other OCa cell lines (66). Hence, although androgens may play a significant role in the early genesis of OCa, such as when the OSE is entrapped in inclusion cysts, their contribution in OCa growth regulation may be significantly reduced during tumor progression in postmenopausal women with declining androgen levels (67) and in ovarian tumors with notable loss of AR expression (63).

Perhaps the most intriguing and novel finding of this study is the inverted U-shape dose-response curves observed for many, but not all, normal HOSE cell cultures in response to P4. P4 present at low doses (10^{-11} to 10^{-9} M) was proproliferative, whereas P4 present at higher
HORMONAL REGULATION OF OSE CELL GROWTH

doses (10^{-8} to 10^{-6} M) was antiproliferative to most normal and malignant HOSE cells. In premenopausal women, serum P4 levels fluctuate in the range of 2-14 ng/ml or 6-47 × 10^{-6} M (52). The higher concentrations are only reached during the midluteal phase of the female cycle. Furthermore, a 10-fold increase in P4 is noted during pregnancy (68). Previous studies on the influence of P4 on OCA cell growth demonstrated a growth-inhibitory effect for the steroid (20, 36). Induction of apoptosis and p53 up-regulation were proposed as mechanisms mediating the P4-induced growth-inhibitory action on OCA cells (20). We recently obtained flow cytometry data to indicate that all HOSE and OVCA cell lines die via apoptosis after treatment with high doses of P4 (10^{-6} M).4 It is worthwhile to note that the proapoptotic effects of low-dose P4 on normal and malignant HOSE cell cultures/lines have not been reported previously. Taken together, the antiproliferative effects of P4 could explain the observed protective effect offered by pregnancy, sometimes referred to as the “pregnancy clearance effect” (19). According to this theory, pregnancy rids the OSE of early transformed cells. In this regard, our data would suggest that only high levels of P4, which are present during pregnancy, are effective in inducing massive cell death in the OSE and therefore offer a cancer prevention effect. Ironically, lower levels of P4, which are found during the luteal phase of the female cycle, are likely to be proproliferative to the OSE. Thus, whereas pregnancy may offer protection against ovarian carcinogenesis, continuous ovarian cycling may increase OCAs risk.

In conclusion, we have observed coexpression of FSH-R and LH-R transcripts in all normal and malignant HOSE cell cultures/lines examined. Our data have identified FSH, LH, E2, T, DHT, and low-dose P4 as positive growth regulators for HOSE cells. Collectively, these results support the notion that elevated gonadotropin levels during menopause, rising estrogen and P4 levels during the female cycle, exposure of OSE to a high androgenic environment such as that seen in the inclusion cysts, and exposure to exogenous estrogens such as that seen during ERT are probable risk factors for OCa. Conversely, high levels of P4 may offer protection against OCAs development by riding the OSE of early transformed cells, hence providing a mechanistic explanation for the phenomenon of pregnancy clearance effect. The putative protective effect of P4 also raises the issue of whether combined estrogen and progestin replacement therapy is a safer alternative than ERT with respect to OCAs development.

REFERENCES

4 V. Syed and S-M. Ho, unpublished data.

Electrospray Ionization Mass Spectrometry Analysis of Lysophospholipids in Human Ascitic Fluids: Comparison of the Lysophospholipid Contents in Malignant vs Nonmalignant Ascitic Fluids

Yi-jin Xiao,* Benjamin Schwartz,† Monique Washington,† Alexander Kennedy,† Kenneth Webster,† Jerome Belinson,† and Yan Xu*,‡,‡

*Department of Cancer Biology and †Department of Gynecology and Obstetrics, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195

Received August 8, 2000; published online February 15, 2001

Lysophospholipids (lyso-PLs), including various glycerol-based and sphingosine-based lysophospholipids, play important roles in many biochemical, physiological, and pathological processes. The classical methods to analyze these lipids involve gas chromatography and/or high-performance liquid chromatography, which are time-consuming, cumbersome, and sometimes inaccurate due to the incomplete separation of closely related lipid species. We now describe the quantitative analysis of lyso-PLs in ascites samples from patients with ovarian cancer using electrospray ionization spectrometry. Three new classes of lyso-PL molecules are detected: alkyl-LPA, alkenyl-LPA, and methylated lysophosphatidylethanolamine. Importantly, the following lysophospholipid species are significantly increased in ascites from patients with ovarian cancer, compared to patients with nonmalignant diseases (e.g., liver failure): LPA (including acyl-, alkyl-, and alkenyl-LPA species), lysophosphatidylinositol, and sphingosylphosphorylcholine. Lysophosphorylcholine contents are also significantly different among ascitic fluids from the two groups of patients. However, the total phosphate content in ascites samples from patients with ovarian cancer is not significantly different compared to that from patients with nonmalignant disease.

Abbreviations used: ESI-MS, electrospray ionization mass spectrometry; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; LPG, lysophosphatidylglycerol; LPI, lysophosphatidylinositol; LPS, lysophosphatidylerine; lyso-LPs, lysophospholipids; MRM, multiple reaction monitoring; MS/MS, tandem mass spectrometry; OCAF, ovarian cancer-activating factor; PAF, platelet activating factor; PE, phosphatidylethanolamine; PLD, phospholipase D; S1P, sphingosine-1-phosphate; SPC, sphingosylphosphorylcholine; TLC, thin-layer chromatography; TX100, Triton X-100.
sphosphatidylinositol (LPI), and lysophosphatidylserine (LPS). Two lysosphingolipid molecules, sphingosine 1-phosphate (SIP) and sphingosylphosphorylcholine (SPC), are both extra- and intracellular signaling molecules (4–7).

Ovarian cancer is associated with the production of a large volume of peritoneal ascites, which frequently contains a high number of tumor cells and soluble growth factors (8–10). It represents the in vivo environment of the tumor cells. Another disease that tends to produce a large volume of ascites is hepatic cirrhosis. Ascitic fluids from patients with ovarian cancer, but not patients with benign diseases, such as hepatic cirrhosis, stimulate growth of ovarian cancer cells in vitro and in vivo (11). Normal ovarian epithelial cells and fresh or cultured lymphoid cells do not respond to this factor (11, 12). Identifying and understanding the mechanism of the growth-stimulating activity in ascites will provide critical information about the growth and metastatic regulation of ovarian cancer.

Previously, we purified and identified a factor from ovarian cancer ascites that is growth stimulating in ovarian cancer cells. We termed it ovarian cancer-activating factor, or OCAF. OCAF is composed of several molecular species of LPA (6, 7). We have shown that another bioactive lyso-PL, SIP, is also present in ascites from patients with ovarian cancer and modulates both growth and adhesion of ovarian cancer (13). We also found that LPA was significantly elevated in the plasma of ovarian cancer patients, compared to healthy controls. In particular, elevated plasma LPA levels were detected in patients with Stage I ovarian cancer, suggesting that LPA may represent a useful marker for the early detection of ovarian cancer (14). More recently, we have developed an electrospray mass spectrometry (ESI-MS)-based method to analyze lyso-PL molecules in ascites and found that in addition to LPA, LPI may be a valuable biomarker for detecting ovarian cancer (15).

To further investigate the biochemical, physiological, and/or pathological role of LPA and related bioactive lysolipids in ovarian cancer, we have developed the ESI-MS-based method to further analyze all lyso-PL molecules with either a glycerol or a sphingosine backbone in ascites. To determine whether any lyso-PLs could be related to ovarian cancer, quantitative analyses have been conducted in ascites samples from patients with ovarian cancer, compared with those from patients with nonmalignant diseases using the standard curves established for a variety of lyso-PLs in this study.

MATERIALS AND METHODS

Materials

LPA and other lyso-PLs were purchased from Avanti Polar Lipids (Birmingham, AL). LPI was from Sigma (St. Louis, MO). SIP was from Toronto Research Chemicals (Toronto, Ontario, Canada) and SPC was from Matreya, Inc. (Pleasant Gap, PA). Precoated silica gel 60 TLC plates were obtained from EM Science (Gibbstown, NJ). HPLC-grade methanol (MeOH), chloroform, ammonium hydroxide (AmOH), and hydrochloric acid (HCl) were purchased from Sigma (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA).

Lipid Extraction

Ascites samples were centrifuged at 1660g (3000 rpm in a JS7.5 Beckman rotor) for 30 min. The cell-free ascites was stored at −80°C in aliquots. All extraction procedures were performed in 15-ml glass disposable centrifuge tubes (15). To extract lipids in the upper phase, 2 ml of butanol was added to the mixture of the upper and inter phases, vortexed for 1 min, and then incubated on ice for 1 h. Two milliliters of H₂O was added to separate the phases. The sample was vortexed for 1 min and centrifuged at 2000g for 10 min. The upper phase was transferred to a fresh glass tube and dried under N₂. The dried lipids were resuspended in 1.5 ml chloroform and centrifuged at 2000g for 10 min to remove the salts and insoluble materials. The lipids in chloroform were transferred to a new tube and the solvent was evaporated under nitrogen at 40°C. The dried sample was dissolved in 0.1 ml of MeOH and then diluted 10-fold, prior to MS detection. Lipids were separated and eluted from TLC plates as previously described (15).

Preparation of Standards

14:0-LPA and 17:0-LPC (purchased from Avanti in chloroform form) were used as internal standards in the negative and positive mode of detection, respectively. Standard LPAs (16:0, 18:0, and 18:1), LPI (16:0 and 18:0), and LPCs (6:0, 8:0, 10:0, 12:0, 14:0, 16:0, 18:0, 20:0, 22:0, and 24:0) were obtained from Avanti and solutions were made in methanol. To obtain standard curves, different amounts (5–300 pmol) of standard LPAs, LPIs, or LPCs were mixed with the same amount (50 pmol) of internal standard 14:0-LPA or 17:0-LPC. ESI-MS was performed and the intensity ratios (standard vs internal standard) were plotted against molar ratios (standard vs internal standard). For quantitative analysis of lysolipid, 500 pmol of the internal standard was added to each ascites sample before the lipid extraction and one-fifth of each sample was used for MS detection.

Preparation of Alkyl- and Alkenyl-LPAs

Alkyl- and alkenyl-LPA were prepared through hydrolysis of the corresponding lyso-PAF (Avanti Polar Lipids) or lyso-plasmalogen phosphatidylethanolamine.
(alkenyl-LPE) (Matreya, Inc.), respectively, by phospholipase D (PLD) reaction (Calbiochem, La Jolla, CA). Briefly, 1 mg of alkenyl-LPE or lyso-PAF was dispersed in 0.1 ml of 0.04 M Tris buffer, pH 8.0, containing 0.05 M CaCl$_2$ and 1% TX100. After addition of enzyme (4 units of PLD in 15 µl of 0.01 M Tris buffer, pH 8.0), the sample was mixed vigorously. The reaction vessel was sealed tightly and the contents were rotated overnight at room temperature. After the incubation period, the mixture was extracted with 1.2 ml of chloroform:methanol:HCl (5:4:0.2). The chloroform layer was evaporated under a stream of nitrogen and the residue was dissolved in 50 µl chloroform:methanol (1:2 v/v). The substrate and the product were separated on a TLC plate using a solvent system of chloroform:methanol:AmOH (65:35:5.5) and the product was eluted from the plate by 2 ml chloroform:methanol (1:2), twice, and then dried under N$_2$.

ESI-MS Conditions

ESI-MS and tandem mass spectrometry (MS/MS) analyses were performed using a Micromass Quattro II triple quadrupole mass spectrometer equipped with an ESI source (Micromass Inc., Beverly, MA). The samples were delivered into the ESI source using a LC system (HP1100) with an injection valve (20-µl injection loop) via 125-µm PEEK tubing. The mobile phase used for all experiments was MeOH:H$_2$O (1:1 v/v) and the flow rate was 50 µl/min.

The instrument settings used were the same as described previously (15). Parent scanning and MS/MS analyses were performed to detect and confirm the structures of all lyso-PLs in ascites samples. All quantitative analyses were performed in the multiple reaction monitoring (MRM) mode, since it provides better sensitivity and separation than the parent scanning does. LPA and other negatively charged lyso-PLs were analyzed in the negative mode with the monitoring ions at m/z 378 (parent ion)–79 (product ion) for S1P, 381–79 for 14:0-LPA, 393–79 for 16:0-alkenyl-LPA, 395–79 for 16:0-alkyl-LPA, 409–79 for 16:0-LPA, 421–79 for 18:0-alkenyl-LPA, 423–79 for 18:0-alkyl-LPA, 433–79 for 18:2-LPA, 435–79 for 18:1-LPA, 437–79 for 18:0-LPA, 571–79 for 16:0-LPI, 599–79 for 18:0-LPI, and 619–79 for 20:4-LPI. All lipids with the phosphorylcholine group (positively charged) were analyzed in the positive mode. Monitoring ions were at m/z 437–79 for 18:0-LPA, 433–79 for 18:2-LPA, 435–79 for 18:1-LPA, 381–79 for 14:0-LPA, 393–79 for 16:0-alkenyl-LPA, 395–79 for 16:0-alkyl-LPA, 409–79 for 16:0-LPA, and 608–184 for 24:0-LPC were used. The dwell time in the MRM mode was 100 ms and other conditions were the same as those in the parent scanning as described above.

Total Phosphate Determination

To determine total phospholipid content in ascites samples, total phosphorus was determined in extracted lipids. Lipids were extracted from 0.5 ml of ascites and dried under nitrogen as described. Perchloric acid (0.5 ml, 70%) was added to the dry lipid sample in a test tube, and the lipids were digested by gentle refluxing for 20 min on a heating block at ~200°C in a fume hood. After cooling, ammonium molybdate reagent (2.5 ml; 0.5% ammonium molybdate in 1 N H$_2$SO$_4$; Fisher Scientific) was added and followed by addition of 2.5 ml of reducing reagent (0.62% sodium bisulfate, 0.37% sodium sulfite, and 0.01% 1-amino-2-naphthol-4-sulphonic acid; Labchem Inc., Pittsburgh, PA). The solution was mixed thoroughly and heated in a boiling water bath for 10 min for color development. After cooling, the absorbance of the solution was measured at 830 nm (some dilution may have been required). A blank sample was analyzed simultaneously and a standard solution of 1.0 mM sodium dihydrogen phosphate was prepared for establishing the standard curve.

Sample Collection and Statistical Analysis

Ascites samples were obtained from 15 patients with ovarian cancer (median age 74.0 years; range 48–86 years) and 15 patients with benign liver diseases (median age 52 years; range 43–74 years). Informed consent was obtained from all participants. Ascites samples were centrifuged at 1660g for 30 min to remove cells. The cell-free ascites samples were aliquoted and stored at −80°C. Statistical analyses were performed using the Student t test. P ≤ 0.01 is considered to be statistically significant.

RESULTS

Lysolipids Were Distributed in both Organic and Aqueous Phases

Using the acidified chloroform:MeOH extraction method as previously described (15), we found that most negatively charged lysolipids, including LPA, LPI, derivatives of LPE, and S1P, were exclusively extracted into the organic phase. Phosphorylcholine-containing lipids, which are positively charged under acidic conditions, including SPC, LPC, and lyso-PAF were distributed in both organic and aqueous phases. The distribution of these lipids in the aqueous phase was approximately ≥90, 70, and 45% for SPC, LPC, and lyso-PAF, respectively. We collected
FIG. 1. Representative spectra of lyso-PLs from the "LPA band" in 0.5 ml of an ascites sample from an ovarian cancer patient. The parent of 79 scan mode in negative detection (A) or a MRM mode (B) was used. The MS/MS spectra of the ion peak at m/z 393 from the ascites sample (C) and the standard 16:0-alkenyl-LPA (D). The MS/MS spectra of the ion peak at m/z 421 from the ascites sample (E) and the standard 18:0-alkenyl-LPA (F). The MS/MS spectra of the ion at m/z 378 (G) and the standard S1P (H). The MS/MS spectrum of the ion peak at m/z 333 (I).
both aqueous and organic phases and developed a butanol reextraction method to recover the lipids in the aqueous phase (Material and Methods). The salt and insoluble materials were removed by chloroform and the purified lipids were used directly for MS analysis.

Ascites from Patients with Ovarian Cancer Contain Various Species of Acyl-, Alkyl-, and Alkenyl-LPA

In addition to acyl-LPAs detected in plasma samples (14, 15), two new species at m/z 393–395 and 421–423 were detected in ascites samples (Figs. 1A and 1B). MS/MS analyses in comparison with standard alkyl-
FIG. 3. Representative spectra of lyso-PLs containing phosphorylcholine from 0.5 ml of an ascites sample from an ovarian cancer patient. The parent of 184 scan mode in positive detection was used (A). Standard SPC, lyso-PAF, 16:0-LPC, and 18:0-LPC (molar ratios 0.04:0.4:19:22) (B). The assay conditions were the same for (A) and (B). The MS/MS spectra of the ion peak at m/z 482 from the ascites sample (C) and the standard 16:0-lyso-PAF (D). The MS/MS spectra of the ion peak at m/z 465 from the ascites sample (F) and the standard SPC (G). The fragmentation assignments to lyso-PAF (E) and SPC (H). The MS/MS spectra of the ion peak at m/z 524 from the ascites samples (I) and the standard 18:0-LPC (J).
XIAO ET AL.

A 6.00 ples, ion peaks at 393 and 421 were detected and they were noted to completely disappear after HCl vapor treatment (data not shown).

The ion peak at m/z 378 was identified as S1P (Figs. 1G and 1H). The following indicates that the ion peak at m/z 333 was a deacylated form of LPI (glycerolphosphoinositol): (i) the MS/MS spectrum was consistent with the assignment. In particular, the fragment ion peak at 241 is characteristic of the inositol groups (Fig. 1I); and (ii) the intensity of peak 333 increased as the amount of standard LPI was added, suggesting that glycerolphosphoinositol was not a genuine lipid species in ascites. Rather, it was generated during mass spectrometry analysis.

Other Lyso-PLs Detected in the Negative Mode

The solvent system used for TLC development (Materials and Methods) can separate different lyso-PLs as described previously (15). Standard lyso-PLs, including LPC, LPE, LPG, LPI, LPS, PAF, and lyso-PAF were applied to the TLC plates along with lipid samples extracted from ascites. The lipids at locations corresponding to various lyso-PLs were eluted and analyzed. In the negative mode, other than different subclasses of LPAs, we also detected LPIs with different fatty acid chains in ascites samples. The ion peaks at m/z 571, 599, and 619 were 16:0-, 18:0-, and 20:4-LPIs, respectively (Fig. 1A).

We did not detect LPS (15), LPE, or LPG in the bands corresponding to standard LPS, LPE, or LPG. However, several ion peaks at m/z 466, 480, 493, 506, and 529 were detected in the "LPE band" and the "LPG band" (Fig. 2A). Based on their molecular weights and the MS/MS analyses shown in Figs. 2B and 2C, they appeared to be the N-methylated derivatives of LPE. For example, the ion peak at m/z 466 was assigned to N-methyl-16:0-LPE, 480 to N,N-dimethyl-16:0-LPE, 493 to N-methyl-18:1-LPE, 506 to N,N-dimethyl-18:1-LPE, and 529 to N,N-dimethyl-20:4-LPE through MS/MS analyses (Figs. 2B–2D).

FIG. 4. Standard curves of SPC and S1P. (A). S1P standard curve: internal standard 14:0-LPA was used and the ionization ratios were determined in the parent of 79 MRM scan mode in negative detection. (B). SPC standard curve: internal standard 17:0-LPC was used and the ionization ratios were determined in the parent of 184 MRM scan mode in positive detection.

LPA identified ion peaks 395 and 423 as 16:0- and 18:0-alkyl-LPAs (data not shown). The ion peaks at 393 and 421 were identified as 16:0- and 18:0-alkenyl-LPAs by three lines of evidence: (i) the parental molecular weight; (ii) the MS/MS spectrum of ion peaks at 393 and 421, compared with 16:0- and 18:0-alkenyl-LPA produced through PLD reaction (Materials and Methods) (Figs. 1C, 1D, 1E, and 1F); and (iii) ion peaks at 393 and 421 were sensitive to HCl treatment: two ascites samples were extracted using the method as described under Materials and Methods. The lipids were then suspended in 50 μl MeOH:chloroform (2:1) and then spotted on a TLC plate. The TLC plate was placed in a TLC tank, which was saturated with HCl vapors (generated by placing 50 ml concentrated HCl in a sealed TLC tank) for 15 min. The sample spots were eluted with 2 ml of MeOH:chloroform (2:1) twice and dried under nitrogen at 40°C. As controls, the same ascites samples were extracted and spotted on a TLC plate in a similar fashion and the plate was placed in a TLC tank without the HCl vapors. These samples were subjected to MS analysis for comparison. In control sam-
FIG. 5. Standard curves of LPCs. (A) Standard curves of 6:0-, 8:0-, 10:0-, 12:0-, 14:0-, and 16:0-LPCs. (B) 18:0-, 20:0-, 22:0-, and 24:0-LPCs. (C) The relationship between the ionization and fragmentation efficiencies (as reflected by the slopes of the standard curves in A and B) and the number of carbon atoms in the fatty acid chain in LPC.

Figs. 3F–3H for SPC, Figs. 3I and 3J for 18:0-LPC). The ion peak at m/z 524 could be either 16:0-PAF or 18:0-LPC. However, PAF and LPC can be separated on TLC (15) and the isolated PAF band from the TLC plate did not contain PAF (data not shown), suggesting that ascites from patients with ovarian cancer did not contain detectable amounts of PAF (<5 nM).

Quantitative Analysis of Different Lipids

The yield/recovery of extraction for S1P was 79 ± 5%; SPC, 100 ± 5%; and LPI, 80 ± 5%. Since internal standards of LPA and LPC were added to the ascites samples, the recoveries for these lipids were adjusted to the standards, and the quantities were calculated based on the standard curves.

For quantitative measurements, standard curves were established in the MRM mode. Standard curves for LPA and LPI had been established and described previously (15). Standard curves for S1P in the negative mode and SPC in the positive mode were also established as shown in Fig. 4.

To establish the standard curves for LPCs, we purchased a series of LPCs with the fatty acid chains from 6 to 24 carbons (all with even numbers of carbons; from Avanti Polar Lipids, Inc.). The standard curves for these LPCs were plotted (Figs. 5A and 5B). We found that the slopes, which reflect the ionization and fragmentation efficiencies, reached the maximum between 16 and 18 carbons and declined between 18 and 24 carbons, resulting in a bell-shaped curve (slope vs number of carbons in fatty acid chains of LPCs) (Fig. 5C).

Lyso-PLs Are Elevated in Ascites from Patients with Ovarian Cancer Compared to Patients with Nonmalignant Diseases

Accumulation of ascitic fluids are most often seen in patients with ovarian cancer or some benign liver dis-
FIG. 6. The levels of various lyso-PLs in 15 pairs of ascites samples. (A) The total LPA and LPI levels; (B) the total alkyl- and alkenyl-LPAs (A-LPA) levels; (C) the SPC and S1P levels; (D) the total LPC levels; (E) the lyso-PAF levels; and (F) the total phospholipid levels in 15 pairs of ascites samples.

ases, such as hepatic cirrhosis. Importantly, ovarian cancer cells are growing in ascitic fluids so that ascites is the living environment for tumor cells. Ascitic fluids from patients with ovarian cancer, but not from patients with nonmalignant diseases, stimulate growth of ovarian tumor cells in vitro and in vivo (11, 12). To determine whether levels of bioactive lyso-PLs, which may be responsible for the different mitogenic activities, were different between these two groups of ascites samples, we quantitatively analyzed the levels of LPAs, LPIs, S1P, SPC, lyso-PAF, and LPCs in 15 pairs of ascites samples from patients with ovarian cancer or liver failure.

