Three generations of dual-gate AlGaN/GaN HEMTs on sapphire were fabricated and characterized. First generation dual-gate HEMT had equal gate lengths of 650 nm produced through stepper lithography. Current gain cut-off frequency (ft) of 20 GHz, 60 V breakdown, 11 dB small-signal gain, 2.5 W/mm saturated output power, and 35% power added efficiency (PAE) at 4 GHz were achieved. Second and third generation dual-gate HEMT had unequal gate lengths to simultaneously achieve both large ft and breakdown voltage. Gate one located closest to the source had a gate length of 150 nm and gate two had a gate length of 300 nm. Both gates had "T" shaped cross-sections to reduce gate resistance and were defined by e-beam lithography. An ft of 52 GHz and breakdown voltage greater than 100 V was achieved for second generation dual-gate devices. Single gate devices with gate lengths of 150 nm fabricated on the same sample showed a breakdown voltage of 40 V. With an improvement in both gate lithography and material, third generation dual-gate devices produced an ft of 65 GHz, breakdown voltage of 70 V, 12 dB small-signal gain, 3.5 W/mm saturated output power, and 45% PAE at 8.2 GHz.
Final Report: Dual-Gate AlGaN/GaN Modulation-Doped Field-Effect Transistors

Abstract - Over the course of the program, three generations of dual-gate AlGaN/GaN HEMTs on sapphire have been fabricated and characterized. First generation dual-gate HEMT had equal gate lengths of 0.65 μm produced through stepper lithography. Current gain cut-off frequency (f_t) of 20 GHz, 60 V breakdown, 11 dB small-signal gain, 2.5 W/mm saturated output power, and 35% power added efficiency (PAE) at 4 GHz were achieved. Second generation dual-gate HEMT had unequal gate lengths to simultaneously achieve both large f_t and breakdown voltage. Gate one located closest to the source had a gate length (L_{G1}) of 0.15 μm and gate two had a gate length (L_{G2}) of 0.3 μm. Both gates had “T” shaped cross-sections to reduce gate resistance and were defined by e-beam lithography. An f_t of 52 GHz and breakdown voltage greater than 100 V was achieved. Single gate devices with gate lengths of 0.15 μm fabricated on the same sample showed a breakdown voltage of 40 V. Third generation dual-gate HEMT also had $L_{G1} = 0.15$ μm and $L_{G2} = 0.3$ μm, but an improvement in both gate lithography and material produced an f_t of 65 GHz and a breakdown voltage of 70 V. Single gate devices with gate lengths of 0.15 μm fabricated on the same sample showed a breakdown voltage of 35 V. Third generation dual-gate HEMT achieved 12 dB small-signal gain, 3.5 W/mm saturated output power, and 45% PAE at 8.2 GHz.

INTRODUCTION

Amplifiers operating over a decade bandwidth while providing tens to hundreds of watts with high power added efficiency are needed for 2-20 GHz phased array radars currently in development. AlGaN/GaN-based transistors exhibit large breakdown voltages (V_{br}) that enable large amounts of power ($P_{out} \leq V_{br}^2/8R_L$) for high power electronics. An output power of 9.8 W/mm at 8.0 GHz has been demonstrated on SiC substrate [1] and a cutoff frequency, f_s, greater than 110 GHz has also been achieved with a gate-length of less than 0.1 μm [2].

For broadband common-source power amplifiers, the gain bandwidth product is limited to approximately f_s. Increased f_r can be obtained by reducing the gate length L_{G1}, however the breakdown voltage V_{br} will be significantly reduced. In the Johnson limit [3], the product of V_{load}/f_r is less than $E_{max}v_{sat}/\pi$, where E_{max} and v_{sat} are the breakdown field and the electron velocity. Therefore, increased V_{br} is obtained at the expense of f_s and high power levels are obtained at the expense of reduced amplifier bandwidth.

AlGaN/GaN dual-gate devices have the potential of simultaneously realizing a high f_r and a high breakdown voltage. Moreover, smaller feedback capacitance and higher output impedance of dual-gate devices enable flexibility for circuit application of broadband power amplifiers. A dual-gate device is electrically equivalent to a common-source (CS)/common-gate (CG) cascode pair, but occupies less die area. The current gain of the dual-gate device, $h_{21}(j\omega) = (f_{r1} / j\omega)(1 + j\omega/f_{r2})^{-1}$, deviates from that of the
CS device $h_{21}(jf) = (f_{r1}/jf)$ for $f > f_{r2}$, where f_{r1} and f_{r2} are the current gain cutoff frequencies of the CS and CG devices and f is the signal frequency. To provide substantial current gain, f_{r1} must be several times of the signal frequency f. In contrast, to avoid significant loss (i.e., >10%) in h_{21} in the CG stage, it is sufficient to have f_{r2} of 1.5f to 2f. The breakdown voltage is however determined by the CG device. Therefore, in a dual-gate device, it is advantageous to design the CS device with short L_g hence high f_r, and the CG device with long L_g hence lower f_r, but improved V_{br}. High bandwidth and high power are thus simultaneously obtained.