Quantitative analyses of lyso-PLs were performed for all ascites samples in both negative and positive modes. Figure 6 shows the data points from the 15 pairs of samples for each group of lysolipids, including total acyl-LPAs, total LPIs, total alkyl- and alkenyl-LPA, SPC, S1P, lyso-PAF, and total LPC (Figs. 6A to 6E). To determine whether patients with ovarian cancer had overall increased total phospholipids, the total phosphorus content from these samples was deter-
TABLE 1

Statistical Analysis of Lyso-PLs in 15 Pairs of Ascites Samples

<table>
<thead>
<tr>
<th></th>
<th>LPA (µM)</th>
<th>LPI (µM)</th>
<th>A-LPA* (µM)</th>
<th>SPC (nM)</th>
<th>S1P (nM)</th>
<th>LPC (µM)</th>
<th>L-PAF* (µM)</th>
<th>Total Pi (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarian cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>18.9</td>
<td>14.7</td>
<td>3.7</td>
<td>71.5</td>
<td>33.5</td>
<td>37.3</td>
<td>0.1</td>
<td>4.7</td>
</tr>
<tr>
<td>SD</td>
<td>14.7</td>
<td>9.7</td>
<td>1.7</td>
<td>50.8</td>
<td>20.5</td>
<td>11.6</td>
<td>0.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Median</td>
<td>19.4</td>
<td>14.4</td>
<td>3.6</td>
<td>46.1</td>
<td>30.5</td>
<td>36.1</td>
<td>0.2</td>
<td>4.3</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.1</td>
<td>1.7</td>
<td>1.0</td>
<td>24.3</td>
<td>12.5</td>
<td>22.1</td>
<td>0.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Maximum</td>
<td>54.3</td>
<td>31.5</td>
<td>7.2</td>
<td>188.9</td>
<td>86.1</td>
<td>68.7</td>
<td>0.3</td>
<td>7.6</td>
</tr>
<tr>
<td>Nonmalignant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.9</td>
<td>0.9</td>
<td>0.4</td>
<td>17.9</td>
<td>21.1</td>
<td>23.8</td>
<td>0.3</td>
<td>3.5</td>
</tr>
<tr>
<td>SD</td>
<td>2.0</td>
<td>0.7</td>
<td>0.3</td>
<td>10.1</td>
<td>26.6</td>
<td>10.6</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Median</td>
<td>2.4</td>
<td>0.7</td>
<td>0.2</td>
<td>15.0</td>
<td>11.1</td>
<td>24.5</td>
<td>0.3</td>
<td>3.5</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>10.3</td>
<td>0.0</td>
<td>4.1</td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Maximum</td>
<td>7.0</td>
<td>2.6</td>
<td>1.1</td>
<td>44.8</td>
<td>100.9</td>
<td>40.7</td>
<td>0.6</td>
<td>5.3</td>
</tr>
</tbody>
</table>

* A-LPA, total alkyl- and alkenyl LPAs.
* L-PAF, lyso-PAF.

DISCUSSION

Using quantitative ESI-MS, we confirmed our previous observations analyzed by gas chromatography that high concentrations (1–54 µM) of LPAs are present in ovarian cancer ascites. However, the ESI-MS method offers several advantages when compared with the GC method: (i) ESI-MS uses soft ionization and intact molecular species are detected, which makes the identification of lipids relatively easy; (ii) structures of interesting ion peaks can be determined through the MS/MS and/or LC/MS/MS analysis; (iii) it simultaneously detects many molecular species, including lipids with different fatty acid chains; (iv) it is highly sensitive (typically in the femtomole to low picomole range); and (v) the assay can be easily adapted to an autosampler.

We have used the parent of 79 and 184 scan modes to detect the presence or absence of ion peaks corresponding to a variety of lyso-PLs in ascites sample. These modes were found to be ideal for obtaining overall information about the profiles of lyso-PLs in a particular samples. However, MRM is the best for quantitative work, since it is at least 10 times more sensitive than the parent scan modes to detect lyso-PLs with higher resolutions. The lyso-PLs with a difference mass of 2 can be resolved easily only in the MRM mode without loss of required sensitivity (Fig. 1B).

We reported previously that LPAs (14:0-, 16:0-, and 18:0-LPAs) showed increased ionization and fragmentation efficiencies (as reflected by increased slope) when the length of the fatty acid chain increases (15). Similarly, LPCs from 14:0 to 18:0 also demonstrated increased slopes, suggesting increased ionization efficiencies and fragmentation efficiencies. LPAs with longer fatty acid chains were not commercially available and the ionization efficiencies and fragmentation efficiencies for those LPAs were not detected directly. In our previous report, we predicted the trend of increased ionization efficiencies may continue for LPAs with longer fatty acid chains, such as 20:4- and 22:6-LPAs (15).

The most important finding of this work is that malignant ascites contain significantly higher levels of lyso-PLs, including total acyl-LPAs, total alkyl- and alkenyl-LPAs, total LPIs, SPC, and total LPCs, than nonmalignant ascites. In contrast, the differences in S1P and lyso-PAF levels between the two groups of ascites are not significant (Fig. 6 and Table 1). The elevated lyso-PL levels are not due to a generalized overproduction of phospholipids, since the total phospholipid contents in these two groups of ascites samples were not statistically different (P = 0.05; P ≤ 0.01 is considered to be statistically significant). We have previously shown that LPA stimulates tumor cell proliferation (6, 7). The high levels of bioactive lipids may play important roles in tumor development and metastasis. Furthermore, these lipids are potentially useful prognostic markers for disease progression and/or novel therapeutic target(s). Total LPIs and total alkyl and alkenyl-LPAs are particularly good (P < 0.0001) in distinguishing malignant from nonmalignant ascites.
We detected three new classes of lysolipids in ascites, alkyl-LPAs, alkenyl-LPAs, and methylated LPEs, although the identifications of methylated LPEs remain to be confirmed by comparing their spectra to that from standard methylated LPEs, which are not commercially available currently. Synthetic alkyl-LPA has been shown to have signaling activities (16–18) and induced hypotensive activity on feline arterial blood pressure (19, 20). However, naturally occurring alkyl-LPA has only been detected in rat brains recently and induces rounding in neuroblastoma/glioma hybrid cells (21). Alkenyl-LPA was generated after corneal injury in the aqueous humor and lacrimal gland fluid of the rabbit eye (22) and may activate different receptors from those for acyl-LPA (23). Both acyl-LPA and alkenyl-LPA induce proliferation in NIH3T3 cells (24, 25). To our knowledge this is the first time that alkyl-LPA and alkenyl-LPA were detected in human body fluids. The biological function of these subclasses of LPAs remains to be determined. However, the relative elevation of these lipids in ovarian cancer ascites vs nonmalignant ascites suggests the involvement of these lipids in tumor biology.

N-Monomethylphosphatidylethanolamine (PE) and N,N-dimethyl-PE are present in animal tissues and they are precursors of phosphatidylcholine synthesis (26, 27). In addition, the methylation has been demonstrated to be important in transmembrane signaling. Phospholipid methylation is coupled to calcium influx and the release of arachidonic acid (28). However, to our knowledge, methylated derivatives of LPE have not been reported and their biological function(s) remains to be determined.

ACKNOWLEDGMENT

We thank Linnea Baudhuin for technical assistance and editing of the manuscript.

REFERENCES

The Role and Clinical Applications of Bioactive Lysolipids in Ovarian Cancer

Yan Xu, PhD, Yi-jin Xiao, PhD, Linnea M. Baudhuin, MS, and Benjamin M. Schwartz, MD

OBJECTIVE: To review the current understanding of the role of bioactive lysolipids in ovarian cancer and their potential clinical applications.

METHODS: A MEDLINE search and our own work, including some unpublished work, are the major sources of the review. The MEDLINE search terms used included lysophosphatidic acid, lysophosphatidylcholine (LPC), lysophosphatidylinositol (LPI), sphingosine-1-phosphate, and sphingosylphosphorylcholine (SPC).

RESULTS: Elevated lysolipid levels were detected in plasma and ascites samples from patients with ovarian cancer compared with samples from healthy controls or patients with nonmalignant diseases. These lysolipids regulate growth adhesion, production of angiogenic factors, and chemotherapeutic drug resistance in ovarian cancer cells. Ovarian cancer cells were likely to be at least one of the sources for elevated lysolipid levels in the blood and ascites of patients with ovarian cancer.

CONCLUSIONS: Bioactive lysolipid levels might be sensitive markers for detecting gynecologic cancers, particularly ovarian cancer. The prognostic value of lysolipids in ascites is worth further investigation. Bioactive lysolipid molecules can affect both the proliferative and metastatic potentials of ovarian cancer cells; therefore, regulation of the production or degradation of these lipids and interception of the interaction between these lipids and their receptors could provide novel and useful preventative or therapeutic measures.

KEY WORDS: Ovarian cancer, bioactive lysolipids, lysophosphatidic acid, diagnosis, clinical management.

Ovarian carcinoma has the worst prognosis of any gynecologic malignancy because of difficulties in early detection, the high metastatic potential of the tumor, and the lack of highly effective treatments for the metastatic disease.1 If the disease is detected at stage I (confined to the ovaries), the long-term survival rate is approximately 90%; however, more than 70% of women with ovarian cancer have advanced stage disease (spread to the abdominal cavity and/or other organs) at diagnosis, and the 5-year survival rate for those women remains very poor (only 20–30%).1,2 The processes governing growth and metastasis of ovarian carcinomas have been studied in the past few decades but are still poorly understood.

In order to improve the overall outcome of ovarian cancer, significant progress in the following areas is required: development of highly sensitive and reliable methods for early detection of the disease, development of better prognostic and clinical treatment methods for patients, and further understanding of the mechanisms of growth regulation of ovarian cancer by studying growth-stimulating factors and their pathways. This third objective will provide information for potential new therapeutic targets and methods.

One of the frequent consequences of the metastasis of ovarian tumors to the peritoneal cavity is the production of large volumes of ascitic fluids. Ascites from patients with ovarian cancer typically contains a high number of tumor cells, mesothelial cells, lymphocytes, other hematopoietic cells, and soluble growth-regulating factors. These factors potentially regulate growth metastasis and chemosensitivity of the tumor cells.4–6 Peptide factors related to ovarian cancer include epidermal growth factor (EGF), basic fibroblastic growth factor (bFGF), transforming growth factor-α (TGF-α), TGF-β, vascular endothelial growth factor (VEGF), macrophage colony-stimulating factor (CSF-1), interleukin-2 (IL-2), IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α).4–6 We and others have recently found that, in addition to these peptide factors, there is a group of lipid factors involved in ovarian cancer. In this article we review the role and potential clinical applications of bioactive lysolipids in ovarian cancer.

1071-5376/01/$20.00
PII 51071-5376(00)00027-7
Figure 1. The structures of different lysolipids, including subclasses of lysophosphatidic acid (LPA), lysophospholipid-X (LPX), and two lysosphingolipids—sphingosine-1-phosphate (SIP) and sphingosylphosphorylcholine (SPC). R = the long aliphatic side chain. LPxs can also have different fatty acid chains, as indicated in acyl-LPA structure. The structures of LPxs (only oleoyl-LPxs) and their different molecular weights are shown in the figure. Arrows point to distinguishing structural features in each family of lysolipids.

BIOACTIVE LYSOLIPIDS

Although previously viewed primarily as structural building blocks of the cell membrane, lipids and lysolipids are now recognized as important cell-signaling molecules. These lipids can be classified generally into two major groups, intracellular and extracellular, with some lipid molecules being both intracellular and extracellular. Among extracellular signaling lipid molecules, lysophosphatidic acid (LPA) has been studied most extensively. Lysophosphatidic acid consists of many different molecular species as a result of alterations in the fatty acid chain, as indicated in Figure 1. In addition, the long-chain aliphatic group (the R group in Figure 1) may link to the glycerol backbone through different chemical linkages resulting in various subclasses of LPAs (acyl-, alkyl-, and alkenyl-LPAs). Other lysophospholipids might also have signaling properties in cellular systems. These molecules have different head groups attached to the phosphate and include lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC), lysophosphatidylglycerol (LPG), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LPS) (Figure 1). Two lysosphingolipid molecules, sphingosine-1-phosphate (SIP) and sphingosylphosphorylcholine (SPC), are both extracellular and intracellular signaling molecules. The structures of the subclasses of LPAs, ie, acyl-LPA, alkyl-LPA, alkenyl-LPA, lysophospholipid-X (LPX), SIP, and SPC, are shown in Figure 1.

All of the lipid molecules shown in Figure 1 are phosphate-containing lysolipids (lyso-PLs) with a glycerol or sphingosine backbone. They are less hydrophobic compared with their diacyl or N-acyl partners and can be secreted extracellularly.
Table 1. The Biological Functions of Lysophosphatidic acid, Sphingosine-1-phosphate, and Sphingosylphosphorylcholine

<table>
<thead>
<tr>
<th>Function</th>
<th>LPA</th>
<th>SIP</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell differentiation (stimulation or inhibition)</td>
<td>14-16</td>
<td>17-19</td>
<td>20</td>
</tr>
<tr>
<td>Cell invasion, activation, or inhibition; cell motility</td>
<td>21-26</td>
<td>27-33</td>
<td>20</td>
</tr>
<tr>
<td>Chemotaxis</td>
<td>34, 35</td>
<td>27, 36-38</td>
<td>20</td>
</tr>
<tr>
<td>Cell morphologic and shape changes</td>
<td>34, 39, 40</td>
<td>41-43</td>
<td>20</td>
</tr>
<tr>
<td>Cell contraction</td>
<td>44-46</td>
<td>47</td>
<td>47, 48</td>
</tr>
<tr>
<td>Wound healing</td>
<td>49, 50</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>Platelet activation</td>
<td>53-66</td>
<td>43, 58, 67, 68</td>
<td>69</td>
</tr>
<tr>
<td>Gene regulation</td>
<td>70, 25, 71-73</td>
<td>74</td>
<td>74, 75</td>
</tr>
<tr>
<td>Superoxide or nitric oxide regulation</td>
<td>76</td>
<td>77-79</td>
<td>80</td>
</tr>
<tr>
<td>Disease related</td>
<td>81-87</td>
<td>88</td>
<td>89, 90</td>
</tr>
</tbody>
</table>

LPA = lysophosphatidic acid; SIP = sphingosine-1-phosphate; SPC = sphingosylphosphorylcholine.

Data are reference numbers.

More importantly most of them have been clearly shown to be signaling molecules. They have a broad range of biologic effects on a variety of cellular systems through numerous signaling pathways, which are summarized in Tables 1 and 2. These lipids regulate cell growth, and these growth effects are dependent on the cellular environment. In most cases, LPA promotes cell proliferation and prevents apoptosis; SIP has dual roles (both growth stimulation and inhibition); and SPC promotes cell proliferation in several nonmalignant cell types but inhibits cell growth in leukemia, breast, ovarian, and pancreatic cancer cells (Table 3). These lipids apparently have even broader biologic effects on different cell and tissue types, a phenomenon that has not been well characterized. In particular, our understanding of the role of these lipid molecules in cancer development has just begun.

OCCURRENCE OF BIOACTIVE LYSOLIPIDS IN OVARIAN CANCER

Our understanding of the potential involvement of bioactive lysolipids in ovarian cancer began when we identified LPA as an activating factor in ascites from patients with ovarian cancer. We found that LPA isolated from ovarian cancer ascitic fluids had tumor growth-promoting activity.

Ovarian cancer is associated with the production of a large volume of peritoneal ascites. Ovarian cancer cells usually grow on the surface of the ovary, which is situated in the peritoneal cavity, or they metastasize to other organs in the peritoneal cavity. Therefore, ascites represents the in vivo environment for the tumor. To a large extent, tumor cells are growing in suspension in ascitic fluids. Ascitic fluids from patients with ovarian cancer but not from patients with benign diseases that produce large volumes of ascites, such as hepatic cirrhosis, stimulate intracellular calcium release from ovarian cancer cells in vitro. This activity was not associated with any of the peptide factors previously mentioned, thereby implicating a novel factor(s). Furthermore, normal ovarian epithelial cells and fresh or cultured lymphoid cells did not respond to that factor. In addition, ascitic fluids stimulated proliferation of ovarian cancer cells in vivo in nude mice. The human ovarian cancer cell line HEY grew intraperitoneally in nude mice in the presence but not absence of ascites from human ovarian cancer patients. The mice eventually developed ascites.

Table 2. Receptors and Signaling Pathways of Lysophosphatidic acid, Sphingosine-1-phosphate, and Sphingosylphosphorylcholine

<table>
<thead>
<tr>
<th>Receptor</th>
<th>LPA</th>
<th>SIP</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase intracellular calcium</td>
<td>8, 29, 91-96 (Edg2, 4, 7)</td>
<td>8, 29, 91-98 (Edg1, 3, 5, 6, 8)</td>
<td>OGR1, 99</td>
</tr>
<tr>
<td>Potassium channel</td>
<td>107</td>
<td>108</td>
<td>109</td>
</tr>
<tr>
<td>Chloride efflux</td>
<td>111</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>Arachidonic acid release</td>
<td>113</td>
<td>114</td>
<td>115</td>
</tr>
<tr>
<td>cAMP increase or decrease</td>
<td>113</td>
<td>116-120</td>
<td>106, 115, 121, 122</td>
</tr>
<tr>
<td>PKC activation</td>
<td>123</td>
<td>124</td>
<td>125, 126</td>
</tr>
<tr>
<td>PLC activation</td>
<td>32, 127, 128</td>
<td>119</td>
<td>129</td>
</tr>
<tr>
<td>PLA2 activation</td>
<td>8, 96</td>
<td>...</td>
<td>130</td>
</tr>
<tr>
<td>PLD activation</td>
<td>131</td>
<td>132-136</td>
<td>132, 137</td>
</tr>
<tr>
<td>PI3K/Akt activation</td>
<td>138, 139</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NF-kB activation</td>
<td>140</td>
<td>141</td>
<td>...</td>
</tr>
<tr>
<td>Ras activation</td>
<td>11, 96, 142, 143</td>
<td>96</td>
<td>115, 118, 144</td>
</tr>
<tr>
<td>Tyrosine phosphorylation</td>
<td>143, 145, 146</td>
<td>147</td>
<td>148, 149</td>
</tr>
<tr>
<td>MAP kinase activation</td>
<td>116, 143, 146, 150-152</td>
<td>153, 154</td>
<td>99, 155</td>
</tr>
<tr>
<td>Rho activation</td>
<td>32, 150</td>
<td>149</td>
<td>156, 121, 148, 157, 158</td>
</tr>
</tbody>
</table>

LPA = lysophosphatidic acid; SIP = sphingosine-1-phosphate; SPC = sphingosylphosphorylcholine; cAMP = cyclic adenosine monophosphate; PKC = protein kinase C; phospholipase C; phospholipase A2; PLD = phospholipase D; PI3K = phosphatidylinositol 3-kinase; Akt = human cellular homologue of the viral oncogene v-Akt, also known as protein kinase B; MAP = mitogen-activated protein.

Data are reference numbers.
that contained potent growth-stimulating activity, suggesting an autocrine mechanism of growth regulation. Ascites from patients with benign diseases was ineffective at tumor induction. We purified and identified this factor with growth-stimulating activity in ascites from ovarian cancer patients and termed it ovarian cancer activating factor (OCAF). Ovarian cancer activating factor is not a peptide growth factor or cytokine that has been identified previously. Instead, OCAF is composed of several molecular species of LPA. Both OCAF and synthetic LPA stimulated the growth of ovarian cancer cells in vitro. We have also reported that SIP is present in ascites from patients with ovarian cancer.

More recently we developed an electrospray ionization mass spectrometry (ESI-MS) based assay for detection and quantification of LPA and closely related lysolipids. This method can reproducibly detect various lipid species simultaneously with high sensitivity. Using this method we detected alkyl-LPAs and alkenyl-LPAs for the first time in human body fluids (ascites from patients with ovarian cancer). We also detected SPC and other lysolipids in ovarian cancer ascites, which is described later in more detail. Most importantly, levels of these bioactive lysolipids were higher in blood and ascitic fluids from patients with ovarian cancer compared with normal healthy controls or patients with nonmalignant diseases. These findings suggested that these lipid molecules are likely to be pathologically relevant to ovarian cancer.

BIOLOGICAL FUNCTIONS OF LYSOlipIDS IN OVARIAN CANCER CELLS

The biologic functions of most markers currently used in ovarian cancer, including CA 125, are unknown. In contrast, the discovery and development of lysolipid markers began from functional studies. Considerable information pertaining to lysolipids has been collected recently to indicate that lysolipids might be involved in the initiation and development of ovarian cancer.

The Effects of Different Lysolipid Molecules on Cell Growth of Ovarian Cancer Cells

We observed distinct and sometimes opposite growth effects induced by different lysolipid molecules on ovarian cancer cells. Because ovarian tumor cells can grow either as solid tumor or as individual cells floating in ascites, we tested the cell growth effects of lysolipids on attached and detached ovarian cancer cells. We found that LPA (1-15 µM) stimulated ovarian cancer cell growth when cells were either attached or detached, but SIP (1-15 µM) had a dual effect on ovarian cancer cell growth and survival: it induced death in cells that were in suspension but stimulated growth in cells that were attached. In contrast, SPC (1-15 µM) inhibited cell growth regardless of cell attachment status.

Lysophosphatidylinositol species with different fatty acid side chains are present and elevated in the blood and ascites of patients with ovarian cancer (see below for details). Lysophosphatidylinositol levels were elevated and were mitogenically active in k-Ras-transformed epithelial cells. However, our preliminary studies indicated that LPI had no effect on the growth of ovarian cancer cells in vitro (unpublished results). Another lysolipid, LPS, which is not present in ascites had a limited effect on the growth of ovarian cancer cells unless high concentrations (greater than 20 µM) were used.

Effects of Different Lysolipid Molecules on Cell Morphology, Mobility, Adhesion, and Invasion

Tumor metastasis remains a major cause of death for cancer patients. Several events are required for malignant cells to detach from the primary tumor site, migrate to distant sites and proliferate at these sites. Several blood vessel formation (angiogenesis), cell attachment, invasion (matrix degradation and cell motility), and cell proliferation, in relation to these metastatic events, we found that different lysolipids regulate cell morphology and cell-cell or cell-matrix adhesion differently. Whereas LPA enhances cell attachment, both SIP and SPC inhibit cell adhesion to the surface of tissue culture dishes and to the following extracellular matrix (ECM) proteins: laminin, collagens I and IV, and fibronectin. Sphingosine-1-phosphate also induced cell-cell aggregation in suspended cells.

Lysophosphatidic acid (20 µM) was shown to upregulate urokinase plasminogen activator (uPA) production in both the SKOV3 and OVCAR3 ovarian cancer cell lines. Urokinase plasminogen activator contributes to metastasis and migration because it catalyzes the conversion of plasminogen to plasmin, thus leading to degradation of the basement membrane. Furthermore, in ovarian cancer cells, LPA stimulates the activation of matrix metalloproteinase 2, an important extracellular matrix protease involved in tumor metastasis.

Although not directly tested in ovarian cancer cells, LPA induced tumor cell invasion in other types of tumor cells. Conversely, SIP has a more complex effect on different cell types by being either stimulatory or inhibitory on cell motility.
Taken together these results suggest that LPA and other lysolipids may regulate metastasis of ovarian tumors.

Regulation of Angiogenic Factors by Bioactive Lpids in Ovarian Cancer Cells

Angiogenesis underlies progressive tumor events such as metastasis. Interleukin-8 (IL-8) is a proinflammatory and proangiogenic factor. High expression of IL-8 mRNA has been detected in clinical specimens of late-stage ovarian carcinomas and in malignant ascites. It has been shown that the expression level of IL-8 directly correlates with the progression of human ovarian carcinomas implanted into the peritoneal cavity of nude mice. Furthermore, the mean survival rates of mice bearing tumors derived from human ovarian cancer cells are inversely associated with the expression of IL-8. Several factors have been shown to regulate IL-8 in ovarian cancer cells. Hypoxia, which is a common feature of solid tumors, induces IL-8 expression in the human ovarian cancer cell lines SKOV3 and HEY-8A. All-trans-retinoic acid and TNF-α stimulate IL-8 release and mRNA expression in the human ovarian cancer cell line HOC-7. In addition, paclitaxel, a chemotherapeutic drug for ovarian cancer, induces IL-8 transcription and secretion in a subset of human ovarian cancer cells (OVCA420 and OVCA429) but not OVCA194 or OCVA432. Other physiologic and pathologic conditions might also contribute to the regulation of IL-8 expression and secretion in ovarian cancer cells.

We found that several lysolipid factors in ascites, including lysophosphatidic acid (LPA), sphingosine-1-phosphate (SIP), and sphingosylphosphorylcholine (SPC), increased mRNA levels and protein secretion of IL-8 from ovarian cancer cells in vitro. These regulations are both time-dependent and dose-dependent. Each lipid molecule regulates IL-8 through distinct signaling pathways. We also found that both SIP and SPC at pathologic concentrations found in ascites (20–100 nM), were synergistic with 5–15 μM of LPA in enhancing IL-8 production from HEY cells. The fact that IL-8 secretion was stimulated by pathologic concentrations of individual or combined lipids suggests that these lipids might regulate IL-8 in vivo and might be pathologically related to the development of the disease.

Modulation of Chemosensitivity

Ovarian carcinomas are usually chemosensitive. After surgical debulking, systemic or intraperitoneal delivery of antineoplastic agents is the main treatment for patients with ovarian cancer. Platinum- or paclitaxel-containing anticancer drugs are the main therapeutic agents for ovarian cancer. Unfortunately most patients with stage III or IV disease are not cured by these therapies, and when cancer recurs, the patients usually develop resistance to their prior chemotherapy drugs. Studying and understanding the mechanism of chemoresistance is important to overcoming this problem.

Lysophosphatidic acid increases the resistance of the HEY ovarian cancer cell line to platinum-based chemotherapeutic reagents, which are the most frequently used drugs in the treatment of ovarian cancer. This resistance appears to occur because OCAFA/LPA can decrease the ability of cisplatin to induce apoptosis.

RECEPTORS FOR LYSOLIPIDS AND THEIR SIGNALING PATHWAYS

Receptors for Lysolipids in Ovarian Cancer

Recently, eight receptors known as endothelial differentiation gene (Edg) receptors have been identified as receptors for LPA or SIP. Many of these receptors are expressed in ovarian cancer cells lines. For example, HEY cells express Edg1 and Edg3, which are receptors for SIP, as well as Edg2, a receptor for LPA (authors’ unpublished results). Another LPA receptor, Edg4, is prominently expressed in primary cultures and established lines of ovarian cancer cells but not in nonmalignant ovarian surface epithelial cells. Conversely, Edg2, another LPA receptor, might mediate LPA-independent apoptosis in ovarian cancer cells. The receptors for SIP (Edg1, Edg3, Edg5, and Edg6) are also low-affinity receptors for SPC.

Recently we identified the first highly specific and high-affinity receptor for SPC. We have shown that SPC is a high-affinity ligand for an orphan ovarian cancer G-protein coupled receptor (GOR1). In GOR1-transfected cells SPC binds to GOR1 with high affinity (dissociation constant = 33.3 nM) and high specificity, transiently increases intercellular calcium, activates p42/44 mitogen-activated protein (MAP) kinases, and inhibits cell proliferation. In addition SPC causes internalization of GOR1 in a structurally specific manner.

Ovarian cancer HEY and OCC1 cell lines both express GOR1.

Activation of Signaling Pathways by Lysolipids in Ovarian Cancer

The signaling pathways of LPA, SIP, and SPC have been studied extensively in fibroblasts and other cellular systems. Through their receptors, these lipids activate at least three classes of G proteins: Gαi, Gαq, and G12/13. Lipid-dependent activation of the Gαq pathway is linked to the mitogenic Ras-MAPK cascade in addition to possible involvement of phosphoinositide 3-kinase (PI3K). The lipid-activated Gαq activates phospholipase C (PLC), which is linked to calcium release and protein kinase C (PKC) activation. Lipid receptors can also couple to Gα12/13, which activates Rho, a key regulator of the cytoskeleton. The Rho pathway acti-
vates early gene transcription through the serum response factor. Works by us and others suggest that similar signaling pathways are also active in ovarian cancer cells. INTRACELLULAR CALCIUM ([Ca^{2+}]) RELEASE AND TYROSINE PHOSPHORYLATION. Intracellular ([Ca^{2+}]) and phosphorylated tyrosine are important signaling components that regulate numerous cellular functions. Both LPA and SPC stimulate transient increases in intracellular ([Ca^{2+}]) in ovarian cancer cells. Moreover SPC and LPA cross-desensitize each other in inducing an increase in [Ca^{2+}], suggesting that the signaling pathways activated by these two lipids interact with each other at some point causing receptor downregulation. We recently tested alkyl- and alkenyl-LPA and found that both stimulated transient increases in [Ca^{2+}], in ovarian cancer cells (Y. Xu, unpublished results). Lyso-phosphatidic acid, SPC, and LPS induced a rapid increase in tyrosine phosphorylation of cellular proteins including p125FAK, the EGF receptor, and other unidentified proteins.

MITOGEN-ACTIVATED PROTEIN KINASE ACTIVATION. Mitogen-activated protein (MAP) kinases are a multiple gene family activated by many extracellular stimuli, including growth factors and ligands for G-protein coupled receptors (GPCR's) through either G_{i}- or G_{y+1}-mediated pathways. Based on their dual phosphorylation motifs, there are three groups of MAP kinases: extracellular signal-regulated protein kinases (ERK1/2), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), and p38. Mitogen-activated protein kinases mediate diverse processes ranging from stimulation of proliferation to induction of cell differentiation or apoptosis. Although p42/44 kinase are mainly involved in mitogenic signaling, they also participate in induction of cell differentiation and growth inhibition. Lyso-phosphatidic acid but not SPC activates p42/44 mitogen-activated protein (MAP) kinase activation in ovarian cancer cells.

CLINICAL APPLICATIONS OF LYSOLIPIDS IN OVARIAN CANCER

Diagnosis

The importance of developing better tools for the screening of asymptomatic patients for ovarian cancer cannot be understated. However, such a modality for ovarian cancer has eluded researchers to date. The presently available screening tools for ovarian cancer (ultrasound, CA 125 blood testing, and pelvic examination) are insensitive to early-stage disease and/or are highly nonspecific. Lack of sensitivity results in a decreased ability to diagnose early-stage ovarian cancer. Poor specificity means that many patients with abnormal test findings have to undergo surgical exploration to exclude the presence of malignancy. It is estimated that 5–10% of all women in the United States will have a surgical procedure for a suspected ovarian neoplasm during their lifetime, and only 13–21% of these women will have an ovarian malignancy. This low percentage is because the overwhelming majority of adnexal masses are benign. In some patients with concurrent medical conditions, surgical intervention could put the patient at significantly increased risk. In addition, many younger women might have ovarian surgery with possible oophorectomy for a lesion that was benign but appeared cancerous on diagnostic evaluation. This will cause some women to be sterilized unnecessarily for fear of malignancy when cancer actually did not exist.

To determine whether OCAF or LPA is a diagnostic or prognostic biomarker for ovarian cancer and other cancers, we measured LPA levels in plasma from patients with cancer and from healthy individuals. We found that the ovarian cancer patients (n = 48) had significantly higher (P < 0.0001) plasma LPA levels compared with the control group (n = 48). High plasma LPA levels were detected in nine of ten patients with stage I, 24 of 24 patients with stage II, III, or IV ovarian cancer; and 14 of 14 patients with recurrent ovarian cancer. Most patients with other gynecologic cancers (33 of 36) also had elevated LPA levels compared with controls. In contrast, high plasma LPA levels were detected in only a minority of healthy controls (5 of 48) and patients with benign gynecologic diseases (4 of 18) and in none of the patients with breast cancer (0 of 11) or leukemia (0 of 5). When compared with LPA, CA 125 data from the same group of ovarian cancer patients showed a substantially lower rate of detection, especially in stage I. Furthermore, using the ESI-MS method we found that both LPA and LPI are elevated in plasma from patients with ovarian cancer compared with healthy controls, and the combination of both of these lipids might provide better sensitivity than each lipid individually in detection of the disease. These results suggest that LPA and related lysophospholipids could be useful markers for the early detection of ovarian cancer. In order to critically evaluate the diagnostic significance of LPA and related lipids, large scale clinical trials are currently being conducted at Ataigrin Biotechnologies, Inc. (Irvine, CA), the Cleveland Clinic Foundation, Northwestern University, MD Anderson Cancer Center, University of California at Los Angeles, University of California at Davis and Toronto General Hospital.
Potential Therapeutic Applications

As described above, lysolipids are likely to be involved in ovarian cancer by regulating various aspects of tumor development, and elevated lysolipid levels in blood and ascites are associated with the disease. Therefore, controlling the levels and activities of these lysolipids could be a novel therapeutic means of treating the disease.

To control the levels of these lipids, we first need to understand how and where the elevated lysolipids are generated. Most of the available information related to LPA production is from studies in platelets; LPA is produced during blood coagulation and platelet activation. It is a normal constituent of serum but not of plasma or whole blood, where platelets are not activated. Because we found that over 95% of patients with gynecologic cancer had elevated plasma LPA levels whereas patients with breast cancer or leukemia did not, it seems unlikely that a nonspecific platelet effect could explain the association of gynecologic cancer and elevated plasma LPA. Westermann et al reported that malignant effusions from ovarian cancer contain higher LPA-like activities compared with effusions from other tumors, including breast and lung cancers. These data suggest that there might be increased production of LPA associated specifically with ovarian and other gynecologic cancers.

We showed that ovarian cancer cells, but not breast or leukemia cells, can produce LPA upon stimulation with a phorbol ester, PMA, through PKC and phospholipase A2 (PLA2) activation in vitro. These data suggest that ovarian cancer cells may be at least one of the sources for elevated levels of LPA and other bioactive lipids. However, the pathologic source(s) and stimuli for the production of LPA and other lysolipids remain to be determined.

A variety of enzymes, including PLA2, lysophospholipase D, phosphatidic acid phosphatases (PAPs), sphingomyelinase, and sphingosine kinase or lyase, are involved in the production or degradation of LPA, SIP, SPC, and other lipid molecules. These enzymes may be abnormally regulated in association with disease initiation or progression. They either produce high levels of these lipids or decrease the degradation rate of lipids, resulting in a built-up pool of lysolipids. Although such abnormalities have not been reported in ovarian cancer, we have recently found that malignant ovarian ascitic fluids contained not only high levels of lysolipids but also enzymatic activities that produced different species of LPAs. These activities were much higher in ascites from patients with ovarian cancer compared with nonmalignant ascites (Y. Xu and Y-j. Xiao, unpublished results). Although these data are preliminary, they are nonetheless highly intriguing and warrant further studies on the enzymatic activities present in ovarian cancer ascites.

Conversely, regulation of lipid activities through their receptor signaling pathways or their downstream effectors are alternative approaches. As described above, we have begun to understand the mechanism of lipid signaling in ovarian cancer cells, a critical step for the development of new strategies to modulate the actions of lipids.

CONCLUSION

In summary, LPA and other lysolipids are present and elevated in blood and ascites from patients with ovarian cancer compared with healthy controls or patients with nonmalignant diseases, such as liver cirrhosis or ovarian fibrothecomatous. Elevated lipid concentrations might regulate tumor cell growth and metastasis in vivo. Although the concentrations of SIP or SPC present in ascites alone (20–200 nM) are not high enough to induce significant growth regulatory effects on ovarian cancer cells cultured in vitro, they are sufficient to induce early signaling events, including an increase in intracellular calcium ([Ca2+]i) activation of MAP kinase or cell rounding. More important, these lipids may have a combinatorial effect (additive, synergistic, or inhibitory) with other lipids as we have shown in regulation of IL-8 production. These results provide the basis for further investigation, not only of the pathologic role of these lipids in cancer development but also of their potential clinical applications for cancer detection, predicting prognosis, clinical treatment, and therapeutic treatment.

REFERENCES

89. Berger A, Rosenthal D, Spiegel S. Sphingosylphosphocholine a signaling molecule which accumulates in Niemann-Pick disease type A stimulates DNA-binding activity of the transcription

122. Sennedllein T, Rozengurt E. Sphingosylphosphorylcholine activation of mitogen-activated protein kinase in Swiss 3T3 cells
Bioactive lysophospholipids in ovarian cancer

160. Desai NN, Zhang H, Olivera A, Matte ME, Spiegel S. Sphingosine-1-phosphate as a metabolite of sphingosine increases phos-
phosphatidic acid levels by phospholipase D activation J Biol Chem 1992;267:2312-22.

183. Xu et al. Expression of angiogenesis-related genes and progres-

223. Xu Y, Xiao Y, Baudhuin L. Acidic fluids from ovarian cancer patients contain significantly higher levels of lysophospholipids compared with the cysts from patients with non-malignant diseases. In: Proceedings of the American Association of Cancer Research, 2000;860.

Lysophosphatidylcholine as a Ligand for the Immunoregulatory Receptor G2A

Janusz H. S. Kabarowski,† Kui Zhu,‡ Lu Q. Le,§ Owen N. Witte,¶ and Yan Xu**

27 July 2001, Volume 293, pp. 702–705

Copyright © 2001 by the American Association for the Advancement of Science
Lysophosphatidylcholine as a Ligand for the Immunoregulatory Receptor G2A

Janusz H. S. Kabarowski,1* Kui Zhu,2* Lu Q. Le,1 Owen N. Witte,1,3† Yan Xu2,4†

Although the biological actions of the cell membrane and serum lipid lysophosphatidylcholine (LPC) in atherosclerosis and systemic autoimmune disease are well recognized, LPC has not been linked to a specific cell-surface receptor. We show that LPC is a high-affinity ligand for G2A, a lymphocyte-expressed G protein-coupled receptor whose genetic ablation results in the development of autoimmunity. Activation of G2A by LPC increased intracellular calcium concentration, induced receptor internalization, activated ERK mitogen-activated protein kinase, and modified migratory responses of Jurkat T lymphocytes. This finding implicates a role for LPC-G2A interaction in the etiology of inflammatory autoimmune disease and atherosclerosis.

Lysophospholipids regulate a variety of biological processes including cell proliferation, tumor cell invasiveness, and inflammation (1, 2). LPC, produced by the action of Phospholipase A2 (PLA2) on phosphatidylcholine, promotes inflammatory effects, including increased expression of endothelial cell adhesion molecules and growth factors (3, 4), monocyte chemotaxis (5), and macrophage activation (6). As a component of oxidized low density lipoprotein (oxLDL), LPC plays an etiologic role in atherosclerosis (7) and is implicated in the pathogenesis of the autoimmune disease systemic lupus erythematosus (SLE) (8). Despite physiologically high concentrations in body fluids (up to 100 μM) (9), extracellular actions of LPC through G protein-coupled receptors (GPCRs) are indicated (10, 11). Although LPC action through a platelet activating factor (PAF) receptor(s) has been suggested (10, 11), a specific LPC receptor has yet to be identified. OGRI is a high-affinity receptor for sphingosylphosphorylcholine (SPC), a lysophospholipid structurally similar to LPC (12). OGRI is closely related to G2A (13), TDAG8 (14), and GPR4 (15). G2A is a transcriptionally regulated GPCR expressed predominantly in lymphocytes, and its expression in response to stress stimuli and prolonged mitogenic signals suggests that it may negatively regulate lymphocyte growth (13). Genetic ablation of G2A function in mice further indicates a role for G2A in the homeostatic regulation of lymphocyte pools and autoimmunity (16).

To determine if G2A is a lysophospholipid receptor, we assessed signaling responses in cells ectopically expressing G2A (17). Human breast epithelial MCF10A cells were used because they do not express G2A or OGRI, and do not respond to SPC (12). Intracellular calcium concentration ([Ca2+]i) was determined in MCF10A cells that were transfected with plasmids encoding green fluorescent protein-tagged G2A (G2A.GFP) (18) or GFP protein-coupled receptor whose genetic ablation results in the development of autoimmunity. Activation of G2A by LPC increased intracellular calcium concentration, induced receptor internalization, activated ERK mitogen-activated protein kinase, and modified migratory responses of Jurkat T lymphocytes. This finding implicates a role for LPC-G2A interaction in the etiology of inflammatory autoimmune disease and atherosclerosis.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-mail: owenw@microbio.ucla.edu (O.N.W.); xuy@ccf.org (Y.X.)
G2A-GFP-expressing cells with phosphor 12-mysrinate 13-acetyl (PA), an activator of protein kinase C (PKC), abolished transient [Ca\(^{2+}\)] increases induced by LPA, LPC, and SPC (up to 10 \(\mu\)M), but did not affect those induced by PAF (0.1 \(\mu\)M) and ATP (20 \(\mu\)M) (Fig. 1F). This suggests that PKC affects LPC and SPC signaling pathways by inducing G2A desensitization and/or inhibition of Go. Several putative consensus PKC phosphorylation sites are present in G2A (13).

To determine binding affinities of LPC and SPC toward G2A, we performed radioligand binding assays (12, 20). \([{}^{3}H]\)LPC and \([{}^{3}H]\)SPC bound to homogenates of human embryonic kidney (HEK) 293 cells expressing G2A.GFP (HEK 293 G2A.GFP) in a time-dependent manner and reached equilibrium after 60 min of incubation at 4°C (Fig. 2, A and B). Binding of \([{}^{3}H]\)LPC and \([{}^{3}H]\)SPC to HEK 293 G2A.GFP homogenates were saturable, and Scatchard analysis indicated a dissociation constant \(K_{d}\) of 65 nM for LPC and 230 nM for SPC (Fig. 2, C and D). The maximum binding capacities for LPC and SPC were about 1500 fmol/10\(^6\) cells and 1840 fmol/10\(^6\) cells, respectively. Competitive analyses revealed that only SPC and various LPC species, but not 14:0 LPC, LPA, sphingosine-1-phosphate (SIP), lysophosphatidylinositol (LPI), sphingomyelin (SM), PAF, or lyso-PAF, competed for binding (Fig. 2, E and F).

GPCRs are internalized in response to ligand stimulation. In serum-starved HEK 293 G2A.GFP cells, G2A.GFP is expressed predominantly at the plasma membrane. LPC (0.1 \(\mu\)M), as well as SPC (1 \(\mu\)M), induced internalization of G2A.GFP in more than 90% of cells (21, 22). Neither PAF, LPA, nor SIP induced receptor internalization.

ERK mitogen-activated protein (MAP) kinase activity is stimulated by SPC after transfection of otherwise unresponsive cell lines with OGR1 (12). Similarly, LPC does not stimulate ERK MAP kinase activation in a number of cell lines (23) (Fig. 3). G2A expression conferred responsiveness to these lysophospholipids in terms of ERK MAP kinase activation in Chinese hamster ovary (CHO) cells (24). A dose-dependent increase in ERK MAP kinase activity was observed in response to LPC and SPC (Fig. 3A), and activation was inhibited by PTX pretreatment, indicating the involvement of a Go family G protein (Fig. 3B).

LPC is thought to have chemotactic properties toward T lymphocytes (25). Cellular transmigration of Jurkat T cells expressing GFP or G2A.GFP (both populations were 20% GFP-positive) through a polycarbonate membrane tissue-culture chamber toward the ligand was assessed over a 1-hour period (26). Although LPC suppressed transmigration of the GFP-positive fraction of Jurkat GFP populations, LPC (10 \(\mu\)M) stimulated transmigration of Jurkat G2A.GFP cells by four times that of Jurkat cells expressing GFP only (Fig. 4). SPC did not stimulate transmigration of Jurkat G2A.GFP cells (27), and the possible physiological functions of an SPC-G2A interaction have yet to be determined.

Different LPC species may have different affinities for G2A (Fig. 2, E and F); 14:0 LPC is not able to compete \([{}^{3}H]-16:0\) LPC binding, whereas 16:0 LPC, 18:0 LPC, and 18:1 LPC are potent competitors. Consistently, 14:0 LPC is unable to stimulate \([Ca^{2+}]\), increases in G2A expressing MCF10A cells (27). G2A also binds SPC with low affinity. The physiological significance of this promiscuity remains to be
defined. A related receptor, TDAG8, responds to the glycolipid psychosine (28), suggesting the possibility that this GPCR subfamily (OGR1, G2A, TDAG8, and GPR4) responds to a structurally diverse set of lipids.

G2A may be a hitherto unrecognized etiological factor in the chronic inflammatory diseases SLE and atherosclerosis. The receptor may play a role as a sensor of LPC levels at sites of inflammation to limit expansion of tissue-infiltrating cells and progression to overt autoimmune disease. An immunosuppressive action of LPC on T cell proliferation has been reported (11), and T cells from G2A-deficient mice exhibit hyperproliferative responses to antigen receptor stimulation in vitro (16). LPC may also influence homing and/or localization of lymphocytes through G2A to modulate T-dependent immune responses and atherosclerosis. The effects of the physiologically high concentrations of LPC in body fluids and serum, as well as possible functional redundancy with G2A receptor analogs, may determine the suitability of these GPCRs in the treatment of disease.

References and Notes
5. Q. Jing et al., Circ. Res. 84, 52 (2000).
11. A. Amberger et al., Cell Stress Chaperones 2, 94 (1997).
17. MCF10A, HEK 293, and CHO cells do not express G2A as determined by reverse transcriptase polymerase chain reaction (29).
Fig. 4. LPC stimulates migration in G2A-expressing Jurkat T cells. A total of 10^6 Jurkat GFP or Jurkat G2A.GFP cells (both populations 20% GFP-positive) were allowed to transmigrate through 5-μm pore-size membranes toward the indicated concentrations of LPC for 1 hour. GFP-positive fractions (%) and cell numbers of transmigrated populations were measured by flow cytometry. Results are presented as numbers of transmigrated GFP-positive cells. Assays were performed in triplicate and results shown are representative of three independent experiments.