MATERIAL STRUCTURE

The epilayers of Al$_{0.3}$Ga$_{0.7}$N/GaN dual-gate devices were grown by metal organic chemical vapor deposition (MOCVD) on a c-plane sapphire substrate. The material structure began with a 200 Å thick GaN nucleation layer, followed by 3 µm thick insulating i-GaN as a device buffer layer. The Al$_{0.3}$Ga$_{0.7}$N contains a 30 Å unintentionally doped spacer layer, a 120 Å Si-doped charge supply layer and a 50 Å thick cap layer. Typical sheet electron concentrations and electron Hall mobilities of as-grown wafers were \sim1.0 \times 1013 cm$^{-2}$ and 1,200 cm2/V-s at room temperature.

FIRST GENERATION DUAL-GATE AlGaN/GaN HEMT

First generation dual-gate HEMT had equal gate lengths of 0.65 µm produced through stepper lithography. Capacitors to ground the gate of the CG device were fabricated with a 1000Å thick SiO$_2$ on the source contacts (~125 µm x 90 µm). The first gate was separated by 0.7 µm from the source and by 1.5 µm from the second gate. Current gain cut-off frequency (f_{c}) of 20 GHz, 60 V breakdown, 11 dB small-signal gain, 2.5 W/mm saturated output power, and 35% power added efficiency (PAE) at 4 GHz were achieved. All relevant plots are contained in the Power Point presentation that is attached.

SECOND GENERATION DUAL-GATE AlGaN/GaN HEMT

Second generation dual-gate HEMT had unequal gate lengths to simultaneously achieve both large f_r and breakdown voltage. Gate one located closest to the source had a gate length (L_{G1}) of 0.15 µm and gate two had a gate length (L_{G2}) of 0.3 µm. Both gates had “T” shaped cross-sections to reduce gate resistance and were defined by e-beam lithography. An f_r of 52 GHz and breakdown voltage greater than 100 V was achieved. Single gate devices with gate lengths of 0.15 µm fabricated on the same sample showed a breakdown voltage of 40 V. All relevant plots are contained in the Power Point presentation that is attached.
THIRD GENERATION DUAL-GATE AlGaN/GaN HEMT

Third generation dual-gate HEMT also had \(L_{Q1} = 0.15 \, \mu m \) and \(L_{Q2} = 0.3 \, \mu m \), but an improvement in both gate lithography and material produced an \(f_T \) of 65 GHz and a breakdown voltage of 70 V. Single gate devices with gate lengths of 0.15 \(\mu m \) fabricated on the same sample showed a breakdown voltage of 35 V. Third generation dual-gate HEMT achieved 12 dB small-signal gain, 3.5 W/mm saturated output power, and 45 % PAE at 8.2 GHz. All relevant plots are contained in the Power Point presentation that is attached.

CIRCUIT DESIGN

Using third generation dual-gate HEMTs, a small-signal model has been extracted from measured s-parameters, and 1-18 GHz dual-gate AlGaN/GaN power amplifier has been designed. \(f_T \)-doubler configuration with resistive feedback has been used for the design to achieve the large bandwidth requirements. Simulation results show \(s21 > 10 \, dB \) with power out greater than 1.5 W across the band. Due to parasitic capacitance associated with flip-chip bonding, the decision was made to produce a monolithic microwave integrated circuit (MMIC) design on SiC. Gate lithography failure due to unstable e-beam lithography process has prevented completion of the circuit. Schematic, layout, model parameters, process, and expected performance are shown in the Power Point presentation that is attached.

CONCLUSIONS

Three generations of AlGaN/GaN dual-gate HEMTs have been produced. Third-generation AlGaN/GaN HEMT took advantage of unequal gate lengths (\(L_{Q1} = 0.15 \, \mu m \) and \(L_{Q2} = 0.3 \, \mu m \)) produced by e-beam lithography to simultaneously produce high \(f_T \) (65 GHz) and large breakdown (70 V). Single gate devices with gate lengths of 0.15 \(\mu m \) fabricated on the same sample showed a breakdown voltage of only 35 V. Third generation dual-gate HEMT achieved 12 dB small-signal gain, 3.5 W/mm saturated output power, and 45 % PAE at 8.2 GHz. Dual-gate AlGaN/GaN HEMTs show the capability of providing the desired characteristics of a high \(f_T \) while still maintaining a large breakdown voltage for broadband power amplifiers. Moreover, smaller feedback capacitance and higher output impedance of dual-gate devices enable flexibility for circuit application of broadband power amplifiers.

PUBLICATIONS

REFERENCES

Dual-Gate AlGaN/GaN Modulation-Doped Field-Effect Transistors with Cut-Off Frequencies $f_T > 60$ GHz

Ching-Hui Chen, Robert Coffie, K. Krishnamurthy, Stacia Keller, Mark Rodwell, Member, IEEE, and Umesh K. Mishra, Fellow, IEEE

Abstract—We demonstrate dual-gate AlGaN/GaN modulation-doped field-effect transistors (MODFETs) with gate-lengths of $0.16 \mu m$ and $0.35 \mu m$ for the first and second gates, respectively. The dual-gate device exhibits a current-gain cut-off frequency $f_T > 60$ GHz and can simultaneously achieve a high breakdown voltage of >100 V. In comparison to single-gate devices with the same gate length $0.16 \mu m$, dual-gate FETs can significantly increase breakdown voltages, largely increasing the maximum allowable drain bias for high power application. The continuous wave (CW) output power is in excess of 3.5 W/mm at 8.2 GHz. The corresponding large-signal gain is 12 dB and the power added efficiency is 45%. The dual-gate device with different gate lengths shows the capability of providing simultaneous high cut-off frequencies, and high breakdown voltages for broadband power amplifiers.

Index Terms—AlGaN/GaN, broadband power amplifiers, dual-gate FETs.

I. INTRODUCTION

The 2–20 GHz PHASED array radars, now in development, require amplifiers operating over a decade bandwidth while providing tens to hundreds of watts with high power added efficiency. GaN/AlGaN-based devices exhibit large breakdown voltages (V_{br}) that enable the use of higher drain biases than typically used in other material systems to generate larger amounts of power ($P_{out} \leq V_{sat}^2/8R_L$) for high power electronics. Extensive efforts toward improving microwave performance of AlGaN/GaN modulation-doped field-effect transistors MODFETs have been made in the past years [1]–[3], focusing on extending output power and cutoff frequencies, f_T. An output power density of 9.1 W/mm at 8.2 GHz has been demonstrated on SiC substrate [4] and a higher $f_T > 110$ GHz has also been achieved with a gate-length $L_g < 0.1 \mu m$ [5].

In broadband common-source power amplifiers, the gain bandwidth product is limited to approximately f_T. Increased f_T can be obtained by reducing the gate length L_g, however, the breakdown voltage V_{br} will be significantly reduced.

In the Johnson limit [6], the product of $V_{br}f_T$ is less than $E_{max}v_{sat}/\pi$, where E_{max} and v_{sat} are the breakdown field and the electron velocity. Increased V_{br} is obtained at the expense of decreased f_T, and high power levels are obtained at the expense of reduced amplifier bandwidth.

AlGaN/GaN dual-gate devices have the potential of simultaneously realizing a high f_T and a high breakdown voltage. Moreover, smaller feedback capacitance and higher output impedance of dual-gate devices enable flexibility for circuit application of broadband power amplifiers. A dual-gate device is electrically equivalent to a common-source (CS) / common-gate (CG) cascode pair, but occupies less die area. The current gain of the dual-gate device, $h_{21}(jf) = \left(\frac{f_{T1}}{f}\right)^2 \left(1 + \frac{jf}{f_{T2}}\right)^{-1}$, deviates from that of the CS device $h_{21}(jf) = \left(\frac{f_{T1}}{f}\right)^2$, only for $f > f_{T2}$, where f_{T1} and f_{T2} are the current gain cutoff frequencies of the CS and CG devices and f is the signal frequency. To provide substantial current gain, f_{T1} must be several times of the signal frequency f. In contrast, to avoid significant loss (i.e., >10%) in h_{21} in the CG stage, it is sufficient to have f_{T2} of 1.5 f to 2 f. The breakdown voltage is however determined by the CG device. Therefore, in a dual-gate device, it is advantageous to design the CS device with short L_g hence high f_T, and the CG device with long L_g hence lower f_T, but improved V_{br}. High bandwidth and high power are thus simultaneously obtained. In this paper, we report AlGaN/GaN dual-gate MODFETs with gate lengths of $0.16 \mu m$ and $0.35 \mu m$ for the first and second gate, respectively. A high $f_T > 60$ GHz and a high breakdown voltage of >100 V can be simultaneously achieved for AlGaN/GaN MODFETs.

II. DEVICE FABRICATION

The epilayers of Al$_{0.3}$Ga$_{0.7}$N/GaN dual-gate devices were grown by metal organic chemical vapor deposition (MOCVD) on a c-plane sapphire substrate. The material structure began with a 200 Å thick GaN nucleation layer, followed by 3 μm thick isolating i-GaN as a device buffer layer. The Al$_{0.3}$Ga$_{0.7}$N contains a 30 Å unintentionally doped spacer layer, a 120 Å Si-doped charge supply layer and a 50 Å thick cap layer. Sheet electron concentration and electron Hall mobility of as-grown wafer were ~1.0×1013 cm$^{-2}$ and 1400 cm2/V·s at room temperature.