19. Calcium assays were performed as described (12). MCF10A cells were loaded with Fura-2/AM (Molecular Probes) and [Ca^{2+}]. increases were measured in single transfected (GFP-positive) cells with a dual-wavelength spectrofluorometer (RFK-6002, Photon Technology, Brunswick, NJ) coupled to an inverted fluorescence microscope (Olympus, IX-70, Lake Success, NY).
20. HEK 293 GFP or HEK 293 G2A.GFP cells were serum-starved for 20 hours and collected in phosphate-buffered saline (PBS)/EDTA. Pelleted cells were stored at –80°C until use. Frozen cells were homogenized in “binding buffer” (106 cells/ml) (13). Assays were performed in 96-well plates in triplicate with 100-μl cell homogenate. [3H]-16:0 LPC or [3H]SPC were added to cell homogenates in 50 μl of binding buffer in the presence or absence of cold 16:0 LPC or SPC, or other competitors. Plates were incubated at 4°C for 2 hours, or for the indicated times. Cell-bound [3H]LPC or [3H]SPC was collected onto a filter (Printed Filters). Specific binding was calculated by subtraction of nonspecific binding (in the presence of 100-fold excess unlabeled lipid) from total binding. [3H]-16:0 LPC and [3H]SPC were from Amersham Pharmacia Biotech (Buckinghamshire, England) (102 Ci/mmol, 1 mCi/ml for [3H]-16:0 LPC, and 68 Ci/mmol, 1 mCi/ml for [3H]SPC). [3H]-16:0-LPC (60 Ci/mmol) was from American Radiolabeled Chemicals (St Louis, MO).
21. Supplementary Web material is available on Science Online at www.sciencemag.org/cgi/content/full/293/5530/705/DC1. The Howard Hughes Medical Institute. J.H.S.K. is a fellow of the Leukemia and Lymphoma Society of America. L.Q.L. is supported by National Research Service Award T32 CA09056. We thank H. Bourne, B. Williams, J. Lustig, L. Birnbaum, M. Simon, S. Smale, L. Zitmersky, and D. Fruman for critical review of the manuscript. This paper is dedicated to the memory of our dear friend and colleague Matthew I. Wahl, M.D., Ph.D.
22. HEK 293 G2A.GFP cells seeded onto glass cover slips with agonist for 2 hours before treatment with agonist for 10 min at 37°C. Western blotting was performed to detect total ERK MAP kinase with a polyclonal antibody to ERK2, and activated p44/42 ERK MAP kinase with a specific antibody to phospho-ERK (Santa Cruz Biotechnology).
24. CHO GFP or CHO G2A.GFP cells were serum-starved for 18 hours before treatment with agonist for 10 min. 20 April 2001; accepted 1 June 2001
26. Although G2A is expressed in Jurkat cells, our experimental strategy was based on the hypothesis that increased expression in a physiologically relevant cell type may elicit a biological response. For transmigration assays, Jurkat GFP and Jurkat G2A.GFP cells were derived by retroviral infection and assayed 48 hours later. GFP-positive fractions of Jurkat GFP and Jurkat G2A.GFP populations were adjusted to 20% by the addition of appropriate numbers of parental Jurkat cells. Cells were washed three times in RPMI containing 0.25% bovine serum albumin (BSA) and finally resuspended in RPMI–0.25% BSA at 2 × 10^6 cells/ml. One hundred microliters of this cell suspension (10^5 cells) was applied to the upper chamber of a 6.5-mm diameter transwell cell culture insert comprising a 5-μm pore-size polycarbonate membrane (Corning Costar Corporation, Cambridge, MA) and containing 600 μl RPMI–0.25% BSA with or without agonist in the lower chamber. After incubation at 37°C for 1 hour, transmigrated cells were collected and analyzed by flow cytometry for GFP expression and cell number.
27. J. H. S. Kabarowski et al., data not shown.
29. L. M. Baduvin, X. Yu, unpublished data.
30. Supported by U.S. Army grant RFG-99-062-01-CN and NIH grant 1 R21 CA84038-01 (Y.X.) and NIH grant CA76204 (O.N.W.). O.N.W. is an investigator of the Howard Hughes Medical Institute. J.H.S.K. is a fellow of the Leukemia and Lymphoma Society of America. L.Q.L. is supported by National Research Service Award T32 CA09056. We thank H. Bourne, B. Williams, J. Lustig, L. Birnbaum, M. Simon, S. Smale, L. Zitmersky, and D. Fruman for critical review of the manuscript. This paper is dedicated to the memory of our dear friend and colleague Matthew I. Wahl, M.D., Ph.D.
SPHINGOSYLPHOSPHORYLCHOLINE AND LYSOPHOSPHATIDYLCHOLINE ARE LIGANDS FOR THE G PROTEIN COUPLED RECEPTOR GPR4*

Kui Zhu‡, Linnea M. Baudhuin¶, Guiying Hong‡, Freager S. Williams†, Kelly L. Cristina‡, Janusz H.S. Kabarowski#, Owen N. Witte* and Yan Xu††,
‡Department of Cancer Biology, †Department of Gynecology and Obstetrics, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland OH 44195. ¶Department of Chemistry, Cleveland State University, 24th and Euclid Ave, Cleveland OH 44115. #Department of Microbiology, Immunology and Molecular Genetics, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095-1662.

*This work was supported in part by the American Cancer Society Grant RPG-99-062-01-CNE, the US Army grant DAMD 17-99-1-9563, the NIH grant R21 CA84038-01 to YX and NIH Grant CA76204 to ONW. JHSK is a fellow of the Leukemia and Lymphoma Society of America. To whom correspondence should be addressed. Phone (216) 444-1168; fax: (216) 445-6269; E-mail: xuy@ccf.org

Copyright 2001 by The American Society for Biochemistry and Molecular Biology, Inc.
Running title: GPR4 as a receptor for SPC and LPC
SUMMARY

Sphingosylphosphorylcholine (SPC) and lyso phosphatidylcholine (LPC) are bioactive lipid molecules involved in numerous biological processes. We have recently identified ovarian cancer G protein coupled receptor 1 (OGR1) as a specific and high affinity receptor for SPC, and G2A as a receptor with high-affinity for LPC, but low affinity for SPC. Among G protein coupled receptors (GPCRs), GPR4 shares highest sequence homology with OGR1 (51%). In this work, we have identified GPR4 as not only another high affinity receptor for SPC, but also a receptor for LPC, albeit of lower affinity. Both SPC and LPC induce increases in intracellular calcium concentration in GPR4-, but not vector-transfected, MCF10A cells. These effects are insensitive to treatment with BN52021, WEB-2170 and WEB-2086 [specific platelet activating factor (PAF) receptor antagonists], suggesting that they are not mediated through an endogenous PAF receptor. SPC and LPC bind to GPR4 in GPR4-transfected CHO cells with Kd/SPC=36 nM, and Kd/LPC=159 nM, respectively. Competitive binding is elicited only by SPC and LPC. Both SPC and LPC activate GPR4-dependent activation of serum response element (SRE) reporter and receptor internalization. Swiss 3T3 cells expressing GPR4 respond to both SPC and LPC, but not sphingosine-1-phosphate (S1P), PAF, psychosine (Psy), glucosyl-β1’1-

The abbreviations used are: ERK: extracellular signal-regulated kinase; CHO, Chinese hamster ovary; Glu-Sph, Glucosyl-β1’1-sphingosine; Gal-Cer, galactosyl-β1’1-ceramide; Lac-Cer: lactosyl-β1’1-ceramide; LPA, lysophosphatidic acid; LPC, lyso phosphatidylcholine; GPCR, G protein coupled receptor; OGR1, ovarian cancer G protein coupled receptor 1; ox-LDL: oxidized low-density lipoprotein; PAF, platelet activating factor; Psy, psychosine; S1P, sphingosine-1-phosphate; SM, sphingomyelin; SRE, serum response element; SPC, sphingosylphosphorylcholine; SLE, systemic lupus erythematosus; TDAG8, T cell death-associated gene 8.
sphingosine (Glu-Sph), galactosyl-β1'-ceramide (Gal-Cer), or lactosyl-β1'-ceramide (Lac-Cer) to activate extracellular signal-regulated kinase (ERK) MAP kinase in a concentration- and time-dependent manner. SPC and LPC stimulate DNA synthesis in GPR4-expressing Swiss 3T3 cells. Both ERK activation and DNA synthesis stimulated by SPC and LPC are pertussis toxin (PTX)-sensitive, suggesting the involvement of a Gi-heterotrimeric G protein. In addition, GPR4 expression confers chemotactic responses to both SPC and LPC in Swiss 3T3 cells. Taken together, our data indicate that GPR4 is a receptor with high affinity to SPC and low affinity to LPC, and that multiple cellular functions can be transduced via this receptor.

INTRODUCTION

SPC is a bioactive lipid molecule involved in numerous biological processes, where it acts as a signaling molecule (1). We have recently identified a GPCR, OGR1, as the first specific high affinity receptor for SPC (2). OGR1 shares homology with several other GPCRs, including GPR4, G2A, T cell death associated GPCR8 (TDAG8), and the PAF receptor (3-10). We have postulated that these receptors belong to a subfamily and their ligands may be lysolipids containing the phosphorylcholine moiety shared by SPC and PAF (2). Other than SPC and PAF, there are two naturally occurring phosphorylcholine-containing lysolipids: LPC and lyso-PAF. LPC is an important lipid mediator involved in many cellular processes. In particular, LPC is believed to play an important role in atherosclerosis and inflammatory diseases by altering various functions of a variety of cell types, including endothelial cells, smooth muscle cells, monocytes, macrophages and T cells (11-13). However, the reported signaling mechanisms of LPC are variable and the initial interaction of LPC with cell membranes is poorly understood. We have recently identified G2A as the first receptor for LPC (14). G2A is also a low-affinity receptor for SPC.
In the present study, we sought to identify the ligand(s) for GPR4. We tested SPC, LPC, PAF, lyso-PAF and psychosine [Psy; a recently identified glycosphingolipid ligand of TDAG8 (15)] as potential ligands for GPR4. GPR4 exhibits the highest homology with OGR1 (51% identity and 64% similarity in amino acid sequence) (2). Similarly to OGR1, GPR4 responded to SPC, but also responded to LPC, mediating an increase in intracellular calcium concentration, SRE activation, receptor internalization, ERK activation, and stimulation of cell migration. LPC bound to GPR4, albeit with lower affinity compared to SPC, and competed with SPC for specific binding to GPR4. GPR4 did not bind or respond to PAF, lyso-PAF, Psy, Glu-Sph, Gal-Cer, or Lac-Cer. Our results indicate that SPC is a high-affinity and LPC is a lower-affinity ligand for GPR4, and its activation by SPC and LPC mediates biological functions.

EXPERIMENTAL PROCEDURES

Materials-LPCs (14:0, 16:0, 18:0, and 18:1), lysophosphatidylinositol (LPI; from liver, 80% 18:0), 18:1-LPA, 16:0-PAF, 16:0-lysoPAF, psychosine, glucosyl-β1’1-sphingosine, galactosyl-1’1-C8-ceramide, and lactosyl-β1’1-C8-ceramide were from Avanti Polar Lipids, Inc. (Alabaster, AL). Sphingomyelin (SM; bovine brain, mainly 18:0), C6-ceramide, sphingosine-1-phosphate (S1P) and SPC were from Toronto Research Chemicals (Toronto, ON) or Matreya, Inc. (Pleasant Gap, PA). D-erythro- and L-threo-SPC were from Matreya, Inc. (Pleasant Gap, PA). pcDNA1-C3 (encoding the C3-exoenzyme), was a kind gift from Dr. A. Wolfman, Cleveland Clinic Foundation. The PAF receptor antagonist, BN52021, was from Biomol (Plymouth Meeting, PA). WEB-2170 and WEB-2086 were from Boehringer Ingelheim (Ridgefield, CT). [3H]SPC or [3H]18:0-LPC were custom synthesized by Amersham Pharmacia Biotech, Buckinghamshire, England (68 Ci/mm, 1 mCi/ml for [3H]SPC and 102 Ci/mm, 1 mCi/ml for [3H]18:0-LPC). [3H]16:0-LPC (60 Ci/mm) was purchased from American Radiolabeled Chemicals, Inc. (St Louis, MO).
Cell culture—MCF10A cells (passage 34) were purchased from the Barbara Ann Karmanos Cancer Institute (Detroit, MI) and cultured as recommended by the provider. Experiments were performed using MCF10A cells from passage 40-46. Other cells were obtained from ATCC and were cultured either in RPMI1640 with 10% FBS or DMEM with 5% FBS (CHO and Swiss 3T3 cells).

Human RNA Master Blot Probed with GPR4—Human RNA Master Blot (Clontech, Palo Alto, CA) was probed with radiolabeled full-length GPR4. Briefly, the full-length GPR4 was gel purified and 25 ng was used for the synthesis of a StripAble DNA α-32P-labeled probe (Ambion, Austin, TX), as per the manufacturer’s instructions. The radiolabeled probe (20 ng, 20 X 10^6 CPM) was hybridized to the Master Blot in ExpressHyb hybridization solution (Clontech) overnight with continuous agitation at 65°C. The following day, the Master Blot was washed following the manufacturer’s instructions and exposed to a Phospho Screen (Molecular Dynamics, Sunnyvale, CA).

Real-time Quantitative PCR of GPR4—Total RNA was extracted from cells using the SV Total RNA Isolation System (Promega, Madison, WI). One to five micrograms of total RNA were reverse transcribed using Superscript II RT (Gibco BRL, Rockville, MD). Eight nanograms of derived cDNA were used as a template for real-time quantitative SYBR Green I PCR. Primers for human GPR4 (Genbank accession number U21051) were 5'-TAATGCTAGCGCAACCACAGTGAGGAG and 5'-TCCAGTTGTCGATTGCAG, yielding a 230 bp product. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was amplified in a separate tube as a housekeeping gene with primers 5'-GAAGGTTGAAGGCAGGATT and 5'-GAAGATGGTGATGGGATTC, yielding a 226 bp product. Primers for mouse GPR4 were 5'-CTACCTGGCTGTGGCTCAT and 5'-CAAAGACGCGGATAGATTCA, yielding a 222 bp product. Mouse GAPDH was amplified with primers 5'-TGATGGGGTGAACCAAGACA and 5'-CCAGTGACAGGGATGAT. All SYBR Green I core reagents, including AmpliTaq Gold DNA polymerase, were from PE Applied Biosystems
The thermal cycling conditions were 95°C for 10 minutes, followed by 40 cycles of 95°C, 15 seconds and 60°C, 1 minute. PCR reactions and product detection were carried out in an ABI Prism 7700 Sequence Detection System (PE Applied Biosystems). The amplified product was detected by measurement of SYBR Green I, which was added to the initial reaction mixture. The threshold cycle \((C_T) \) values obtained through the experiments indicate the fractional cycle numbers at which the amount of amplified target reach a fixed threshold. The \(C_T \) values of both target and internal reference (GAPDH) were measured from the same samples, and the expression of the target gene relative to that of GAPDH was calculated using the comparative \(C_T \) method. This method normalizes the expression levels and allows calculation of the relative efficiency of the target and reference amplification.

Cloning—A GPR4 PCR fragment (nucleotides #1175-1535) (4) was obtained by PCR amplification using cDNA from HEY ovarian cancer cells as the template. This PCR fragment was used to screen a human genomic library (Clontech, Palo Alto, CA) to obtain the full-length clone of GPR4. GPR4 was subsequently cloned into mammalian expression vectors using PCR amplifications with the high fidelity Advantage cDNA polymerase (Clontech). The PCR reactions were conducted for fewer than 20 cycles and the sequence of the products was confirmed by sequencing. The primers: 5'\(-\) CAGGAATTCTCGGCAACCACACGTGGGAGG, and 5'\(-\) CGCTCTAGAGCCACTCGGGGTTCATTGTG were used to generate full length GPR4, which was digested with EcoR I and Xba I and cloned into the pBs3HA vector (pBluescript II KS\(^+\) vector with three HA-tags inserted; a kind gift from Dr. J. DiDonato, Cleveland Clinic Foundation). The resulting 3HA-GPR4 was subsequently cloned into the mammalian expression vector pRES-hygro (Clontech) to generate pREShyg-GPR4, using primer 5'\(-\) CAGATGCATAAACGCTCAACTTGG and the T7 primer (inserted into the Nsi I and Not I sites of pRES-hygro). pGPR4-GFP was generated using the T3 primer and 5'\(-\) GTCGGTACCTGTGCTGGCAGCATC (stop codon was deleted and the resulting GPR4 was
cloned into Hind III and Kpn I sites of pEGFP-N1; Clontech). pSRE-Luc was purchased from Stratagene (La Jolla, CA). MCF10A cells were transiently transfected with pGPR4-GFP and used for calcium assays. CHO cells were transfected with pIREShyg-GPR4 (LipofectAMiNE reagent; Life Technologies, Rockville, MD) and stable clones were selected with 200 µg/ml hygromycin in DMEM/F12 plus 5% FBS. HEK293 cells were transfected with pGPR4-GFP and stable clones were selected with 400 µg/ml G418 in RPMI 1640 plus 10% FBS. Swiss 3T3 cells expressing GPR4 were derived by infection with retroviruses encoding receptor (MSCV GPR4 ires-GFP) followed by FACS sorting of GFP positive cells (16).

Calcium assays—Measurement of [Ca^{2+}]_i was performed as described previously (2). Briefly, pGPR4-GFP-transfected MCF10A cells were grown in specialized glass-bottom dishes (Bioptech, Inc., Butler, PA) and loaded with fura-2 in HEPES buffered saline. Using a dual-wavelength spectrofluorometer (RFK-6002, Photon Technology Int'l, So. Brunswick, NJ) coupled to an inverted fluorescence microscope (Olympus, IX-70, Lake Success, NY), GFP-positive cells were identified using an excitation wavelength of 488 nm, a dichroic 505 nm long-pass filter and an emitter filter at bandpass of 535 nm (Chroma Technology, Brattleboro, VT). Measurements of [Ca^{2+}]_i were performed on individual GPR4-GFP positive cells at excitation wavelengths of 340 and 380 nm and an emission wavelength of 510 nm. Conversion of the 340/380-ratio value into [Ca^{2+}]_i in nM was estimated by comparing the cellular fluorescence ratio with ratios acquired using fura-2 (free acid) in buffers containing known Ca^{2+} concentrations. [Ca^{2+}]_i was then calculated as described by Grynkiewicz et al. (17). All calcium assays were performed in the presence of 1 mM EGTA in the assay buffers. Therefore, intracellular calcium release, not calcium influx, was analyzed.

Internalization—pGPR4-GFP stably expressing HEK293 cells were cultured in 6 cm tissue culture dishes in RPMI1640 with 10% FBS. After 16-24 h serum starvation, cells were treated with different lipids
at 37°C for 2 h. Cells were washed with cold PBS and fixed with 4% paraformaldehyde in PBS. The subcellular localization of GPR4-GFP protein was visualized under a Leica TV confocal fluorescence microscope with a 63x oil immersion lens (Wetzler, Heidelberg, Germany). The excitation and emission wavelengths were 488 nm and 515-540 nm, respectively.

Binding assays—CHO cells were chosen for GPR4 binding assays, since HEK293 cells express relatively high levels of endogenous GPR4. CHO cells stably transfected with empty vector or GPR4 were serum starved for 20 h, then collected after exposure to 2 mM EDTA in PBS. The pelleted cells were stored at -80°C until use. Binding assays were performed essentially as described previously (2), except binding was performed at 4°C. Briefly, frozen cells (10^6 cells/ml) were homogenized in a binding buffer (2). Assays were performed in 96-well plates in triplicate with 100μl cell homogenate (equivalent to 10^5 cells/well). Different amounts of [3H] SPC or [3H] 16:0-LPC were added to the cell homogenates in 50 μl of binding buffer, in the presence or absence of cold SPC or 16:0-LPC, or other competitors. The plates were incubated at 4°C for 120 min, unless otherwise indicated. Cell-bound [3H] SPC or [3H] LPC was collected onto a filter (Printed Filtermat A, Wallac, Gaithersburg, MD) using an automated cell harvester (HARVESTER 96, Tomtec, Orange, CT). Specific binding was calculated by subtraction of nonspecific binding (binding detected in the presence of 100-fold excess unlabeled SPC or 16:0-LPC) from the total binding.

Reporter (SRE) assays—The SRE reporter system (pSRE-Luc) was a gift from Dr. Songzhu An (UCSF), or purchased from Stratagene (La Jolla, CA). Both systems gave identical results. HEK293 and HEK293-GPR4 cells were cultured in RPMI1640 with 10%FBS in 10 cm dishes to ~85% confluence. To the cells in each dish, pSRE-Luc (10 μg) was transfected in the presence of 60 μl LipofectAMINE reagent. Cells were seeded in 96-well plates 16 h after transfection, incubated for another 24 h in RPMI1640 with 10% FBS, and starved in serum-free medium for 16 h. SPC (dissolved in PBS to 10 mM) and other lipids
(LPCs were dissolved in 70% ethanol. Other lipids were dissolved in PBS, 70-95% ethanol, or 100% MeOH) were diluted in serum free RPMI 1640 and added to the cells, followed by a 10 h incubation. Luciferase activity was measured in Microlite™ 1 plates (DYNEX Technologies, Inc., Virginia) using 60 μl of cell lysate and 20 μl luciferase substrate. PTX (100 ng/ml) was added during the 16 h serum starvation period and pcDNA1-C3 (encoding the C3-exoenzyme, 2 μg) was co-transfected with pSRE-Luc (10 μg).

ERK activation assays—Swiss 3T3 cells were infected with MSCV GPR4-ires-GFP or MSCV ires.GFP, and subsequently cells sorted by FACS for positive expression of GFP as described previously (16). Cells were plated in 6-well plates in DMEM containing 5% FBS, serum-starved overnight, and then treated lipids in DMEM for the indicated times. Cells were lysed on ice in RIPA buffer containing 50 mM Tris-HCl, pH 7.5, 1% Nonidet P-40, 0.5% deoxycholate, 0.1% SDS, 150 mM NaCl, 2 mM EGTA, 25 mM sodium fluoride, 1 mM sodium orthovanadate, and 1 x protease inhibitors (Sigma P8340). Lysates containing equal amounts of protein were separated on 10% polyacrylamide gels and transferred onto nitrocellulose membranes. Antibodies against phosphorylated ERK1/2 (Cell Signaling Technologies; Beverly, MA) were used to probe the membrane and the ECL system (Amersham) was used for detection. To normalize the amounts of protein loaded in each lane, membranes were stripped and re-probed with antibodies against total ERK (Cell Signaling Technologies). In some experiments, cells were pretreated with 100 ng/ml PTX for 12 -16 h prior to SPC and LPC stimulation.

DNA synthesis assay—The effect of SPC and LPC on DNA synthesis was measured using [³H] thymidine incorporation. Briefly, GPR4-ires-GFP- and GFP-Swiss 3T3 cells were plated in 96-well plates, serum-starved for 24 h, and treated with SPC, LPC, or other lipids in serum-free DMEM for 24 h. Cells were incubated with 0.75 μCi/ml [³H] thymidine in serum-free DMEM for the last 18 h. Cells were harvested onto filter papers presoaked in 1% polyethylenimine using the automated cell harvester...
HARVEST 96. Incorporated [3H] thymidine was counted in a 1450 Microbeta Trilux Liquid Scintillation and Luminescence Counter (Perkin-Elmer-Wallac, Inc.)

Cell Migration Assay—Chemotaxis was measured in a modified Boyden chamber assay. Briefly, different lipids were added to the lower chambers. GPR4-ires-GFP- and GFP-Swiss 3T3 cells were serum starved for 4 h, trypsinized, and seeded in the upper chambers of Boyden-transwell plates (Coming Inc., Coming, NY). The chambers were incubated for 6 to 8 h. The number of cells that migrated to the lower face of the membrane was counted in 4 random fields. Data are represented as the average ± SD of three independent experiments. For the chemokinetic assay, the same concentrations of lipids were added to both the upper and lower chambers. For Rho inhibition studies, C3-exoenzyme was transiently transfected into Swiss 3T3 cells and cell migration assays were performed 48 hours later.