TaN/Al/Ni/Au (200 Å/2000 Å/550 Å/450 Å) ohmic contacts were evaporated and then annealed at 880 °C for 30 s. Gate
lithography was performed with a JEOL JBX-5DII (U) electron beam system. Both T-shaped gates with 0.16 and 0.35 μm footprints separated by 0.8 μm were produced with a PMMA/P(MMA-MAA)/PMMA tri-layer resist to reduce the resistance of submicrometer gates. Ni/Au/Ni (200 Å/3700 Å/300 Å) were then evaporated as gate metals. The gate of CG device was connected to the source of the CS device using MIM capacitors with 1600 Å SiO₂, providing RF grounding, and then a thick Ni/Au layer (~4500 Å) was evaporated on the top of the SiO₂ capacitors as the second gate pads. The final step in the process was to form a device mesa with Cl₂ reactive ion beam etching. The first gate was separated by 0.7 μm from the source, and the second gate was 1 μm away from the drain contact. A schematic diagram of the finished dual-gate device is shown in Fig. 1(a).

III. DEVICE CHARACTERISTICS AND DISCUSSION

The common source dc characteristics of the dual-gate device with the second gate biased at +2 V are shown in Fig. 1(b). The saturation current, \(I_{DS} \), is about 0.8 A/mm and pinch-off voltage is ~6 V. The peak value of extrinsic transconductance, \(g_m \), is about 220 mS/mm at \(V_{GSS} \) of +2 V. The average values of contact resistance and sheet resistance are 0.9 Ω-mm and 500 Ω/μm, respectively. As seen in Fig. 2, the breakdown voltages of 0.16 μm single-gate FETs were less than +50 V, which is typical of such short-channel GaN/AIGaN MODFETs [8]. The

![Figure 2](image_url)

Fig. 2. Comparison of breakdown behaviors of single-gate and dual-gate GaN/AIGaN MODFETs fabricated on the same wafer. The dual-gate device increases three-terminal breakdown voltage up to +100 V.

![Figure 3](image_url)

Fig. 3. Comparison of RF performance between single and dual gates devices fabricated on the same wafer: (a) \(S_{11} \), (b) \(S_{22} \), (c) \(S_{12} \), and (d) \(S_{21} \). The single-gate device was biased at \(V_{DS} = +12 \) V and \(V_{GSS} = -3 \) V, and the dual-gate device was operated with bias voltages of \(V_{GSS} = +2 \) V, \(V_{DS} = +12 \) V and \(V_{GSS} = -3 \) V. 0.16/0.35 μm dual-gate FETs had larger breakdown voltages of over +100 V. The reason for the increased breakdown voltage is the drain voltage is supported by the longer gate, which has a higher breakdown voltage because of electric field alleviation as discussed in [7]. Since the drain voltage swing of CS device is limited to the pinch-off voltage of CG device, leakage associated with large drain voltage excursions in short-channel devices is eliminated. Therefore, the maximum allowable drain bias is increased for high frequency and high power amplifiers.

DC to 40 GHz device S-parameters were measured at a \(V_{DS} \) of +13.5 V, \(I_{DS} \) of 240 mA/mm, and a \(V_{GSS} \) of +2 V. Both CS and CG devices, we biased in the saturation region. Fig. 3 shows the \(h_{21} \) and unilateral power gain (UPG) of dual-gate devices. The dual-gate device exhibits \(f_r > 65 \) GHz and \(f_{max} > 100 \) GHz. Since the current gain of dual-gate devices follows \(h_{21} = (f_{r1}/f_j)(1+jf_j/f_{tr2})^{-1} \), \(h_{21} \) of the dual-gate FETs is within roughly 10 to 20% of that of the single-gate device at the frequencies measured. Fig. 4 shows a comparison of RF performance between single-gate and dual-gate devices. Due to the presence of the second gate, the dual-gate device substantially
Fig. 4. Gain-frequency characteristics of dual-gate AlGaN/GaN MODFETs.