RESULTS

Human RNA Master Blot Probed with GPR4—GPR4 has been shown to be expressed in many human tissues (18). For a wider analysis of GPR4 expression in human tissues, we probed the Human RNA Master Blot (Clontech) containing RNAs from 50 different human tissues with the full length human GPR4 clone labeled with \[^{32}P\]dCTP (Experimental Procedures). GPR4 showed the highest expression in ovary, liver, lung, kidney, lymph node, and sub-thalamic nucleus (Fig. 1). Other areas of the brain had a lower expression of GPR4, as did the aorta, placenta, bone marrow, skeletal muscle, spinal cord, prostate, small intestine, and some fetal tissues. GPR4 was also expressed at a detectable level in appendix, trachea, testis, spleen, thymus, pituitary gland, adrenal gland, thyroid gland, and heart, but not in other tissues including some areas of the brain, colon, bladder, uterus, stomach, pancreas, salivary gland, mammary gland, peripheral blood leukocytes, fetal brain, and fetal heart (Fig. 1).
Both SPC and 16:0-LPC induced transient increases in intracellular calcium concentration ([Ca$^{2+}$]) i in GPR4-transfected MCF10A cells—We have shown that OGR1 is a high-affinity receptor for SPC (2). To test whether GPR4, which shares 51% sequence homology with OGR1, is also a receptor for SPC, MCF10A cells were transiently transfected with pGPR4-GFP. MCF10A cells were chosen since these cells do not respond to either SPC or 16:0-LPC in calcium assays and they express very low levels of endogenous GPR4 among many human cell lines tested (Fig. 2).

The GFP receptor fusion was used to identify positively transfected cells, and single-cell calcium assays were performed as described in our previous studies (2). SPC (1 μM) stimulated an increase in [Ca$^{2+}$]$_{\text{i}}$ in GPR4-, but not vector-transfected MCF10A cells (Fig. 3A, 1st and the 2nd panels), suggesting that GPR4 is a receptor for SPC. This is further confirmed by the stereo selectivity of GPR4 favoring D-erythro-SPC (the bioactive form of SPC) vs. L-threo-SPC (Fig. 3A, 3rd panel). Interestingly, unlike OGR1, which is specific for SPC as its ligand (2), GPR4-transfected cells were stimulated to produce increased [Ca$^{2+}$]$_{\text{i}}$ by an additional phosphorylcholine-containing lysolipid, 16:0-LPC (Fig. 3A, 4th panel). To assess the affinities and potencies of SPC and 16:0-LPC, concentrations of each were varied and calcium mobilization was measured (Fig. 3B). SPC appeared to have a higher efficiency (EC$_{50}$=105 nM) than LPC (EC$_{50}$=1.1 μM), although the [Ca$^{2+}$]$_{\text{i}}$ responses to LPC in GPR4-transfected cells were higher than those of SPC at greater concentrations of LPC (up to 10 μM) (Fig. 3B).

LPC has been shown to activate cellular responses in a PAF receptor-dependent manner (19-21). However, LPC and SPC were not able to induce an increase in calcium through the endogenous PAF receptor in parental cells (Fig. 3A, upper panel). Therefore, it is unlikely that the increase in calcium induced by LPC was mediated by a PAF receptor. Nevertheless, to confirm that LPC and/or SPC did not activate the endogenous PAF receptor in GPR4-transfected cells, three specific PAF receptor antagonists,
BN52021, WEB-2170, and WEB-2086, were used. Both BN52021 (200 μM) and WEB-2086 (2 μM) completely abolished the calcium signal induced by PAF (100 nM) (Fig. 3C and 3D). However, the cellular calcium response to LPC or SPC was not affected, indicating that calcium increases induced by SPC and LPC were not mediated through an endogenous PAF receptor. Another PAF antagonist, WEB-2170 (2 μM), also completely blocked the action of PAF, but did not affect the increase in calcium induced by either LPC or SPC (data not shown). In addition, LPC and SPC showed not only homologous, but also heterologous, desensitization to each other (Fig. 3E), suggesting that these two lipids activated the same receptor.

To determine which G protein is involved in the increased [Ca^{2+}]_i response to SPC and LPC in GPR4-transfected cells, the sensitivity of this activity to PTX was tested. The increase in [Ca^{2+}]_i response to both SPC and LPC, as well as to stimulation of endogenous LPA receptor(s), but not PAF or ATP receptors, was completely abolished by PTX (100 ng/ml, 16 h pretreatment) (Fig. 3F), suggesting the involvement of a G protein pathway.

In plasma, LPC is mainly present in albumin- and lipoprotein-bound forms (22). To determine whether BSA-bound SPC and LPC are able to induce increases in [Ca^{2+}]_i, we pre-incubated SPC (1 μM) and LPC (1 μM) with a molar excess of BSA [0.5% fatty acid-free BSA (Sigma)], for a lipid:BSA molar ratio of approximately 1:75. At this molar ratio, BSA blocked more than 50% and 95% of the increases in [Ca^{2+}]_i induced by SPC and LPC, respectively (Fig. 3G). These results suggest that albumin-bound LPC may not be able to activate this receptor, and support the concept of multiple LPC compartmentalization (e.g. bound and free) (23).

Recently, Im et al have identified Psy as a ligand for TDAG8. TDAG8 shares approximately 38% homology with OGR1, GPR4 and G2A (15). To determine whether Psy is a ligand for GPR4, and to
delineate the structural specificity of ligands for GPR4, we tested the effect of Psy, Glu-Sph, Gal-Cer, and Lac-Cer to increase \([Ca^{2+}]_i\) in MCF10A cells. We found that at 1 μM, Psy, Glu-Sph, and Lac-Cer did not stimulate increases in \([Ca^{2+}]_i\), in either MCF10A parental or GPR4-expressing cells (Fig. 3H). Gal-Cer (1μM) induced the same level of increased \([Ca^{2+}]_i\), in both parental and GPR4-expressing MCF10A cells (Fig. 3H). These data suggest that these glycosphingolipids are unlikely to be ligands of GPR4.

SPC and LPC bind to GPR4—To characterize the binding of SPC and LPC to GPR4, we conducted radioligand binding assays, using a method similar to that developed for OGR1 as described previously (2). Cell homogenates were used for binding assays. Binding was conducted at 4°C for 120 min or as indicated. \(^{3}H\) SPC and \(^{3}H\) 16:0-LPC specifically bound to cell homogenates from GPR4-transfected CHO cells in a time-dependent manner and reached equilibrium after 60 min incubation at 4°C (Fig. 4A and 4B). Both CHO cells and CHO cells transfected with empty vector displayed low background binding of SPC and LPC (Fig. 4A and 4B). SPC and 16:0-LPC bindings were saturable and Scatchard analyses indicated dissociation constants (Kd) of 36 nM for SPC and 159 nM for LPC. The maximum binding capacities for SPC and 16:0-LPC were 996 fmole/10^5 cells for SPC and 1,528 fmole/10^6 cells for 16:0-LPC (Fig. 4C and 4D). SPC (p<0.001) and various LPC species (16:0, 18:0 and 18:1; p values 0.001-0.01), but not LPA (18:1), LPI (18:0), S1P, SM (18:0), 16:0-PAF or 16:0-lyso-PAF (p values >0.05), successfully competed for binding (Fig. 4E and 4F). Binding assays using \(^{3}H\) 18:0-LPC gave similar results (data not shown). We also tested the four glycosphingolipids, Psy, Glu-Sph, Gal-Cer, and Lac-Cer, for their ability to compete for the binding of \(^{3}H\) SPC and \(^{3}H\) 16:0-LPC to GPR4. None of these glycosphingolipids competed successfully (Data not shown). Thus, GPR4 was able to specifically bind both SPC and LPC (16:0, 18:0 and 18:1), with a higher affinity for SPC than LPC.

Internalization of GPR4 induced by SPC and LPC—G protein coupled receptors undergo agonist-dependent desensitization and internalization (24-26). When HEK293 cells were transfected with
the pEGFP-N1 vector, GFP protein was expressed in the cytosol of the cells (2). The GPR4-GFP fusion protein, on the other hand, was expressed only on the plasma membrane (Fig. 5A). One micromolar concentrations of SPC and 16:0-LPC, but not 16:0-PAF, induced internalization of GPR4 at 37°C (Fig. 5B, C and F). The PAF receptor-specific antagonist BN52021 did not block the internalization of GPR4 induced by either SPC or 16:0-LPC (Fig. 5D and E). Similarly, WEB-2170 and WEB-2086 did not affect the internalization of GPR4 induced by either SPC or 16:0-LPC (data not shown).

LPC and SPC activated the SRE reporter system in HEK293 cells—The serum-response element (SRE) reporter system is a sensitive assay for receptors of lipid factors (27,28). Using the luciferase assay, vector-transfected HEK293 cells transfected with the SRE reporter system responded to SPC (1 μM), but not 16:0-LPC, with less than 1.5-fold activation (Fig. 6A). Activation was increased 3.1- and 4-fold, respectively, in response to 16:0-LPC (1 μM) and SPC (1 μM) in GPR4-transfected HEK293 cells that were also transfected with the SRE reported system (Fig. 6B). These increases were statistically significant (p<0.001) when compared to the responses in vector-transfected cells (Fig. 6A). In contrast, although LPA and S1P induced significant transcriptional activation of SRE in vector-transfected HEK293 cells, this activation was not altered by GPR4 transfection. In addition, we tested other phosphorylcholine-containing lipids, including 16:0-PAF, 16:0-lyso-PAF and 18:0-SM, and found that none of them induced significant transcriptional activation of SRE (Fig. 6A).

The SRE transcriptional activity in response to SPC, but not LPC, in parental HEK293 cells (Fig. 6A and 6B), can be explained by the endogenous expression of GPR4 in HEK 293 cells and the relatively lower affinity of GPR4 for LPC compared to SPC. GPR4 transfection enhanced the activation of SRE reporter by both SPC and LPC (Fig. 6A and 6B). EC_{50} values for the activation of SRE were 63 nM for SPC and 160 nM for 16:0-LPC. The differences in EC_{50} values obtained using SRE activation from those
using the calcium assay (105 nM and 1.1 μM for SPC and LPC, respectively) are possibly derived from different coupling efficiencies of distinct signaling pathways and/or different cellular environments.

To determine which G protein and other signaling intermediates might be involved in the activation of SRE by SPC and 16:0-LPC, we pretreated cells with PTX (100 ng/ml) for 16 h, or co-transfected the specific Rho inhibitor, C3-exoenzyme (1.5 μg pcDNA3-C3), with the reporter system. Both PTX and C3-exoenzyme partially inhibited SRE-reporter activation (Fig. 6C). When the two inhibitors were added together, SRE-reporter activation in response to either SPC or 16:0-LPC was almost completely blocked, suggesting that G and Rho signaling pathways were involved in SRE activation through GPR4.

SPC and LPC activated ERK MAP kinase in a GPR4-dependent manner—MAP kinases are key signaling intermediates of DNA synthesis and cell proliferation. To determine whether GPR4 mediates ERK MAP kinase activation in response to SPC and LPC, we conducted Western blot analyses of GPR4-ires-GFP-Swiss 3T3 and GFP-Swiss 3T3 cells treated with SPC, 16:0-LPC, and a number of other lipids. The parental and GFP infected Swiss 3T3 cells showed a basal level of ERK activation, as detected by anti-phospho-ERK antibody (Fig. 7A). SPC (100 nM) increased this level of activation (Fig. 7A). In GPR4-ires-GFP-infected Swiss 3T3 cells, both SPC (100 nM) and LPC (100 nM) enhanced ERK activation, and SPC was more potent than LPC (Fig. 7A). A number of other lipids, including S1P, Lac-Cer and PAF, also activated ERK in Swiss 3T3 cells, but activation was independent of GPR4 expression (Fig. 7A).

Lipid stock solutions, dissolved in ethanol or MeOH, were greater than 10 mM. Since the highest final concentration of lipids used in this study was 10 μM, the solvent content was less than 0.1% in any experiment. We routinely performed solvent controls and found that at final solvent concentrations of less than 0.1%, 70-100% ethanol and 100% methanol did not alter any parameters tested.
The higher potency of SPC over LPC was further reflected in the concentration- and time-dependent ERK activation (Fig. 7B and 7C). ERK activation induced by SPC compared to that by LPC was evident at a lower concentration (approximately 10 nM vs. 100 nM), at earlier time points (1 min vs. 5 min), and was maintained for a longer time. These results strengthen the notion that both SPC and LPC are ligands for GPR4, but SPC has a higher affinity than LPC for GPR4.

In GPR4-infected Swiss 3T3 cells, SPC-induced ERK activation was sensitive to PTX, suggesting involvement of G signaling (Fig. 7D). This is in contrast to our previous studies where SPC induced ERK activation via a PTX-insensitive pathway in OGR1-transfected HEK293 cells (2). To determine whether this difference was due to receptor subtype or different cell lines used, we tested the PTX-sensitivity of SPC-induced ERK activation in OGR1-infected Swiss 3T3 cells. Our results showed that in Swiss 3T3 cells, SPC-induced ERK activation via OGR1 was PTX-insensitive (Fig. 7D). Thus, although GPR4 and OGR1 are highly homologous, the same high-affinity ligand (SPC) induces activation of ERK through a different G protein pathway for each receptor.

SPC stimulated DNA synthesis in GPR4-infected Swiss 3T3 cells—To determine whether SPC and LPC affect DNA synthesis in a GPR4-dependent fashion, we measured [³H] thymidine incorporation into GPR4-ires-GFP-Swiss 3T3 and GFP-Swiss 3T3 cells. SPC stimulated DNA synthesis in both parental and GFP-infected cells (approximately 6.3-fold increase with 3 μM SPC). These results are qualitatively consistent with observations by Desai et al (29). This stimulation was further enhanced by the expression of GPR4 (1.8- to 2-fold increase over GFP-infected Swiss 3T3 cells; Fig. 8A). In both GFP- and GPR4-GFP expressing cells, DNA synthesis stimulated by SPC was inhibited by PTX (Fig. 8A), suggesting G signaling was required for this activity. GFP-expressing cells did not respond significantly to 16:0-LPC, whereas [³H] thymidine incorporation increased 1.6-fold in GPR4-infected Swiss 3T3 cells in
response to 3 μM 16:0-LPC (Fig. 8B). Higher concentration of lipids did not further increase [H] thymidine incorporation stimulated by SPC or LPC (data not shown).

SPC and LPC induced cell migration in a GPR4-dependent manner—As a major component of oxidized low-density lipoprotein (ox-LDL), LPC has been proposed to play a role in atherosclerotic lesion development (30,31). One of the roles of LPC potentially related to atherosclerosis is as a chemoattractant for monocytes, T lymphocytes, and smooth muscle cells (32-34). We used Swiss 3T3 cells infected with GFP or GPR4-ires-GFP as a model system to compare the effects of SPC and 16:0-LPC on cell migration. GPR4 overexpression in Swiss 3T3 fibroblasts increased cell migration in response to SPC (100 nM; lower chamber only) and 16:0-LPC (100 nM; lower chamber only) 2.0-fold and 1.7-fold, respectively, over that observed in GFP-Swiss 3T3 cells (Fig. 9A). Other lipids (18:1-LPA, S1P, or 16:0-PAF) did not alter cell migration in GPR4- vs. vector-transfected cells (Fig. 9A). Cell migration stimulated by both SPC and LPC was inhibited by C3-exoenzyme expression, suggesting that Rho is involved in this process.

Concentration response studies (Fig. 9B) indicate that SPC and LPC were effective at inducing cell migration in the 1-100 nM concentration range. To determine whether this effect was chemotactic or chemokinetic, we measured cells that migrated from the upper to the lower chambers in Boyden chamber assays, conducted with lipids (at 100 nM) in both upper and lower chambers. SPC or 16:0-LPC did not significantly change cell motility when compared to controls (without lipid in either chamber) in either GFP or GFP-GPR4 expressing Swiss 3T3 cells (Fig. 9C). S1P slightly inhibited, PAF slightly enhanced, and LPA did not show a significant effect on cell migration in treated vs. untreated GFP or GFP-GPR4 expressing cells (Fig. 9C). These results suggest that the effect of SPC and 16:0-LPC on cell migration was chemotactic, not chemokinetic, and that the chemotactic effect was mediated through GPR4.
DISCUSSION

GPR4 shares ~50% homology with OGR1. We therefore speculated that these two receptors may have overlapping ligand specificity. Indeed, the results presented here show that GPR4 is a second high-affinity receptor for SPC. OGR1 and GPR4 may play both overlapping and distinct physiological and pathological roles. We have shown that OGR1 and GPR4 bind SPC with similar affinities (33 nM and 36 nM, respectively) and both receptors mediate SPC-induced increases in intracellular calcium and ERK activation. However, GPR4- and OGR1-mediated ERK activation is PTX-sensitive and –insensitive, respectively (Fig. 7A), suggesting that GPR4 and OGR1 couple to different G proteins to activate ERK. More importantly, these differential couplings appear to lead to differential effects on cell proliferation. On the other hand, while OGR1 mediates PTX-insensitive growth inhibition by SPC in a number of cells tested (2), GPR4 mediates PTX-sensitive DNA synthesis by SPC in Swiss 3T3 cells. Together, these data suggested that the endogenous receptor(s) for SPC in Swiss 3T3 cells was GPR4-like, rather than OGR1-like, since parental Swiss 3T3 cells respond to SPC to activate ERK and increase DNA synthesis through a PTX-sensitive pathway (Fig. 8A). The expression of GPR4 in these cells has been confirmed by quantitative PCR analysis (Fig. 2).

GPR4 and OGR1 have different tissue distributions, which may be related to their physiological and pathological roles. Both OGR1 and GPR4 are highly expressed in the lung. However, OGR1 is expressed at high levels in the placenta, spleen, testis, small intestine and peripheral leukocytes (8,18), whereas GPR4 is not expressed, or is expressed at relatively low levels, in these tissues. While GPR4 is expressed at high levels, in the liver, kidney, and ovary (Fig. 1), OGR1 is not expressed in these tissues (8,18). The physiological and pathological roles of these receptors remain to be further investigated.

Another significant finding from this study is the identification of GPR4 as the second G protein coupled receptor for LPC [the first LPC receptor, G2A, was recently described (14)]. GPR4 binds to
LPC (in addition to SPC), but not PAF or lyso-PAF, to mediate an increase in intracellular calcium, receptor internalization, SRE activation, MAP kinase activation, DNA synthesis, and cell migration. Although effects of LPC on transmembrane signal transduction have been widely reported, a specific receptor recognizing LPC had not been identified previously (32). LPC lysed cells at high concentrations (>30µM) (35) and many of the cellular effects previously reported for LPC were observed at high concentrations. Therefore, it is possible that some of the LPC effects in vivo are not receptor mediated. On the other hand, evidence has been accumulating to support the notion that, at low concentrations, LPC acts through membrane receptors: a) at relatively low concentrations (less than 10 µM), LPC exerts cell-specific effects; b) LPC increases intracellular Ca²⁺ concentration in association with production of inositolphosphates; and c) these actions of LPC are markedly inhibited by treatment of the cells with PTX and U73122 (36). Some LPC effects are believed to be mediated through the PAF receptor in various cell types, reflected by their partial sensitivity to PAF receptor antagonists (WEB-2170, WEB-2086, and CV-6209) (21,22,37,38). We have shown in the present study, however, that intracellular calcium increase and receptor internalization induced by LPC are dependent on the expression of GPR4 and are insensitive to the PAF receptor antagonists, BN52021, WEB-2071 and WEB-2086. These results clearly show that LPC does not activate these signaling pathways through PAF receptors. We have identified G2A as the first LPC receptor (14). The expression of G2A is restricted to lymphoid tissues (39), while GPR4 is more ubiquitously expressed (Fig. 1). This, together with the different affinities of these two receptors for LPC, may reflect distinct physiological functions for G2A and GPR4.

Physiological concentrations of LPC in body fluids, including blood and ascites, are very high (5-180 µM), when compared to other signaling lipid molecules, such as LPA, S1P and SPC (22, 36,40,41 and our unpublished results). All receptors would be saturated, down regulated, and/or desensitized at these concentrations of LPC if it were all in a form available to its receptors. However, different
concentrations of LPC present in various cellular and tissue systems (i.e. different LPC compartments) may regulate cellular functions differentially (23). LPC in plasma is present mainly in albumin- and lipoprotein-bound forms (22). These forms may be active in some non-receptor-mediated functions of LPC, such as delivery of fatty acids and choline (22), but may be in a form unavailable for receptor activation. It has been shown that some of the effects of LPC are decreased in the presence of albumin (42). Thus, the functionally available concentration of LPC in vivo, and the activation of LPC receptors may be controlled by the lower concentrations of free LPC. Although this issue remains to be further addressed, our results shown in Fig. 3G appear to support this notion. The presence of a 75-fold molar excess of BSA greatly diminished the ability of LPC to elicit an increase in \([Ca^{2+}]_i\) through the GPR4 receptor. Perhaps physiologically relevant concentrations of LPC in vivo that pertain to LPC’s interactions with GPR4 will be better understood when estimates of unbound LPC concentrations in specific tissues can be reliably made. In vivo the molar ratio of albumin (approximately 3-5% in plasma) to LPC can theoretically be from 3- to 100-fold in plasma. In extravascular sites where albumin concentration is less than in plasma, the ratio of albumin to LPC can be lower.

TDAG8, which shares approximately 38% homology with OGR1 and GPR4, has recently been shown to be a Psy receptor (15). Treatment of cultured cells expressing this receptor with Psy or structurally related glycosphingolipids results in the formation of globoid, multinuclear cells (15). We have tested the effect of Psy and related glycosphingolipids in calcium mobilization, competition of ligand binding, and MAP kinase activation assays and found no evidence that these lipids interact with GPR4. The questions of whether Psy is also a ligand for GPR4 and whether TDAG8 is a lysophospholipid receptor require further investigation.

It appears that ligands of GPR4 induced cell shape changes (Fig. 5), suggesting that SPC and LPC may affect the cellular cytoskeleton. Both LPA and SIP are able to affect cytoskeleton through Rho
SPC and LPC are also able to activate Rho, as evidenced by C3-exoenzyme sensitivity of SRE reporter activity (Fig. 6) and cell migration (Fig. 9) induced by SPC/LPC. It remains to be determined whether the cell shape change induced by SPC/LPC is a Rho-mediated effect and which cellular proteins are involved in these processes.

Different cell lines (MCF10A, HEK293, CHO, and Swiss 3T3 cells) were used in our studies. As shown in Fig. 2, MCF10A cells expressed the lowest level of endogenous GPR4 among cell lines tested. This cell line does not respond to either SPC or LPC in calcium assays (2). Therefore, calcium assays described here were performed in these cells. Because the transfection efficiency of MCF10A cells is very low (2), we were unable to establish stably expressing lines for conducting other assays. Despite their relatively high level of GPR4 expression, HEK293 cells were chosen for the internalization and SRE reporter assays, mainly because they are human in origin, and also yielded a high transfection efficiency (Fig. 1). The internalization assays utilized transfected receptor-GFP fusion proteins and the transcriptional responses in SRE reporter assays were compared to those in parental or vector-transfected cells. Therefore, the effects of the exogenous GPR4 receptor were readily separable from those of the endogenous receptor(s). CHO cells were chosen for binding assays, because they exhibit low responses to SPC and LPC in calcium assays and are readily transfected. We detected SPC- and LPC-induced MAP kinase activation through GPR4 in Swiss 3T3, but not HEK293 and CHO cells (Fig. 7 and data not shown). Hence, Swiss 3T3 cells were chosen for MAP kinase activation and mitogenic studies. It is well known that receptor mediated signaling transduction is dependent on multiple cellular factors. The molecular basis for the differential activation of GPR4 in different cells remains to be further explored.