Fig. 5. Microwave power performance of dual-gate device at 8.2 GHz, with bias voltages of $V_{GSS} = +2$ V and $V_{DS} = +20$ V. The output power is greater than 3.5 W/mm, and the small signal gain, PAE, and large signal gain are 21.5 dB, 45% and 12 dB, respectively.

reduces signal feedback (S_{12}) more than 10 dB and increases output impedance (S_{22}) by 4 dB, leading to increased device power gain [9], [10]. It was noted that the maximum stable gain (MSG) and maximum available gain (MAG) of dual-gate devices were increased by 6 dB below 17 GHz, in comparison with single-gate devices. RF continuous wave (CW) power measurements were performed on uncooled devices on a sapphire substrate at 8.2 GHz. Fig. 5 shows the power performance of dual-gate devices biased at a V_{DS} of +20 V, with the second gate bias voltage of +2 V. The drain current at peak output power was 48 mA (320 ma/mm). The output power density is higher than 3.5 W/mm. The small-signal gain, power-added efficiency (PAE), and large-signal gain are 21.5 dB, 45% and 12 dB, respectively. Unfortunately, the higher breakdown voltage afforded by this scheme could not be effectively utilized because of substrate heating effects beyond a bias of +25 V.

IV. CONCLUSIONS

In conclusion, we have demonstrated dual-gate AlGaN/GaN MODFETs with T-shaped gates of 0.16 and 0.35 µm footprints on a c-plane sapphire substrate. A CW output power in excess of 3.5 W/mm was achieved at 8.2 GHz, with power-added efficiency >45%. The dual-gate device shows a capability of providing the desired characteristics of a high f_T (>60 GHz), while still maintaining a large breakdown (>+100 V) for broadband power amplifiers.

ACKNOWLEDGMENT

The authors are grateful to Dr. Y. Wu at Nitres, Inc. for several useful discussions.

REFERENCES

regions while ignoring all buildings which block the lit regions, we define that the two VSSs look at each other. In this procedure, the transmitter and the receiver are considered as VSSs, and the lower bounds of all lit regions are then ignored. From the pairs of VSSs, rays from the transmitter to the receiver are found by backward ray tracing in the plan view. The rays over buildings in the plan view account for forward rooftop diffractions. Since two sets of VSSs are constructed, there may be duplicated rays, and so they must be removed.

Fig. 4 Comparison of predictions with measurements

--- predictions

--- measurements

In the second step, for each ray in the plan view, the entire series of horizontal building edges lying between the transmitter and the receiver is available as the unfolded vertical profile of buildings. Using the vertical profile, the heights of the scattering points around buildings, as well as forward and backward rooftop diffraction points, can be determined in a similar manner to that in [2], with the approximation that the rays diffracted at a horizontal edge are taken to lie in the plane of the vertical profile. This approximation introduces a small prediction error.

To determine the diffraction loss due to propagation over buildings, we first find significant edges which form the shortest path from the transmitter to the receiver and apply the UTD diffraction coefficients to those edges in a cascade. When applying the UTD, the edges in the transition region of a previous edge are excluded, and the accounted edges as well as the transmitter and the receiver are set to the 'UTD edge'. Between each pair of 'UTD edge', there can be additional edges that may interfere with the propagation field. Among those edges, the most significant edges up to 10 are accounted for by the method proposed by Whittaker [3] in the calculation of the additional loss. From one vertical profile, multiple rays which may undergo back diffractions from horizontal edges or ground reflections can be found, and they must be considered individually. Our method allows for a single back diffraction from a horizontal edge anywhere along the ray path. The Fresnel reflection coefficients and the UTD diffraction coefficients are then applied for the scatterings around the buildings.

For computational efficiency, we constructed two VSSs in the restricted areas around a transmitter and a receiver within radii R_t and R_r as shown in Fig. 2. This restriction causes a slight prediction error in most cases, and the radius must be larger as the source height is increased.

Results and conclusion: To check the accuracy of the proposed ray tracing method, prediction results are compared with measurements in Munich which have been supplied by the German GSM operator Mannesmann Mobilfunk GmbH. Fig. 3 shows the building layouts in the city as well as the transmitter location and measurement route. The measurements were carried out at 947 MHz with the transmitter and receiver heights 13.5 and 1.5 m above the ground, respectively. To predict the signal path loss, scatterings up to 3rd order including one diffraction were allowed in the areas within $R_t = 500$ m and $R_r = 200$ m, respectively. The sector averaged received power was calculated by summing the individual powers of the contributing rays [2]. The values of relative permittivity and conductivity were set at 4.4, 0.01 S/m for buildings and 15, 7 S/m for the ground.

Fig. 3 shows some dominant rays from the transmitter to one receiver in the measurement route. The detailed comparisons in the route are shown in Fig. 4. The determination of the prediction error are 1.83 and 7.84 dB, and so the predictions of the proposed method are in good agreement with the measurements.

© IEEE 1999
Electronics Letters Online No: 19990595
DOI: 10.1049/el:19990595

Hae-Won Son and Noh-Hoon Myung (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, (KAIST), 373-1, Kuang-dong, Yusung-gu, Taejon, Korea)
E-mail: hwson@eain.kaist.ac.kr

References

AlGaN/GaN dual-gate modulation-doped field-effect transistors

The first results concerning dual-gate AlGaN/GaN MODFETs are presented. The devices have 0.65 μm gate lengths and were grown by metal organic chemical vapour deposition (MOCVD) on a sapphire substrate. The continuous wave (CW) output power is in excess of 2.5 W/mm at 40 GHz. The corresponding large-signal gain is 11.5 dB and the power added efficiency is 30.6%. Dual-gate devices with different gate lengths can provide simultaneous high breakdown voltage and high current-gain cutoff frequency for the broadband power amplifiers.

2-20 GHz phased array radars, now in development, require amplifiers operating over a decade bandwidth while providing tens of hundreds of Watts with power added efficiency. GaN-based modulation-doped field-effect transistors (MODFETs) are attractive in high power applications due to a large breakdown voltage V_B ($V_B \leq V_D / V_R$) [1-3]. 6 W/mm power density at 10 GHz has been demonstrated for devices on SiC substrate [3], $f_T > 60$ GHz has been achieved with a gate length $L_g < 0.15 \mu m$ [4]. In broadband commonsource power amplifiers, the gain bandwidth product is limited to f_T. Decreasing f_T increases f_T with the product $V_B f_T < E_S W V_A / A$, where E_S and V_A represent the breakdown field and electron velocity [5]. Increased V_B is obtained at the expense of decreased f_T, and high power levels are obtained at the expense of reduced amplifier bandwidth.

A dual-gate device is electrically equivalent to a common-source (CS) common-gate (CG) cascode pair [6], but occupies less die area. The current gain of the dual-gate device, $h_{ij}(f) = (h_{ij}(f) + \beta(f))$, deviates from that of the CS device $h_{ij}(f)$ only for $f > f_T$, where f_T and f_T' are the current gain cutoff frequencies of the CS and CG devices. To provide substantial current gain, f_T must be several times the signal frequency f. In contrast, to avoid significant loss in the CG stage, it is sufficient to have an f_T of 1.5-2f. The breakdown voltage is however determined by the CG device. Therefore, in a dual-gate device, it is advantageous to design the CS device with short L_g hence high f_T, and the CG device with long L_g hence lower f_T, but improved V_B. High bandwidth and high power are thus simultaneously obtained.

As a first demonstration, we fabricated dual-gate AlGaN/GaN MODFETs with equal gate length (0.65 μm) for CS and CG devices. Details of the epitaxial structure and fabrication process can be found in [1]. The sheet electron concentration and electron Hall mobility of as-grown modulation doped structures were ~1.72
× 10^9 cm^2/V s at room temperature. The gate of the CG device was connected to the source using MIM capacitors with 1000Å SiO_2 providing RF grounding. The first gate was separated by 0.7μm from the source and by 1.5μm from the second gate.

Fig. 1 Drain output I-V characteristics of 0.65 × 150μm dual-gate AlGaAs/GaAs MODFETs, with second gate biased at +3 V

Maximum current > 700mA/mm

Fig. 1 shows the common source DC characteristics with the second gate biased at +3 V. The pinch-off voltage is ~-4 V and the gate-drain breakdown voltage is > 60 V. V_{DS} varies V_{DSB} hence the saturation current I_{DS} and extrinsic transconductance g_{m} increase as V_{DS} increases. The maximum transconductance g_{m} is ~205mS/mm.

Fig. 2 Gain-frequency characteristics of single-gate and dual-gate AlGaAs/GaAs MODFETs

Drain biased conditions: +7V × 220mA/mm for single-gate device, +12V × 130mA/mm for dual-gate device

DC to 4GHz device S-parameters were measured at a V_{DS} of +12V, and gate bias voltages of V_{GSS} = -2V and V_{GSS} = +5V, respectively. Both CS and CG FETs operate in the saturation region under this biasing condition. Fig. 2 shows a comparison of the h_{ij} for single-gate and dual-gate MODFETs on the same wafer. The single-gate device exhibits f_{T} = 20.3GHz and f_{MAX} = 38.5GHz. The dual-gate device shows h_{ij}(0) = (f_{T}/f_{MAX} + j0f_{MAX})^2, with f_{T} = 22.2GHz and f_{MAX} = 14.5GHz, and f_{MAX} = 24.2GHz. Owing to the reduced feedback signal (S_{21}) and increased output impedance (S_{22}) [6], the MSG/MAG of the dual-gate device is increased by 10dB for frequencies below 7GHz. Continuous wave (CW) microwave power measurements at 4GHz were performed on uncooled devices on sapphire substrate. The dual-gate device was biased at a source-drain voltage of +27.5 V, and the second gate bias voltage V_{DS} was +5.5 V. The drain current at peak output power was 40mA (266mW/mm). The peak output power, as shown in Fig. 3, is 25.7dBm, corresponding to a 2.5W/mm power density. The small-signal linear gain, power added efficiency (PAE), and large-signal gain are 17.6dB, 30.5%, and 11.5dB, respectively.