In summary, our results indicate that SPC is a high-affinity, and LPC a lower-affinity, ligand for GPR4. This conclusion is directly derived from the results of ligand binding assays (Kd values of 36 vs. 159 nM for SPC and 16:0-LPC, respectively). This is also supported by results from assays of different
signaling pathways activated by SPC and LPC, including increases in calcium, transcriptional activation of SRE, ERK activation, and stimulation of DNA synthesis and cell migration. In recent decades, many reports have described a significant elevation of LPC levels in cells and tissues in different diseases (32, 41, 45). Numerous lines of evidence suggest that LPC, which is a major lipid component of ox-LDL, and which accumulates in atherosclerotic lesions (11), plays pathological roles in the development of atherosclerosis and other chronic inflammatory diseases (11,12). LPC also plays other important biological roles. For example, LPC functions as a fatty acid and choline carrier and delivers fatty acids more specifically to brain than other tissues (22). The identification of GPR4 as a receptor for LPC and SPC solidifies the assignment of a new lysophospholipid receptor subfamily (OGR1, GPR4, and G2A). Further studies should address possible functional redundancy amongst these receptors and add important information to our understanding of inflammatory diseases.

Acknowledgement—We thank Dr. Bryan Williams and Dr. Guy Chisolm for their critical reading of this manuscript.

REFERENCES

FIGURE LEGENDS

Fig 1. **GPR4 expression in different human tissues.** The human RNA Master Blot (Clontech) was probed with 32P-labeled GPR4 (Experimental Procedures).

Fig. 2. **Expression of GPR4 in human cell lines.** Real-time Quantitative PCR was utilized to determine relative expression levels of GPR4 expressed in cells, as described in “Materials and Methods”. All PCR reactions were performed in triplicate. The comparative $^{\Delta}$ method was used to calculate the relative expression levels of GPR4 in different cell lines as described in Experimental procedures. HEY, OCC1, NIH:Ovca3, SKOV3, Ovca429, Ovca432, and Ovca433 are ovarian cancer cells. MCF7 is a breast cancer cell line. MCF10A is an immortalized breast cell line. HeLa is a cervical cell line. All cell lines shown, except Swiss 3T3, are human cell lines.

Fig. 3. **SPC- and LPC- induce transient increases in $[\text{Ca}^{2+}]_i$ in GPR4-transfected MCF10A cells.**

A, upper panel: the effect of SPC (1 μM), 16:0-LPC (1 μM), 18:1-LPA (1μM), 16:0-PAF (0.1 μM), and ATP (20 μM) on $[\text{Ca}^{2+}]_i$ in pEGFP-N1-transfected MCF10A cells. The 2nd to the 4th panels: MCF10A cells were transiently transfected with pGPR4-GFP, and treated with SPC, L- and D-SPC, LPC, LPA, PAF, or ATP.

B, SPC and 16:0-LPC concentration response curves in pEGFP-GPR4-transfected MCF10A cells.

C, The effect of BN52021 on increased $[\text{Ca}^{2+}]_i$ induced by agonists.

D, The effect of WEB-2086 on increased $[\text{Ca}^{2+}]_i$ induced by agonists.

E, Homologous and heterologous desensitization of GPR4 by SPC and 16:0-LPC.

G, The effect of BSA (0.5%) on the ability of SPC and LPC to induce an increase in $[\text{Ca}^{2+}]_i$. SPC (1μM) and LPC(1μM) were incubated with 0.5% fatty acid-free BSA for 30 min at room
temperature and the mixtures were used to stimulate MCF10A cells transfected with pGPR4-GFP. H, Gal-Cer (1 μM)-stimulated increase in [Ca²⁺] in parental and pGPR4-GFP expressing MCF10A cells. All calcium measurements were performed in EGTA-containing, calcium-free buffer. The data are representative of at least five independent experiments.

Fig. 4. Binding of SPC and 16:0-LPC to GPR4. A and B, Time dependence of specific [³H] SPC and [³H] LPC binding. Cell homogenates (100 μL, equivalent to 10⁵ cells) from vector- or GPR4 stably-transfected CHO cells were incubated with [³H] SPC (1 nM) or [³H] 16:0-LPC (1 nM) for the indicated times. Specific binding is shown. C and D, Saturation isotherm of specific binding of [³H]SPC and [³H]16:0-LPC to GPR4-transfected CHO cells. Cell homogenates (100 μL) were incubated with the indicated concentrations of [³H] SPC or [³H] 16:0-LPC in the presence or absence of unlabeled SPC (100-fold excess) or unlabeled 16:0-LPC (100-fold excess). Specific binding is presented. E and F, Structural specificity of binding of [³H] SPC and [³H]16:0-LPC to GPR4. GPR4-transfected CHO cells were incubated with [³H] SPC (1 nM), or [³H]16:0-LPC (1 nM) in the presence or absence of 100 nM of different unlabeled lipids. Total binding is presented. All binding experiments were performed in triplicate in 96-well plates. Data are means ± SD from three independent experiments. *, p < 0.05; **, p < 0.01; ***, p < 0.001; as compared to the control (Student’s t test).

Fig. 5. Internalization of GPR4 induced by SPC and LPC. A, HEK293 cells stably expressing pGPR4-GFP. B, pGPR4-GFP stably expressing cells was treated with SPC (1 μM) at 37°C for 2h. C, pGPR4-GFP-expressing cells were treated with 16:0-LPC (1 μM) at 37°C for 2 h. D and E, as in B, and C, except cells were pretreated with BN52021 (200 μM) for 5 min. F, pGPR4-GFP-expressing cells were
treated with PAF (1 μM). All experiments were repeated at least three times. Representative data are shown.

Fig. 6. SPC and LPC activate SRE in a GPR4-dependent manner. A, The SRE-luciferase responses to different lipids in vector- and GPR4-transfected HEK293 cells. 18:1-LPA, 16:0-LPC, SPC, S1P, 18:0- SM, 16:0-PAF, and 16:0-lyso-PAF (1 μM of each) were used. The experiments were conducted as described in Experimental Procedures and Methods. B, Concentration-dependent SRE-luciferase activity induced by SPC and 16:0-LPC in vector- and GPR4-transfected cells. C, Inhibition of SPC- and 16:0-LPC-induced SRE activity by PTX and C3 exoenzyme. All experiments were performed in quadruplicate and were repeated at least three times. Representative data are shown. Cont.: control; *, p < 0.05; **, p < 0.001; as compared to the control. #, p<0.001 when compared to SPC- or 16:0-LPC-induced activity in vector-transfected cells. The Student's t test was performed using the GraphPad Instat software (San Diego, CA). p < 0.05 was considered to be statistically significant.

Fig. 7. Activation of ERK MAP kinase by SPC and LPC in GFP-, and GPR4-ires-GFP-expressing Swiss 3T3 cells. ERK MAP kinase assays were performed as described in Experimental Procedures. A, Structural specificity of lipid-induced ERK activation via GPR4 in Swiss 3T3 cells. Cells were treated with 1 μM Psy, Gal-Sph, Lac-Cer), sphingosine-1-phosphate (S1P), 16:0-LPC, SPC and 16:0-PAF for 5 min. B, Concentration-dependence of ERK activation stimulated by SPC and 16:0-LPC. Cells were treated with 1, 10, 100 and 1000 nM of 16:0-LPC or SPC for 5 min. C, Time-dependence of ERK activation stimulated by SPC and 16:0-LPC. Cells were treated with SPC (100 nM) or LPC (100 nM) for the indicated time. D, GPR4-ires-GFP-, and OGR1-ires-GFP-Swiss 3T3 cells were untreated or treated with
16:0-LPC (100 nM) or SPC (100 nM) for 5 min in the absence or presence of PTX (100 ng/ml, 16 h pre-treatment.

Fig. 8. DNA synthesis stimulated by SPC and 16:0-LPC in GPR4-overexpressing cells. DNA synthesis was measured by [³H] thymidine incorporation as described in Experimental Procedures in both GFP- and GPR4-ires-GFP-Swiss 3T3 cells. PTX was added to selected groups at 100 ng/ml for 16 h prior to lipid treatment. The data shown represent the means ± SD from three independent experiments.

Fig. 9. SPC and LPC stimulate cell migration in GPR4-overexpressing Swiss 3T3 cells. Cell migration was measured in a modified Boyden chamber assay as described in Experimental Procedures. The cell numbers on the lower faces of the membranes were determined and are presented as the means ± SD of three independent experiments. **, p < 0.01; ***, p < 0.001, compared to the control. Student's t test was performed using the GraphPad Instat software (San Diego, CA). p < 0.05 was considered to be statistically significant.
<table>
<thead>
<tr>
<th>Year</th>
<th>Tissue</th>
<th>mRNA</th>
<th>cDNA</th>
<th>DNA</th>
<th>cDNA</th>
<th>rRNA</th>
<th>mRNA</th>
<th>rRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Heart</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Brain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- mRNA stands for messenger RNA.
- cDNA stands for complementary DNA.
- DNA stands for deoxyribonucleic acid.
- rRNA stands for ribosomal RNA.

The table above contains data on the expression levels of mRNA, cDNA, and rRNA in various tissues. The values range from 0 to 100 ng/100 ng.
A

![Bar graph showing luciferase activity fold activation for HEK293/GFP and HEK293/GPR4-GFP](image)

- Con
- LPA
- LPC
- SPC
- S1P
- SM
- PAF
- L-PAF

B

![Graph showing luciferase activity fold activation vs. LPC/SPC (Dose, LogM)](image)

C

![Bar graph showing luciferase activity of SPC and LPC](image)
The Role of Ether-linked Lysophosphatidic Acids in Ovarian Cancer Cells

Jun Lu, Yi-jin Xiao, Linnea M. Baudhuin, Guiying Hong, and Yan Xu

Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195 [J. L., Y-J. X., L. M. B., G. H., and Y. X.]; Department of Gynecology and Obstetrics, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195 [Y. X.]; Department of Chemistry, Cleveland State University, 24th and Euclid Ave., Cleveland, OH 44115 [L. M. B., Y. X.]

Running Title: Ether-linked LPAs in ovarian cancer cells

Key Words: Akt, MAP kinase, alkyl-lysophosphatidic acid (alkyl-LPA), alkenyl-LPA, and ovarian cancer

1 This work is supported in part by American Cancer Society Grant RPG-99-062-01-CNE, US Army Medical Research grant DAMD17-99-1-9563, and NIH grant R21 CA84038-01 (to Y.X.)

2 To whom requests for reprints should be addressed, at Department of Cancer Biology, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195. Phone: (216) 444-1168; Fax (216) 445-6269; E-mail: xuy@ccf.org
Abstract

Naturally occurring alkyl- and alkenyl-lysophosphatidic acids (al-LPAs\(^3\)) are detected and elevated in ovarian cancer ascites, compared with ascites from non-malignant diseases. We describe here that these ether-linked LPAs may play an important role in ovarian cancer development. They are elevated and stable in ovarian cancer ascites, which represents an *in vivo* environment for ovarian cancer cells. They stimulated DNA synthesis and proliferation of ovarian cancer cells. In addition, they induced cell migration and the secretion of a pro-angiogenic factor, interleukin-8 (IL-8), in ovarian cancer cells. The latter two processes are potentially related to tumor metastasis and angiogenesis, respectively. Al-LPAs induced diverse signaling pathways in ovarian cancer cells. Their mitogenic activity depended on the activation of the \(G_{\text{q/o}}\) protein, phosphatidylinositol-3 kinase (PI3K), and mitogen-activated protein (MAP) kinase kinase (MEK), but not p38 MAP kinase. The S473 phosphorylation of Akt by these lipids required activation of the \(G_{\text{q/o}}\) protein, PI3K, MEK, p38 MAP kinase, and Rho. On the other hand, cell migration induced by al-LPAs depended on activities of the \(G_{\text{q/o}}\) protein, PI3K, and Rho, but not MEK.

\(^3\) The abbreviations used are: Akt, protein kinase B; al-LPAs, alkyl- and alkenyl-lysophosphatidic acids; Edg, endothelial differentiation genes; ECL, enhanced chemiluminescence; ELISA, enzyme-linked immunosorbent assay; ERK, extracellular mitogen-regulated kinase; ESI-MS, electrospray ionization mass spectrometry; FBS, fetal bovine serum; GPCR, G protein-coupled receptor; IL-8, interleukin-8; LPA, lysophosphatidic acid; MAP kinase, mitogen-activated protein kinase; MEK or MKK, MAP kinase kinase; MS/MS, tandem mass spectrometry; MRM, multiple reaction monitoring; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; OCAF, ovarian cancer activating factor; PI3K, phosphatidylinositol 3-kinase; PLC, phospholipase C; PLD, phospholipase D; PKC, protein kinase C; PTX, pertussis toxin; S1P, sphingosine-1-phosphate; TLC, thin layer chromatography.
INTRODUCTION

Lysophosphatidic acid (LPA) is a bioactive lysolipid that is involved in a broad range of biological processes in a variety of cellular systems (1, 2). LPA induces cell proliferation or differentiation, prevents apoptosis induced by stress or stimuli, induces platelet aggregation and smooth muscle contraction, and stimulates cell morphologic changes, cell adhesion, and cell migration (1-5). LPA has been shown to be involved in angiogenesis, wound healing, and inflammatory processes (6-15). LPA exerts many of its effects by binding to G protein-coupled receptors (GPCRs), resulting in a cascade of intracellular signaling activations (2, 16). Three endothelial differentiation genes (Edg2, 4 and 7) have been identified as receptors for LPA (17) (7, 18, 19). LPA stimulates G\textsubscript{q}-mediated extracellular mitogen-regulated kinase (ERK) and PI3K/Akt activation, G\textsubscript{q}-mediated phospholipase C (PLC) and protein kinase C (PKC) activation, and G\textsubscript{12/13}-mediated Rho activation (1, 2).

We have previously identified a growth-stimulating factor, ovarian cancer activating factor (OCAF), in ascites from patients with ovarian cancer. OCAF is composed of various species of LPAs (with different fatty acid side chains) (20). OCAF and synthetic 18:1-acyl-LPA stimulate growth of ovarian, breast and Jurkat cells (21, 22). Acyl-LPA (18:1) also regulates other cellular activities. It enhances cell adhesion/attachment (23), stimulates interleukin-8 (IL-8) production from ovarian cancer cells (24), and synergizes with other agents, such as thrombin agonists, noradrenaline, ADP and arachidonic acid, to induce strong platelet aggregation (5). LPA has been shown to decrease cis-diamminedichloroplatinum-induced cell death (25), prevent cell apoptosis (26), and induce urokinase secretion (27) and vascular endothelial growth factor expression in human ovarian cancer cells (15). In addition, we have shown that acyl-LPAs are
elevated in plasma from patients with ovarian cancer and may represent a useful marker for the early detection of ovarian cancer (28).

There are three subclasses of LPA: acyl-, alkyl-, and alkenyl-LPAs. The latter two subclasses of LPAs (al-LPAs) differ from acyl-LPA in that the fatty acid chain is linked to the glycerol backbone through an ether or a vinyl, rather than an ester bond in acyl-LPAs. The majority of research work on LPA has been performed on acyl-LPAs (19, 29), although the effect of synthetic alkyl-LPA on platelet aggregation was reported decades ago (30). Most alkyl-LPA work was performed using synthetic alkyl-LPA (30, 31), and the naturally occurring al-LPAs have only been reported in recent years (12, 32-34).

We have recently developed an electrospray mass spectrometry (ESI-MS)-based method to analyze lysolipids in body fluids (35) and found that, in addition to acyl-LPAs, ascites from patients with ovarian cancer contain elevated alkyl- and alkenyl-LPAs (al-LPAs; including 16:0-/18:0-alkyl-LPA and 16:0/18:0-alkenyl-LPA), when compared with ascites from patients with benign diseases and endometrial cancer (35). These results implicate that al-LPAs may have potential pathophysiological roles in ovarian cancer.

In the present study, we describe that al-LPAs were more stable than acyl-LPAs in ascites. These lipids stimulated DNA synthesis and proliferation of ovarian cancer cells through Gi-, PI3K- and MEK-dependent pathways. Al-LPAs and acyl-LPAs induced migration of ovarian cancer cells through collagen I-coated membranes and this activity required the activation of Gi, and was partially dependent on PI3K activity. In addition, al-LPAs stimulated IL-8 production. Similar to acyl-LPAs as we reported recently (36), al-LPAs activated Akt kinase and induced a Rho-, PI3K-, and MEK-dependent S473 phosphorylation of Akt.
MATERIALS AND METHODS

Chemicals. LPAs (16:0, 18:0, and 18:1), lyso-platelet activating factor (lyso-PAF) and other lysophospholipids were purchased from Avanti Polar Lipids (Birmingham, AL). Lyso-plasmalogen phosphatidylethanolamine (alkenyl-LPE) was obtained from Matreya, Inc. (Pleasant Cap, PA). LY294002, PD98059, and SB203580 were obtained from Biomol (Plymouth Meeting, PA). Wortmannin was obtained from Sigma (St. Louis, MO). Pertussis toxin (PTX) was purchased from Life Technologies, Inc. (Rockville, MD). Pre-coated silica gel 60 TLC plates were obtained from EM Science (Gibbstown, NJ). HPLC grade methanol (MeOH), chloroform, ammonium hydroxide, and hydrochloric acid (HCl) were purchased from Sigma (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA). [3H]thymidine was from NEN Life Science Products, Inc. (Boston, MA). Anti-phospho-S473-Akt, anti-Akt, anti-phospho-ERK, and anti-ERK were obtained from Cell Signaling Technology (Beverly, MA). Anti-MEK2 and anti-p38 were from StressGen (Victoria, BC, Canada).

Cell lines and cell culture. HEY and SKOV3 cells were from Dr. G. Mills (M.D. Anderson) and ATCC, respectively, and maintained in RPMI 1640 medium containing 10% fetal bovine serum (FBS) at 37°C with 5% CO₂. All cells were cultured in serum-free media for 18-24 h prior to lipid treatment except in the cell migration experiments. For transient transfections, cells were plated into 35-mm dishes and transfected with DNA using LipofectAMINE (Life Technologies, Inc.) and Transfection Booster Reagents (Gene Therapy Systems, San Diego, CA) according to the manufacturers' instructions. Dominant negative MEK was from Dr. D. Templeton, Case Western University. Kinase inactive p38 was from Dr. Bryan R.G. Williams, Cleveland Clinic Foundation. The C3-exoenzyme construct was provided by Dr. Alan Wolfman,
Cleveland Clinic Foundation. Dominant negative Akt was from Dr. Kumliang Guom, University of Michigan.

Nonradioactive immunoprecipitation Akt kinase assay. The Akt kinase assay was performed with the Nonradioactive Akt Kinase Assay Kit (Cell Signaling Technology, Beverly, MA) according to the manufacturer's instructions. All reagents were provided with the kit. Briefly, cells were treated with al-LPAs, rinsed with ice-cold phosphate-buffered saline, and then lysed in cell lysis buffer. Immunoprecipitation was carried out using immobilized Akt 1G1 monoclonal antibody. The immunoprecipitate was then incubated with GSK-3 fusion protein and ATP in kinase buffer. Western analysis was used to determine the extent of GSK-3 phosphorylation by active Akt using a phospho-GSK-3 α/β (Ser21/9) antibody.

Extraction and quantitation of alkyl- and alkenyl-LPAs from ascites. Extraction of alkyl- and alkenyl-LPAs from ascites was performed as described previously (35, 37). The stability of different LPA species was tested. Briefly, ascites samples were stored at 4°C for different time periods and lipids in ascites were extracted with chloroform and methanol in the presence of HCl. The chloroform phase was dried and lipids were separated on thin layer chromatographic (TLC) plates. Different LPA species were eluted from TLC plates with a mixture of methanol and chloroform (2:1). ESI-MS and tandem mass spectrometry (MS/MS) analyses for the quantitation of alkyl- and alkenyl-LPAs were performed using a Micromass Quattro II Triple Quadrupole Mass Spectrometer. All quantitative analyses were performed in the multiple reaction monitoring (MRM) mode as described previously (35).

Preparation of alkyl- and alkenyl-LPAs. Alkyl- and alkenyl-LPAs were prepared through hydrolysis of the corresponding lyso-PAF or lyso-plasmalogen phosphatidylethanolamine (alkenyl-LPE), respectively, by phospholipase D (PLD) (Calbiochem,
La Jolla CA). Briefly, 1 mg of alkenyl-LPE or lyso-PAF was dispersed in 0.1 mL of 0.04 M Tris buffer, pH 8.0, containing 0.05 M CaCl₂ and 1% Triton-X100. After addition of the enzyme (4 units of PLD in 15 μL of 0.01M Tris-HCl, pH 8.0), the sample was mixed vigorously. The reaction vessel was sealed tightly and the contents were rotated overnight at room temperature. After the incubation period, the mixture was extracted with 1.2 mL of chloroform:MeOH:HCl (5:4:0.2). The chloroform layer was evaporated under a stream of nitrogen and the residue was dissolved in 50 μL chloroform:methanol (1:2 v/v). The substrate and the product were separated on a TLC plate using a solvent system of chloroform:MeOH:NH₄OH (65:35:5.5) and the product was eluted from the plate by extracting with 2 mL of chloroform:methanol (1:2) twice and then dried under N₂. The lipid product was identified and quantified by ESI-MS and then dissolved in methanol to make a 1 mM solution.

DNA synthesis and MTT assays. HEY cells were plated in 96-well plates, serum-starved for 16-24 h, and treated for 24 h with different concentrations of al-LPAs in F12/DMEM (1:1) medium supplemented with 0.1% fatty acid-free BSA, insulin, transferrin and selenium. For the DNA synthesis assays, the cells were incubated with 0.15 gCi/well [³H]thymidine for the last 18 h. Cells were harvested onto filter papers presoaked in 1% polyethyleneimine using an automated cell harvester, HARVEST 96 (Perkin-Elmer-Wallac, Inc.). Incorporated [³H]thymidine was counted in a 1450 Microbeta Trilux Liquid Scintillation and Luminescence Counter (Perkin-Elmer-Wallac, Inc.). For cell proliferation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye reduction assays were used. Twenty μL of MTT solution (5 mg/mL) was added to each well and incubated at 37°C for the last 6 h of lipid treatment. The reduced MTT crystals were dissolved in 100 μL/well of a mixture of DMSO and
95% ethanol (1:1, v/v). The color developed was read by a plate reader (SpectraMax 340, Molecular Devices Corp, Sunnyvale, CA) at 595-655 nm.

Western blotting. HEY cells were plated in 6-well plates in RPMI1640 with 10% FBS, serum-starved overnight, and then treated with or without al-LPAs in serum-free media for the indicated times. Cells were lysed on ice with Laemmli buffer containing 5% mercaptoethanol. The lysates were separated with 12% SDS-polyacrylamide gels and transferred onto PVDF membranes (Bio-Rad Laboratories, Hercules, CA). Antibodies against S473 phosphorylated Akt or phosphorylated ERK1/2 were used to probe the membrane and the ECL system (Amersham Pharmacia Biotech Inc., Piscataway, NJ) was used for detection. To normalize the amounts of protein loaded in each lane, the membranes were stripped and re-probed with antibodies against total Akt or ERK.