Fig. 3 Microwave power performance of dual-gate device at 4 GHz

Source-drain voltage was +27.5 V, and second gate was biased at voltage V_{DS} of +5.5 V; small-signal linear gain is -17.6dB, peak output power density is > 2.5W/mm, corresponding large-signal gain, and power added efficiency (PAE) are 11.5dB and 30.5%.

We have demonstrated the first dual-gate Al_{0.3}Ga_{0.7}As/GaAs MODFETs. A CW output power in excess of 2.5W/mm was achieved at 4GHz, with power added efficiency > 30%. In the future, to obtain the desired characteristics of a high f_{T} (> 50GHz) while maintaining a large output power for broadband power amplifiers, the common-source device will be designed for a high f_{T} (L < 0.15μm) hence low breakdown V_{DS}, and the common-gate device can be designed for high V_{DS} and consequently low f_{T}.

Acknowledgment: This work was supported by the Office of Naval Research contract number (N0014-98-1-0750) at the University of California, Santa Barbara.

© IEEE 1999
Electronics Letters Online No: 19990627
DOI: 10.1049/el:19990627

C.-H. Chen, K. Krishnamurthy, S. Keller, G. Parish, M. Rodwell and U.K. Mishra (Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA)

Y.-F. Wu (WITtech, 107 S. La Patera Lane, Goleta, CA 93117, USA)

References

Mid-infrared intersubband electroluminescence in InAs/AlSb cascade structures

K. Ohtani and H. Ohno

Mid-infrared intersubband electroluminescence is reported in InAs single quantum wells embedded in InAs/AlSb quantum cascade structures. The observed emission energy is in good agreement with calculations based on the multiband k·p theory. The dominant polarization of the emitted light is perpendicular to the quantum well layers.

Quantum cascade lasers (QCL) are high performance mid-infrared light sources based on intersubband optical transitions, first demonstrated using GaInAs/AlInAs quantum well (QW) structures [1, 2]. The wavelength range covered by GaInAs/AlInAs QCLs includes the atmospheric windows (3–5 and 8–13μm) important for gas sensing and environment monitoring applications. Recently, high power continuous-wave (CW) operation (5 and 8μm, 200mW/facet) has been achieved at 80K [3, 4].

Sb-based InAs/AlSb QCLs have a number of advantages over GaInAs/AlInAs QCLs. The InAs/AlSb heterostructure has a highly tunable intersubband transition energy due to the large conduction band offset (~1.35eV) compared to that of the GaInAs/AlInAs systems (~0.5eV). Also, a recent theoretical appraisal of Sb-based intersubband lasers (5μm) [5, 6] showed that the threshold current density can be as low as 750A/cm² at 300K, almost a factor of four lower than the theoretical prediction for the 5μm GaInAs/AlInAs QCLs [6]. This is due to the small electron effective mass in the InAs QW, which reduces the optical phonon scattering rate believed to account for the high threshold current density in GaInAs/AlInAs QCLs, and at the same time increases the dipole matrix elements of the intersubband transition.

Although intersubband electroluminescence in InAs QWs utilising interband tunnelling between InAs/GeSb has been realised recently [7], electroluminescence from InAs/AlSb structures has not yet been achieved. In this Letter, we report the first observation of mid-infrared intersubband electroluminescence in InAs single QWs embedded in InAs/AlSb quantum cascade structures.

The samples were grown by a solid source molecular beam epitaxy system equipped with a compound As cell and a cracking Sb cell on undoped InAs(100) substrates. After the growth of 700nm Si-doped (3×10¹⁹cm⁻³) n-type InAs as a bottom contact layer, 10 periods of injector and active layer structures were grown. The injector structure consisted of digitally graded InAs/AlSb superlattices in which the InAs layers were Si-doped to n = 2×10¹²cm⁻². The active layer consisted of an InAs/AlSb single QW which comprised a 10ML AlSb barrier, a 30ML InAs quantum well, and a 5ML AlSb barrier. An alternate structure which had a thinner InAs well (26ML) was also grown. After growth of the injector/active layer structures, 200nm Si-doped (3×10¹⁰cm⁻³) InAs was grown as a top contact layer. All layers were grown at 420°C. During growth of injector and active layers, the InAs growth rate was reduced to 0.2ML/s and the As pressure was kept at a minimum to yield high InP-V stability condition in order to prevent As incorporation into Sb-based layers. The AlSb layers deposited 1×3 RHEED, and the InAs layers deposited 2×1 RHEED patterns with a VIII beam equilibrium pressure ratio of 5.5 for InAs and AlSb growth.