Cell migration assays. Chemotaxis was performed in a mini-Boyden chamber (Neuro Probe, Inc., Cabin John, MD) using Nucleopore polycarbonate filters (8 µm pore size) coated with a type-I collagen solution (100 µg/mL) (Vitrogen100, Collagen Corporation, Fremont, CA). Different concentrations of LPAs were added to the lower chamber. Checkerboard assays were performed as described by Okamoto et al. (38). HEY cells were starved for 3 h, trypsinized and resuspended at a concentration of 2.5 x 10^5 cells/mL in serum-free medium. The cell suspension (50 µL) was then placed in the upper chamber. After 4 h at 37°C, the cells that attached to the filters were fixed in 100% methanol and stained with Hematoxylin solution (Richard-Allan Scientific, Kalamazoo, MI). Cells that migrated to the lower phase of the membrane were counted under the microscope.

IL-8 ELISA assays. Cells were grown in 96-well plates, starved overnight, and treated with lipids for 6 h. The supernatants were collected and stored at -80°C. The IL-8 concentration
was measured using a quantitative sandwich enzyme-linked immunosorbent assay (ELISA) (R&D Systems, Minneapolis, MN) according to the manufacturer’s protocol with minor modifications as described previously (24). All analyses were carried out in triplicate. Optical densities were determined using a SpectraMax 340 plate reader (Molecular Devices, Sunnyvale, CA) at 650-490 nm.

RESULTS

Al-LPAs were more stable than acyl-LPAs in ascites from patients with ovarian cancer. We have previously compared the lysolipid content in 15 pairs of ascites samples from patients with ovarian cancer and non-malignant diseases, and reported that al-LPAs were elevated in ovarian cancer ascites (35). Four al-LPA species were detected in ascites samples: 16:0- and 18:0-alkyl LPAs, and 16:0- and 18:0-alkenyl-LPAs. The distribution of different al-LPA and acyl-LPA species in 15 ovarian cancer and 15 non-malignant ascites samples is shown in Table I. Al-LPA species in ascites account for approximately 12% of total LPAs (both al- and acyl-LPAs). We observed that al-LPAs were more stable in ascites stored at 4°C under sterile conditions (Fig. 1A). The average half-lives of acyl-LPAs and al-LPAs in ascites stored at 4°C were approximately 12 months and more than 2 years, respectively (results obtained from 5 ascites samples; Fig. 1B).

Al-LPAs stimulated DNA synthesis and growth of HEY ovarian cancer cells. To determine the potential pathophysiological role of al-LPAs in ovarian cancer cells, we first examined the effects of al-LPAs on DNA synthesis and proliferation in HEY ovarian cancer cells. Alkyl-LPA (16:0) and 16:0/18:0-alkenyl-LPA (the ratio of 16:0 to 18:0 was approximately
1:1) were synthesized as described in Materials and Methods. Figure 2 shows the spectra of synthesized 16:0-/18:0-alkenyl- and 16:0-alkyl-LPAs. Each preparation contained a small amount of impurities, which were mainly derived from 16:0- and 18:0-acyl-LPAs. The relatively low amount (<10% and <5% in the alkyl-LPA and the alkenyl-LPA preparations, respectively) of these impurities did not affect the activities tested in this study. Starved HEY cells were incubated with different concentrations of lipids (0.1-5.0 \mu M; within the concentration range detected in ascites from patients with ovarian cancer) for 24 h. The effects of lipids on DNA synthesis was assessed by addition of [3H]thymidine (0.15 \muCi/well) and the effect of lipids on cell proliferation was measured by MTT dye reduction. Physiological concentrations of 16:0-alkyl-LPA (1-5 \mu M) and 16:0/18:0-alkenyl-LPA (1-5 \mu M) increased [3H]thymidine incorporation and MTT dye reduction to approximately 2-fold (Fig. 3A and 3B).

Al-LPAs activated ERK and Akt. We have shown in our recent studies that acyl-LPA induces ERK, p38, and Akt activation in HEY cells (36). We sought to examine the activation of ERK and Akt induced by al-LPAs. Both alkyl- and alkenyl-LPAs activated Akt as assessed by an Akt kinase assay (Fig. 4A). Western blot analyses of phosphorylated ERK and Akt (S473) were performed after HEY cells were treated with alkyl- or alkenyl-LPAs. Both alkyl- and alkenyl-LPAs (2 \mu M) induced a concentration- and time-dependent activation of ERK and a transient increase in the S473 phosphorylation of Akt (Fig. 4B, C). The optimal concentrations were 5 \mu M and 1 \mu M for al-LPAs to activate ERK and Akt, respectively (Fig. 4B). Concentrations higher than 5 \mu M were not tested, since they are out of the physiological concentration ranges of al-LPAs detected in ovarian cancer ascites (Table I). The optimal times for induction of ERK and Akt phosphorylation by alkyl-LPA were 1-5 min and 30 min, respectively. Alkenyl-LPA induced maximal phosphorylation of both ERK and Akt at 30 min.
Similarly, al-LPAs also induced ERK and Akt phosphorylation in another ovarian cancer cell line, SKOV3 (Fig. 4D).

Pertussis toxin (PTX, a $G_{i/o}$ inhibitor; 100 ng/mL) partially, and two specific inhibitors of PI3K, LY294002 (10 µM) and wortmannin (100 nM), completely inhibited the activation of ERK and Akt induced by al-LPAs, suggesting that a PTX-insensitive G protein and PI3K are involved in phosphorylation of ERK and Akt (Fig. 5A, B).

Acyl-LPA-induced Akt activation is dependent on the activities of both MEK and p38, which is both ovarian cancer cell line- and stimulus-specific (36). In addition to our work, this MEK-dependent Akt activation/phosphorylation has been shown very recently in ultraviolet B- and serotonin-induced Akt activation (39, 40). To investigate whether al-LPAs activated the same signaling pathways as acyl-LPAs in HEY cells, we tested the effects of a panel of pharmacological and genetic inhibitory reagents on the Akt phosphorylation induced by al-LPAs. Similar to acyl-LPAs, Akt phosphorylation at S473 was sensitive to both PD98059 and SB203580 (the specific inhibitors for MEK1/2 and p38, respectively) (Fig. 5C), suggesting that MEK, and potentially its downstream effector ERK, and p38 were required for Akt phosphorylation at S473 by al-LPAs. This was further confirmed by transfecting HEY cells with dominant negative forms of MEK and p38 (MEK/2A and p38/AGF) (Fig. 5D). We have developed an efficient transfection method in HEY cells (36). Using both LipofectAMINE and Transfection Booster Reagents #3 (from Gene Therapy System, Inc., San Diego), the transfection efficiency was increased from 15±4% to 77±6%, as we reported previously (36). Both these dominant negative forms of MAP kinases blocked Akt activation induced by al-LPAs, indicating that both MEK and p38 activities are required for al-LPA-induced S473 phosphorylation of Akt in HEY cells.
We have shown that acyl-LPA, but not a structurally similar lipid, sphingosine-1-phosphate (S1P), induces Akt phosphorylation via a Rho-dependent pathways (36). We tested whether al-LPAs also require Rho for induction of S473 phosphorylation of Akt. Transient transfection of C3-exoenzyme, which blocks Rho activity, completely abolished al-LPA-induced S473 phosphorylation (Fig. 5E). Together, these results suggest that al-LPAs stimulate the same or similar signaling pathways in HEY cells as acyl-LPAs, and they may activate the same or similar receptors.

Activation of MEK/ERK, but not Akt, was required for promoting DNA synthesis by al-LPAs in HEY cells. To explore the potential signaling pathways involved in al-LPA induced DNA synthesis, we tested the effect of PTX, LY294002, wortmannin, PD98059, and SB203580 on [³H]thymidine incorporation induced by alkyl- and alkenyl-LPAs (Fig. 6A). PTX inhibited approximately 70% and 45% of [³H]thymidine incorporation triggered by alkyl-LPA and alkenyl-LPA, respectively, suggesting that both PTX-sensitive and insensitive G proteins are involved in this activity. LY294002 (10 μM), wortmannin (100 nM), and PD98059 (30 μM) completely blocked the al-LPA-stimulated DNA synthesis, suggesting that the activity of PI3K and MEK is essential for the process. In contrast, p38 activity was not required for DNA synthesis induced by al-LPAs, since [³H]thymidine incorporation was insensitive to the treatment of SB203580. This was further confirmed by transfection with MEK/2A and p38/AGF (Fig.6B). Expression of MEK/2A completely inhibited al-LPA-induced DNA synthesis (Fig. 6B). In contrast, expression of p38/AGF did not affect the DNA synthesis induced by al-LPAs (Fig. 6B), indicating that p38 was not required for DNA synthesis induced by al-LPAs. Since S473 phosphorylation of Akt required p38 activation (Fig. 5D), and p38 was not required for the DNA synthesis stimulated by al-LPAs, we predict that Akt activation was not required for al-LPA-
induced DNA synthesis. To test this, we transfected the dominant negative (dn) form of Akt into HEY cells and found that dn-Akt did not affect \(^{3}\)H\)thymidine incorporation induced by al-LPAs as we predicted (Fig. 6B). These data suggest that al-LPA-induced MEK activation can lead to a p38- and Akt-independent stimulation of DNA synthesis in HEY cells.

Al-LPAs promoted ovarian cancer cell migration through collagen I-coated membranes. Cell migration is critically important for tumor metastasis. Acyl-LPA has been shown to induce cell migration of a number of cell types (fibroblasts, monocytes, T-lymphoma, hepatoma, and endothelial cells) (41-49). To test the effect of LPAs on ovarian cancer cell migration, we conducted Boyden chamber analyses. We found that both alkyl- and alkenyl-LPAs triggered cell migration through collagen I in a concentration-dependent manner and alkenyl-LPA was more potent than alkyl-LPA (Fig. 7A). To determine whether the enhanced cell migration was due to chemokinesis (random motility) or chemotaxis (directional motility), checkerboard analyses were performed essentially as described by Okamoto et al. (38). The number of cells that migrated to the lower phase of the membrane was reduced significantly as the concentration gradient of al-LPAs decreased (Table II), indicating that al-LPAs mainly stimulated chemotaxis.

We then compared the relative potencies of major LPA species present in ascites in stimulation of cell migration. We found that 16:0-acyl, 18:0-acyl, 18:1-acyl, 16:0-alkyl and 16:0/18:0-alkenyl LPAs all stimulated migration of HEY ovarian cancer cells through collagen I-coated membranes (Fig. 7B). At 1 \(\mu\)M concentration, the relative potencies of these LPA species were 18:1-acyl-LPA>16:0/18:0-alkenyl-LPA>16:0-alkyl-LPA>16:0-acyl-LPA>18:0-acyl-LPA (Fig. 7B). The cell migration induced by al-LPAs was sensitive to PTX pretreatment and C3 exoenzyme transfection, and partially blocked by LY294002 (Fig. 7C). Interestingly,
transfection of MEK/2A, which completely blocked al-LPA-induced Akt phosphorylation (Fig. 5D above), did not significantly affect cell migration induced by al-LPAs, suggesting that a different downstream signaling molecule(s) of G_i, Rho, and/or PI3-K (other than MEK) was responsible for cell migration induced by al-LPAs.

AI-LPAs triggered IL-8 secretion from HEY cells. We have recently shown that 18:1-acyl-LPA induces increased IL-8 at both mRNA and protein levels in ovarian cancer cells, but not in immortalized ovarian epithelial cells (24). To determine whether al-LPAs also induce this activity, we examined IL-8 secretion from HEY cells using an ELISA assay as previously described (24). Al-LPAs induced IL-8 secretion from ovarian cancer cells with similar or higher potencies than that of 16:0- or 18:0-acyl-LPAs (Fig. 8).

DISCUSSION

We have previously reported that acyl-LPAs are growth stimulating factors for ovarian cancer and other tumor cells, which are present in ascites from patients with ovarian cancer (21, 22). The major acyl-LPA species (approximately 50% of all acyl-LPAs) in ovarian cancer ascites is 16:0-acyl-LPA (20). However, it is not a potent growth stimulator of ovarian cancer cells (21, 22). LPA species with unsaturated fatty acids, such as 18:1- and 18:2-acyl LPAs are more potent mitogens for ovarian cancer cells (20). We have recently detected elevated levels of al-LPAs in ovarian cancer ascites.

In this work, we show several lines of evidence to suggest that al-LPAs may play an important pathological role in ovarian cancer development. First, al-LPAs stimulated cell growth and DNA synthesis of HEY ovarian cancer cells (Fig. 3). Secondly, al-LPAs induced Akt
activation (Fig. 4A), which may be related to cell survival and chemoresistance. Thirdly, al-LPAs induced cell migration (Fig. 7A), which is one of the critical steps in tumor cell invasion and metastasis. Finally, al-LPAs stimulated the production of IL-8 with similar or higher potencies than 16:0- and 18:0-acyl-LPAs (Fig. 8). In particular, physiological concentrations of al-LPAs were used in this study and our results support the notion that these lipids may play important pathological roles in ovarian cancer development, although the role of al-LPAs in vivo remains to be further investigated.

Ovarian tumor cells inherently possess a strong metastatic potential to the peritoneum, which is the major cause of death in ovarian cancer patients (50). Preferential adhesion of ovarian epithelial carcinoma cells to migrate through collagen I (vs. collagen IV, fibronectin, laminin and vitronectin), has been demonstrated, and the ovarian carcinoma micro-environment is rich in collagen I (50). We show here that different LPA species promote cell migration through collagen I-coated membranes and this activity is potentially important in ovarian cancer pathology.

IL-8 is a pro-inflammatory and pro-angiogenic factor and may be involved in ovarian tumor development (51, 52). Angiogenesis is a critical factor of tumor development, which induces the transition from a limited to a rapid tumor growth via neovascularization (53). High expression of IL-8 mRNA has been detected in clinical specimens of late-stage ovarian carcinomas (54, 55). Ascites/cyst fluid and/or plasma of patients with ovarian cancer contain significantly higher levels of IL-8, compared to patients with benign gynecological disorders (56, 57). We have shown that al-LPAs are elevated in malignant ascites (35). Our results shown here suggest that al-LPAs present in ascites may regulate IL-8 production in vivo.
The results shown here suggest that the biological activities and/or signaling properties of LPA species are not only dependent on the composition of the fatty acid side chain, but also the chemical linkage between the aliphatic chain and the glycerol backbone. While 16:0- and 18:0-acyl-LPAs are not effective in growth stimulation in ovarian cancer cells (20), 16:0-alkyl- and 16:0/18:0-alkenyl-LPAs stimulated growth and DNA synthesis of HEY ovarian cancer cells. In addition, 16:0- and 18:0-al-LPAs were more potent than 16:0- and 18:0-acyl-LPAs in stimulating cell migration and IL-8 production. Interestingly, various synthetic ether-linked lysophosphatidylcholine compounds inhibit growth of many malignant cells, and clinical trials evaluating their antineoplastic potential have been conducted (58, 59). More recently, synthetic alkyl-LPA derivatives have been tested for their anti-proliferative activities (59). Together with the observations present here, these data suggest that a free phosphate group at the sn-3 position is important for the mitogenic activity of lysolipid(s).

Acyl-LPAs containing unsaturated fatty acids, such as 18:1- and 18:2-acyl-LPAs are more potent in stimulation of growth (20), IL-8 secretion, and cell migration. These data suggest that 18:1- and 18:2-acyl LPAs, which compose approximately 17% (Table I) of total acyl-LPAs in ascites (20, 35) and al-LPAs, which compose approximately 12% of all LPA species, may account for the major portion of biological activities of LPAs in ovarian cancer ascites. The pathophysiological importance of al-LPAs is further supported by our observation that these LPA species are more stable than acyl-LPAs at 4°C (Fig. 1). The instability of LPAs at 4°C may reflect LPA-degrading reactions by endogenous enzymes (at a slower reaction when compared to physiological conditions at 37°C). However, since the ascites samples were stored under sterile conditions, exogenous LPA-degrading enzymes from bacteria and/or other sources were unlikely. The two major pathways to degrade LPA are deacylation by lyso-phospholipase A₁ (PLA₁) and
de-phosphorylation by phosphatases (LPPs) (60, 61). While dephosphorylation of al-LPAs and acyl-LPAs by LPPs may be similarly effective, ether-linked al-LPAs are not degradable by PLA₁, which may account for the relative higher stability of al-LPAs.

We show here that different biological effects induced by al-LPAs require different signaling pathways. PI3K activity is required for cell proliferation, cell migration, and Akt activation/phosphorylation. MEK is required for cell proliferation and S473 phosphorylation of Akt, but not for cell migration. S473 phosphorylation of Akt, but not cell proliferation, is dependent on p38 MAP kinase activity. These data suggest that MEK activation can lead to a p38-dependent Akt phosphorylation, and a p38-independent stimulation of DNA synthesis. These signaling properties provide important information on strategies to antagonize the cellular effects of al-LPAs.

The work here shows that al-LPAs appear to stimulate the same or similar signaling pathways as acyl-LPAs, although they differ in concentration and time point for optimal simulations. In particular, we have shown recently that acyl-LPA stimulated a rather unique Rho- and MEK-dependent Akt phosphorylation. This signaling pathway is not shared by many other stimuli that we have tested, including S1P, thrombin, endothelin-1, PDGF, insulin, and EGF (36 and unpublished data). These data suggest that the effects of al-LPAs may be mediated by acyl-LPA receptors (Edgs). In fact, both Edg4 and Edg7 have been shown to respond to alkyl- and/or alkenyl-LPAs (62-64). We have found that HEY cells express Edg2, 4 and 7 and SKOV3 cells express Edg2 and 4 (36 and unpublished data). Since subtype-selective receptor antagonists are not yet available, the direct assignment of the endogenous receptors mediating the effects induced by al-LPAs in HEY cells remains to be determined.
REFERENCES

36. Baudhuin, L., Lu, J., and Xu, Y. Activation of Akt by LPA and S1P is dependent on the activities of both MEK and p38 MAP kinase in ovarian cancer cells, submitted.

content of human ovarian cancer ascites, European Journal of Gynaecological Oncology.

FIGURE LEGENDS

Fig 1. Al-LPAs in ascites from ovarian cancer patients are more stable than acyl-LPAs. Al-LPAs and acyl-LPAs from ascites samples were extracted and analyzed as described in Materials and Methods. Five ascites samples from patients with ovarian cancer were stored at 4°C under sterile conditions. LPAs from 0.5 mL of ascites were analyzed at the time intervals as indicated. A, ESI-MS spectra of LPAs from a representative ovarian cancer ascites samples analyzed at 0, 6, 12 and 18 months. B, the stability of LPAs in 5 ovarian cancer ascites samples.

Fig. 2. The spectra of synthetic alkyl- and alkenyl-LPAs. Al-LPAs were synthesized and analyzed as described in Materials and Methods. Al-LPAs were resuspended in methanol and 20 µL of al-LPAs containing 50 pmol of 14:0-acyl-LPA (internal standard) was used for MS analyses.

Fig 3. Al-LPAs stimulated DNA synthesis in HEY cells. A, DNA synthesis was measured by using [3H]thymidine incorporation as described in Materials and Methods. Cells were treated with al-LPAs (1-5 µM) for 24 h. B, MTT dye reduction was used to measure cell proliferation. Cells were treated with al-LPAs (1-5 µM) for 24 h. MTT solution was added and incubated at 37°C for the last 6 h of lipid treatment.

Figure 4. Al-LPAs activated ERK MAP kinases and Akt in HEY and SKOV3 ovarian cancer cells. A, the kinase activity of Akt was performed with the Nonradioactive Akt Kinase Assay Kit according to the manufacture’s instructions. Starved HEY cells were treated with 2 µM al-LPAs.
for 30 min. B, concentration-dependent Akt (30 min) and ERK (5 min) phosphorylation by al-LPAs. HEY cells were serum-starved for 18-24 h before stimulation with lipids. C, the time courses of ERK and Akt phosphorylation stimulated by alkyl-LPA (2 μM) or alkenyl-LPA (2 μM) for the indicated times in HEY cells. D, ERK and Akt phosphorylation induced by al-LPAs in SKOV3 cells. Starved SKOV3 cells were treated with 2 μM al-LPAs for the indicated times.

Fig. 5. Al-LPAs induced phosphorylation of ERK and Akt was dependent on Gi, PI3K, MEK and p38. A, Akt and ERK phosphorylation induced by al-LPAs was PTX-sensitive. HEY cells were pre-treated with PTX (100 ng/mL) for 16 h prior to stimulation with lipids (2 μM) for detection of p-Akt (30 min stimulation) or p-p42/44 ERK (5 min stimulation). B, al-LPA-induced Akt and ERK phosphorylation was inhibited by PI3K inhibitors. Starved HEY cells were pre-treated with 10 μM LY 294002 or 0.1 μM wortmannin for 30 min prior to stimulation with lipids (2 μM; 30 min for p-Akt and 5 min for p-ERK). C, S473 phosphorylation of Akt induced by al-LPAs was dependent on both MEK and p38 MAP kinases. Starved HEY cells were pre-treated with 30 μM PD98059 or 10 μM SB203580 for 30 min followed by stimulation with lipid (2 μM; 30 min for p-Akt and 5 min for p-ERK). D, HEY cells were transiently transfected with control vector, dominant negative MEK (MEK/2A), or kinase dead p38 (p38/AGF), and then treated with 2 μM al-LPAs for 30 min. E, S473 phosphorylation of Akt induced by al-LPAs was dependent on Rho activity. HEY cells were transiently transfected with control vector, C3-exoenzyme (C3), and then treated with 2 μM al-LPAs for 30 min.

Fig. 6. Al-LPA-mediated proliferation was PTX-sensitive and dependent on PI3K and ERK activation, but not p38 MAP kinase. A, HEY cells were treated with alkyl-, alkenyl-LPAs, or
solvent (Ctrl) and \[^3\]H\]thymidine incorporation was conducted as described in Materials and Methods. PTX (100 ng/mL) was added to the culture 16 h prior to lipid (5 \(\mu\)M) stimulation. HEY cells were stimulated with alkyl-LPA or alkenyl-LPA (5 \(\mu\)M) in the presence of 30 \(\mu\)M PD 98059 (PD), 10 \(\mu\)M LY294002 (LY), 0.1 \(\mu\)M wortmanin (WT), or 10 \(\mu\)M SB 203580 (SB). The data shown here represent the mean ± SD of three independent experiments. B, HEY cells were transiently transfected with control vector, dominant negative MEK (MEK/2A), kinase dead p38 (p38/AGF), or dominant negative Akt (AKT/DN). After the starvation, the cells were incubated with 5 \(\mu\)M al-LPAs for 24 h. Results are plotted as mean ± SD of three independent experiments. *** \(p<0.001\), ** \(p<0.01\), * \(p<0.05\) (Student’s t test).

Figure 7. Al-LPA stimulated HEY cell migration. A, cell mobility was measured in a modified Boyden chamber assay as described in Materials and Methods. Alkyl- or alkenyl-LPA (0 - 5 \(\mu\)M) was added to the lower chamber. Cells migrated to the lower phase of the membrane were counted after starved cells were seeded in the upper chamber for 4 h. B, the relative potencies of different LPA species in stimulating cell migration. Different LPA species (1 \(\mu\)M) were added to the lower chamber of the migration chamber, and starved cells were added to the upper chamber. Migration was allowed for 4 h at 37°C. C, al-LPA-stimulated migration was PTX- and Rho-sensitive and PI3K-dependent. HEY cells were pretreated with PTX (100 ng/mL) for 16 h or transiently transfected with C3-exoenzyme (C3, a Rho inhibitor) or dominant negative MEK (MEK/2A). HEY cells in the absence (Control) or presence of LY294002 (10 \(\mu\)M, LY), as well as PTX pretreated cells or transfected cells were loaded into the upper chambers and the lipids (1 \(\mu\)M) were added to the lower chamber. The migration was conducted for 4 h. The cell number on the
lower face of the membrane was counted. The results are presented as the mean ± SD of three independent experiments. *** p<0.001 (Student's t test).

Figure 8. Stimulation of IL-8 secretion by LPAs in HEY cells. Cells were starved from serum for 18-24 h and treated for 6 h with varying doses of LPAs. The supernatants were then removed and stored in a freezer at -80°C until ELISA (Materials and Methods) was performed.
Table I Statistical Analysis of LPAs in 15 pairs of Ascites Samples from Patients with Ovarian Cancer or Non-malignant Diseases

<table>
<thead>
<tr>
<th></th>
<th>Alkyl-LPA (µM)</th>
<th>Alkenyl-LPA (µM)</th>
<th>Total al-LPAs (µM)</th>
<th>Acyl-LPA (µM)</th>
<th>Total acyl-LPAs (µM)</th>
<th>Total LPAs (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarian Cancer</td>
<td>min.</td>
<td>0.3540</td>
<td>0.1046</td>
<td>0.0943</td>
<td>0.4688</td>
<td>1.0217</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>1.4800</td>
<td>0.6371</td>
<td>0.2906</td>
<td>1.6036</td>
<td>3.7113</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>1.2620</td>
<td>0.6577</td>
<td>0.2651</td>
<td>1.2278</td>
<td>3.6384</td>
</tr>
</tbody>
</table>

Benign Diseases

	min.	0.0000	0.0000	0.0000	0.0164	0.0423	0.2779	0.0000	0.0392	0.0735	0.0000	0.0000	0.3966	0.4389	14.9973	15.7150	3.6662	4.2243	2.6937	2.9665
	max.	0.4450	0.2541	0.0585	0.4081	1.1072	7.8070	1.5854	2.5443	1.8295	1.2583	0.3686	14.9973	15.7150	3.6662	4.2243				
	mean	0.1430	0.0997	0.0082	0.1072	0.3580	1.8975	0.4775	0.5401	0.3774	0.4181	0.1557	3.6662	4.2243						
	median	0.0928	0.0820	0.0000	0.0602	0.2287	1.3920	0.3660	0.3540	0.2300	0.2907	0.1111	2.6937	2.9665						

*aSample collection, lipid extraction and analyses were performed as described previously (35).
Table II. Checkerboard analysis of HEY cells^a

<table>
<thead>
<tr>
<th></th>
<th>Alkyl-LPA, upper chamber (μM)</th>
<th>0</th>
<th>0.1</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyl-LPA, lower chamber (μM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>68±15</td>
<td>72±13</td>
<td>65±13</td>
<td>55±13</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>280±50</td>
<td>167±29</td>
<td>88±10</td>
<td>77±15</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>408±36</td>
<td>367±115</td>
<td>210±30</td>
<td>87±12</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>659±112</td>
<td>587±55</td>
<td>343±21</td>
<td>120±12</td>
</tr>
<tr>
<td></td>
<td>Alkenyl-LPA, upper chamber (μM)</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Alkenyl-LPA, lower chamber (μM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>78±13</td>
<td>77±8</td>
<td>67±6</td>
<td>82±8</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>230±26</td>
<td>150±26</td>
<td>118±28</td>
<td>118±28</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>493±51</td>
<td>293±40</td>
<td>207±15</td>
<td>132±28</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>827±122</td>
<td>550±30</td>
<td>270±72</td>
<td>112±38</td>
</tr>
</tbody>
</table>

^aDifferent concentrations of alkyl-LPA or alkenyl-LPA were added to the upper and/or lower chamber, and HEY cells in the upper chamber were allowed to migrate for 4 h at 37°C.
Figure 2

Alkenyl-LPA

Alkyl-LPA

m/z

14:0-acyl-LPA
16:0-alkenyl-LPA
18:0-alkenyl-LPA

Internal standard

381

394

421

395

381

0 100

%
Figure 3B

Graph showing the OD (595 - 655 nm) against Lipid (µM) for Alkenyl-LPA and Alkyl-LPA.
Figure 4D

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Alkyl-LPA</th>
<th>Alkenyl-LPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>30</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>p-S473-Akt</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>p-p42/44 ERK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Akt</td>
<td></td>
</tr>
</tbody>
</table>

(min)
Figure 5C

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>PD 98059</th>
<th>SB 203580</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyl-LPA</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Alkenyl-LPA</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

- **p-S473-Akt**

- **Total Akt**

Figure 5D

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>MEK/2A</th>
<th>p38/AGF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Alkyl-LPA</td>
<td>Alkenyl-LPA</td>
<td>Alkyl-LPA</td>
</tr>
</tbody>
</table>

- **p-S473-Akt**

- **Total Akt**

- **MEK**

- **p38**

Figure 5E

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Alkyl-LPA</td>
<td>Alkenyl-LPA</td>
</tr>
</tbody>
</table>

- **p-S473-Akt**

- **Total Akt**
Figure 7A

A graph showing the relationship between migrated cells and lipid concentration. Two lines are plotted, representing Alkenyl-LPA (solid line) and Alkyl-LPA (dashed line). The x-axis represents lipid concentration (μM) ranging from 0 to 10, and the y-axis represents migrated cells ranging from 0 to 350.
Figure 7B

Migrated cells

No lipid 16:0-alkyl-LPA 16:0/18:0-alkenyl-LPA 18:1-acyl-LPA 16:0-acyl-LPA 18:0-acyl-LPA
Active endothelial nitric oxide synthase is localized at cell-cell contacts

The enzyme endothelial nitric oxide synthase (eNOS) produces nitric oxide (NO) which is essential for vascular function. Previously, studies have demonstrated that eNOS is localized in the cytosol, Golgi complex and caveolae. Using immunofluorescence and immunoelectron microscopy techniques on a human microvascular endothelial cell line we show that plasma membrane-resident eNOS is predominantly localized at cell-cell contacts. eNOS is localized at these contacts in detergent-insoluble membrane rafts, while Golgi-localized eNOS is detergent-soluble. The presence of eNOS at the contact sites is important for its activity, since non-confluent endothelial cell layers hardly express eNOS at the plasma membrane and generate less NO than confluent monolayers. Confluent endothelial cells release more than twice the amount of nitrite in the medium compared to non-confluent cells under basal conditions and upon stimulation with calcium ionophore or acetylcholine. This difference in NO production is not due to a change in the total cellular eNOS content, since the amount of eNOS in the cell is not increased when endothelial cell cultures reach confluence. Furthermore, in confluent monolayers the Golgi-disrupting brefeldin A or brefeldin A did not affect the localization of eNOS at the plasma membrane or its activity. Since cytosolic eNOS is inactive it suggests that active eNOS is localized at cell-cell contacts. These findings are highly relevant for the role of NO in vascular physiology. Since NO is essential for increases in endothelial permeability induced by e.g. leukocyte adhesion, hypoxia, thrombin, VEGF and tumor necrosis factor, one can propose that the presence of eNOS at cell-cell contacts is required for local increases of NO at these sites, resulting in a dynamic and precise regulation of the permeability of the endothelial lining of the vessel wall.

PHOSPHOLIPIDS

Alkyl and Alkenyl Lyposphosphatic Acid Are Elevated in Peritoneal Washings of Patients with Early and Late Stage Ovarian Cancer

We have recently shown that in addition to ester-linked lysophosphatidic acid (LPA) other LPA species, including alkyl- and alkenyl-LPAs (ALPA/LPAs) are also present in the fluids. In particular, ALPA/LPAs are elevated in malignant ascites from patients with ovarian cancer compared with patients with non-malignant diseases (aer failure or benign gynecological diseases). In this study, we evaluated the levels of various lysolipids in peritoneal washings of patients with ovarian cancer (OCa), who did not produce ascites, compared with those patients with breast or endometrial cancer (OCa). Subjects had an adnexal mass or EC prior to surgery. At laparoscopy. 100 mL of saline was placed into the peritoneal cavity. 20 mL was then used for analysis. Lysolipids were extracted, separated on a thin-layer chromatography plate, and directly analyzed for LPAs, ALPA/LPAs, lysophosphatidylserine (LPS), and sphingosine-1-phosphate (SIP) using an electrophoresis mass spectrometry-based method. Statistical analysis was performed with Kruskal-Wallis and Wilcoxon tests. Of 26 patients enrolled. 6 had OCa (4 with Stage I, 2 with Stage IIC). 10 had EC (Stage IA or IB). 8 had benign neoplasms. and 2 had borderline ovarian neoplasms. Pair-wise tests demonstrated that ALPA/LPA levels were elevated in OCa vs. BB (p<0.05). and OCa vs. EC (p<0.01). With 35 mL as a cut-off point. 4 of 6 OCAs and 3 of 10 ECs had ALPA/LPA levels that were significantly elevated. These results suggest that ALPA/LPAs are potential useful markers for clinical management of OCa. We are currently exploring the clinical implications of these findings.
Identification of the first two high affinity receptors for Sphingosylphosphorylcholine (SPC) and the first receptor for Lysophosphatidylcholine (LPC)

Kui Zhu‡, Linnea M. Baudhuin¶, Guiying Hong‡, Freager S. Williams, Kelly L. Cristina, Janusz H.S. Kabarowski*, Owen N. Witte* and Yan Xu‡†,
‡Department of Cancer Biology, †Department of Gynecology and Obstetrics, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland OH 44195. ¶Department of Chemistry, Cleveland State University, 24th and Euclid Ave, Cleveland OH 44115. *Department of Microbiology, Immunology and Molecular Genetics, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095-1662.

Sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC) are bioactive lipid molecules sharing structural similarity and involved in numerous biological processes. We have recently identified ovarian cancer G protein coupled receptor 1 (OGR1) as a specific and high affinity receptor for SPC (Xu, Zhu et al, Natuare Cell Biol. 2, 261, 2000). Among G protein coupled receptors (GPCRs), GPR4 shares highest sequence homology (51%) with OGR1. In this work, we have identified GPR4 as not only a high affinity receptor for SPC, but also a receptor for LPC with a relative low affinity. Both SPC (EC$_{50}$=105 nM) and LPC (EC$_{50}$=1.1 µM) induce increases in intracellular calcium in GPR4-, but not vector-transfected, MCF10A cells. These effects are insensitive to the treatment of BN52021 (a specific PAF receptor antagonist), suggesting that they are not mediated through an endogenous PAF receptor. HEK293 cells transfected with GPR4 respond to SPC and, to a lesser extent, LPC, in serum responsive element (SRE) reporter assays. SPC binds to GPR4 in GPR4-transfected CHO cells with high affinity (K$_{d}$=35.9 nM), with competitive binding elicited by only SPC and LPC. In GPR4-transfected HEK293 cells, both SPC and LPC, but not platelet activating factor (PAF), lyso-PAF, lysophosphatidic acid (LPA) or sphingosine-1-phosphate (S1P), induce internalization of the receptor (receptor-GFP fusion). SPC regulates diverse cellular functions, include both cell proliferation and growth inhibition, smooth muscle contraction and wound healing. LPC plays an important role in atherosclerosis and inflammatory diseases by affecting various aspects of a variety of cell types involved in these diseases. However, the signaling mechanisms of LPC have not been studied extensively. The identification of GPR4 as the first LPC receptor and further studies on the role of GPR4 and its related genes in the development of atherogenesis and other inflammatory diseases will add important information to our understanding of these diseases.

* To whom correspondence should be addressed. Phone (216) 444-1168; fax: (216) 445-6269; E-mail: xuy@ccf.org
Roles of Ether-linked Lysophosphatidic Acid in Ovarian Cancer Cells

Jun Lu*, Yi-Jin Xiao*, and Yan Xu*#

*Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
#Department of Gynecology and Obstetrics, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA

ABSTRACT

Lysophosphatidic acid (LPA) is involved in many biological processes, including cell survival, growth, migration and differentiation. We have recently reported that ether-linked LPAs (alkyl- and alkenyl-LPAs) are present at elevated levels in ascites from patients with ovarian cancer, when compared with ascites from patients with non-malignant diseases. Since ascitic fluid in cancer patients represents an in vivo environment for ovarian cancer cells, the presence of large amounts of alkyl- and alkenyl-LPAs suggests that they play a potential pathological role in the development of ovarian cancer. In the present study, we found that alkyl- and alkenyl-LPAs were more stable than acyl-LPAs in ascites. These lipids stimulated DNA synthesis and proliferation of ovarian cancer cells through G1, phosphatidylinositol-3 kinase (PI3-K), and ERK-dependent pathways. They also induced migration of ovarian cancer cells through the collagen I-coated membrane. This activity required the activation of Rho and was partially dependent on Akt activation. In addition, alkyl- and alkenyl-LPAs stimulated interleukin-8 (IL-8) production. Together, these results implicated that both alkyl- and alkenyl-LPAs may play important pathological and physiological roles in ovarian cancer growth and metastasis.
The Cleveland Clinic Foundation
Research Day & Night
Abstracts
October 19 ~2000
Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1

Yan Xu, Kui Zhu, Guiying Hong, Weihua Wu, Linnea M. Baudhuin, Yijin Xiao and Derek S. Damron

Sphingosylphosphorylcholine (SPC) is a bioactive lipid that acts as an intracellular and extracellular signalling molecule in numerous biological processes. Many of the cellular actions of SPC are believed to be mediated by the activation of unidentified G-protein-coupled receptors. Here we show that SPC is a high-affinity ligand for an orphan receptor, ovarian cancer G-protein-coupled receptor 1 (OGR1). In OGR1-transfected cells, SPC binds to OGR1 with high affinity (Kd=33.3nM) and high specificity and transiently increases intracellular calcium. The specific binding of SPC to OGR1 also activates p42/44 mitogen-activates protein kinases (MAP kinases) and inhibits cell proliferation. In addition, SPC causes internalization of OGR1 in a structurally specific manner. Based on our results, we show for the first time the identification of a high-affinity and specific receptor for SPC.
Up-regulation and Activation of Akt2 by Bioactive Lysolipids in Ovarian Cancer

Linnea M. Baudhuin1,3 and Yan Xu1,2,3

1Department of Cancer Biology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195; 2Department of Gynecology and Obstetrics, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195; 3Department of Chemistry, Cleveland State University, 24th and Euclid Avenue, Cleveland, OH, 44115

The structurally related bioactive lysolipids, lysophosphatidic acid (LPA), sphingosine-1-phosphate (S1P), and sphingosylphosphorylcholine (SPC) have been shown to affect the growth and invasiveness of ovarian cancer cells. All three of these lipids have been detected in the ascitic fluid and/ or plasma of patients with ovarian cancer. Akt2 (PKBβ, RAC-PKB) is an oncogene that regulates specific apoptotic proteins and is amplified with high frequency in ovarian, breast, and pancreatic carcinomas. With the aid of GeneChip analyses, we show that S1P regulates increased mRNA expression of Akt2 in the HEY ovarian cancer cell line. Using quantitative RealTime RT-PCR, we confirm that S1P, and additionally LPA and SPC, regulate increases in Akt2 mRNA expression in ovarian cancer cells in a time- and dose-dependent manner. Furthermore, by detection of serine 473 phosphorylated Akt2, we show that LPA, S1P, and SPC activate Akt2 in HEY cells. With the use of specific inhibitors, we further demonstrate that this activation of Akt2 is dependent on G1, phosphatidylinositol 3-kinase (PI3-K), and phospholipase C (PLC).

Overexpression of the OGR1 in HEK293 Cells Inhibits Cell Growth, Migration and Spreading

Guiying Hong, Linnea Baudhuin, and Yan Xu

Cancer Biology Department

We recently described the identification of the ligand (sphingosylphosphorylcholine, SPC) for an orphan G protein coupled receptor, OGR1 (Xu et al., Nature Cell Biology, 2, 2000, 261-267). To explore the potential cellular functions of OGR1 and its ligand, we established an OGR1-inducible system (the ecdysone-inducible system, Invitrogen) in HEK293 cells. We found that overexpression of OGR1, even in the absence of its ligand, had profound effect on cell growth, spreading and migration, and the ligand (SPC) further enhance these effects. Induction of OGR1 induced inhibition of cell growth (10-57%), cell spreading on tissue culture dishes (20-60%), and cell migration through FN in Boyden Chambers (decreased for 4-fold) in a OGR1 expression level-dependent manner. The mechanisms of these inhibitions are under investigation. Our preliminary results suggest that AKT2, integrins and FAK may be involved.
Activation of RNase L by 2',5'-Oligoadenylates Regulates MAP Kinases: Implications for IFN- and Viral-Mediated Apoptosis

Geqiang Li and Robert H. Silverman
Department of Cancer Biology, Lerner Research Institute

RNase L is a uniquely-regulated endoribonuclease that functions in the anti-viral and apoptotic activities of type I IFNs. IFN treatment of mammalian cells induces a family of 2-5A synthetases that produce 2'-to-5' linked oligoadenylates (2-5A) in response to viral double stranded RNA (dsRNA). The inactive, monomeric form of RNase L is converted to its active, dimeric form after binding to 2-5A leading to degradation of cellular and viral RNA. Recently, we reported that stimulation of c-Jun NH2-terminal kinase (JNK) and its upstream activator kinase, MKK4, by dsRNA were both deficient in RNase L' cells (Iordanov, M. et al. Mol. Cell. Biol. 20, 617, 2000). We have now extended these findings by directly implicating RNase L in the activation of JNK1 and JNK2. Transfection of human ovarian carcinoma cells (Hey1B) with 2-5A [ppp(A2'p),A, n = 2 to 6] caused activation of RNase L resulting in characteristic rRNA cleavage products. In the presence of 2-5A and the protein synthesis inhibitor, cycloheximide (CHI), there was also a potent activation of JNK1 and JNK2. In contrast, the dimeric form of 2-5A (pppA2'p5'A) failed to activate RNase L and failed to activate JNKs in the presence or absence of CHI. In addition, stimulation of the extracellular regulated kinase, ERK2, was suppressed by 2-5A activation of RNase L. Because JNKs are linked to apoptosis and ERK2 to growth or cell survival signals, the result of both activating JNK and inhibiting ERK2 will be to promote cell death. We previously showed that apoptosis by both viral and non-viral agents is deficient in RNase L' cells and mice and 2-5A transfection of mammalian cells causes apoptosis (Zhou et al., EMBO J. 16, 6355-6363, 1997). Therefore, the regulation of the JNK and ERK MAP kinases by RNase L is likely to provide some of the cell death signals triggered by IFNs and viral double stranded RNA.

Electrospray Ionization Mass Spectrometry Analysis of Lysophospholipids in Human Ascitic Fluids: Comparison of the Lysophospholipid Contents in Malignant and Non-malignant Ascitic Fluids

Yi-Jin Xiao, Benjamin Schwartz, Monique Washington, Alexander Kennedy, Kenneth Webster, Jerome Berlinson and Yan Xu

Lysophospholipids (lyso-PLs), including various glycerol-based and sphingosine-based lysophospholipids, play important roles in many biochemical, physiological and pathological processes. The classical methods to analyze these lipids involve gas-chromatography and/or high-performance liquid chromatography (HPLC), which are time-consuming, cumbersome and sometimes inaccurate due to the incomplete separation of closely related lipid species. We now describe the quantitative analysis of lyso-PLs in ascites samples from patients with ovarian cancer using electrospray ionization spectrometry (ESI-MS). Three new classes of lyso-PL molecules are detected: alkyl-LPA, alkenyl-LPA and methylated lysophosphatidylethanolamine(LPE). Importantly, the following lysophospholipid species are significantly increased in ascites from patients with ovarian cancer, compared to patients with non-malignant diseases (liver failure): LPA(including acyl-, alkyl- and alkenyl-LPA species), Lysophosphatidylcholine(LPC) and sphingosylphosphorylcholine(SPC). Lysophosphorylcholine(LPC) contents are also significantly different among ascitic fluids from the two groups of patients. However, the total phosphate in ascites samples from patients with ovarian cancer are not significantly different compared to that from patients with non-malignant disease.
The Dual Effect of Sphingosine-1-Phosphate on Cell Migration

Guiying Hong and Yan Xu

Sphingosine-1-phosphate (S1P) is a bioactive lysophospholipid that acts as an extracellular and intracellular messenger. We reported previously that S1P modulates both growth and adhesion of ovarian cancer cells (Hong et al., FEBS Letters, 460, 1999, 513-518). In this study, we showed that S1P regulates cell migration/invasion in a cell type specific manner in Boyden chamber assays. S1P (0.2 μM) inhibited chemotactic migration of HEK293 cells (5-fold) and human leukemia Jurkat cells (6-fold), but stimulated the migration/invasion of ovarian cancer cells (HEY and OCC1), although the stimulation was ≤2-fold. The basal levels (chemokinetics) of migration/invasion (when the culture medium and S1P were present in both the upper and lower chambers) of HEY and OCC1 cells were dependent on the composition of the extracellular matrix proteins. HEY cells are more invasive than OCC1 in vivo. Nonetheless, HEY and OCC1 cells showed similar rates of migration through laminin-coated membranes. However, HEY cells migrated 1.6-fold and 50-fold faster than OCC1 cells when the Boyden chamber membranes were coated with collagen I and fibronectin, respectively. S1P (0.2 μM) stimulated a 2-fold migration of OCC1 cells through laminin, as compared to the control. Both the basal and S1P-stimulated migration of HEY cells through collagen I, fibronectin, and to a lesser extent, laminin, were inhibited by RGD peptide, suggesting the involvement of RGD-containing integrin(s) in these processes. Since S1P is present in the ascites of patients with ovarian cancer (Hong et al., FEBS Letters, 460, 1999, 513-518), studying the mechanism of S1P-regulated tumor cell invasion will provide important information on ovarian tumor metastasis.

Biological Effects of Alkyl- and Alkenyl-lysophosphatidic Acids in Ovarian Cancer Cells

Jun Lu, Kui Zhu, and Yan Xu

Lysophosphatidic acids (LPAs) are composed of acyl-, alkyl-, and alkenyl-LPA species and they are extracellular signaling molecules acting through G protein-coupled receptors. Our lab recently found that alkyl- and alkenyl-lysophosphatidic acids (alkyl-LPA and alkenyl-LPA) were significantly elevated in ascites from patients with ovarian cancer, compared with patients with non-malignant diseases. In HEY ovarian cancer cells, both alkyl-(16:0) and alkenyl-(16:0/18:0) LPAs induced proliferation, whereas their counterparts, acyl-LPAs (16:0 and 18:0), showed antiproliferative activity at high concentrations (≥5 μM). Alkyl- and alkenyl-LPAs activated Akt2 (protein kinase B) through phosphorylation of Ser 473, which could be inhibited by phosphoinositide 3-kinase (PI3K) inhibitors. In addition, alkyl- and alkenyl-LPAs induced transient increases in intracellular Ca²⁺ in HEY cells. To determine whether acyl-, alkyl- and alkenyl-LPAs activate the same or different receptors, heterologous desensitization was conducted among them by monitoring changes in intracellular Ca²⁺. While acyl-LPAs (16:0, 18:0, and 16:1) desensitized each other, they did not desensitize the calcium induced by either alkyl or alkenyl-LPAs, suggesting the latter two sub-groups of LPAs may activate different receptors. Together, these results suggest that alkyl- and alkenyl-LPA may play an important role in ovarian cancer development through activating distinct receptor(s) from acyl-LPAs in HEY cells.