The grown sample was then processed into a 200μm x 200μm mesa with wet-etching and photolithography. Non-alloyed Cr/Au ohmic contacts were deposited on both top and bottom contact layers. The sample edge was then polished to a 45° wedge for light emission and mounted onto a copper cold finger of a cryostat for cooling down to ~77K. The electroluminescence measurement was performed with a rapid scan FT-IR spectrometer (Bio-Rad FTS-60A) using a lock-in detection technique with a resolution of 4cm⁻¹ [8]. A liquid-nitrogen-cooled HgCdTe detector was used; a polariser was inserted in the optical path to verify the polarisation of the emission. Current pulses at 15kHz with a duty cycle of 50% were used for the electroluminescence measurements. Under a forward bias, electrons are injected from an injection region into the first excited state (E₂) of the InAs QW. The electrons at E₂ undergo intersubband transitions (radiative and non-radiative) and relax to the ground state (E₁) of the InAs QW. The relaxed electrons then tunnel to the collector through a thin AlSb barrier; the collector acts as an injector for the next QW. From the multiband k·p theory [9], the energy separation between E₁ and E₂ of the 30ML InAs quantum well sample is 228meV and that of the 26ML sample is 267meV.

Fig. 1 Electroluminescence spectra at ~77K for different injection currents

(i) 80 mA
(ii) 50 mA

Inset: current-voltage characteristics at ~77K of intersubband cascade structure. Area is 200μm x 200μm

Fig. 2 Electroluminescence spectra of intersubband cascade structures at ~77K for 80mA injection current density

(i) 26 ML
(ii) 30 ML

Inset: sample area is the same for both samples

A typical current-voltage characteristic at ~77K is shown in the inset of Fig. 1. The injector blocks the current up to a bias of ~2.5V, after which the alignment of the injectors leads to current flow. Fig. 1 shows the electroluminescence spectra at ~77K under two different current bias conditions. An emission peak was observed at 247meV, corresponding to a wavelength of 5μm with full width at half maximum of ~18meV. The emission energy is in...
Device Approaches

Why Dual-gate / Casode HEMTs?

-> “slow-fast” cascode

FET 1
- Limits amplifier bandwidth $\sim f_{\tau 1}$/gain
- Small $V_{DS1} \sim 10$ V

FET 2
- Introduces a pole at $f_{\tau 2}$
- Large $V_{DS2} \sim 100$V

- FET 1 needs high $f_{\tau 1}$ (> 50 GHz, $L_{G1} < 0.15\ \mu m$), low breakdown
- FET 2 needs high breakdown, lower $f_{\tau 2}$ ($L_{G2} \sim 0.5\ \mu m$),

High breakdown and high f_{τ} attained simultaneously
Accomplishments:
First Dual-gate GaN HEMTs

First-Generation Device:
$L_G1 = L_G2 = 0.65$ microns
20 GHz current-gain cutoff frequency
60 V breakdown
2.5 W/mm, 35% PAE,
11 dB gain at 4 GHz

Suboptimal device: need $L_G1 << L_G2$
Accomplishments:

Deep submicron dual-gate GaN HEMTs

Second-Generation Device:
$L_{G1} = 0.15 \mu m$; small for high f_t;
$L_{G2} = 0.3 \mu m$; large for high breakdown

52 GHz current-gain cutoff frequency
8 dB current gain at 20 GHz
> 100 V breakdown

$\mu = 1100 \text{ cm}^2/\text{V-s}$
charge $n_s = 1.1 \times 10^{13} \text{ cm}^{-2}$

$L_{G1} = 0.15 \mu m$
$L_{G2} = 0.3 \mu m$

<table>
<thead>
<tr>
<th>S</th>
<th>0.7 μm</th>
<th>0.9 μm</th>
<th>1.0 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AlGaN
GaN
Sapphire substrate

Drain current (10nA/div)

V_{DS} (10V/div)

~ 0.16 μm

~ 0.16 μm

x60k 0030 22kV 500nm
Accomplishments:
Deep submicron dual-gate GaN HEMTs

Second-Generation Device:
- $L_{G1} = 0.15 \mu m$; small for high f_T
- $L_{G2} = 0.3 \mu m$; large for high breakdown

52 GHz current-gain cutoff frequency
8 dB current gain at 20 GHz
>100 V breakdown

- Mobility $\sim 1100 \text{ cm}^2/\text{V-s}$
- Charge $n_s \sim 1.1 \times 10^{13} \text{ cm}^2$

<table>
<thead>
<tr>
<th></th>
<th>0.7 µm</th>
<th>0.9 µm</th>
<th>1.0 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>G1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$L_{G1} = 0.15 \mu m$
$L_{G2} = 0.3 \mu m$

Layer Structure:
- AlGaN
- GaN
- Sapphire substrate

Graphs:
- 52 GHz f_T
- High small-signal power gain
Accomplishments:

Deep submicron dual-gate GaN HEMTs

Third-Generation Device:

- \(L_{G1} = 0.15 \, \mu m\); small for high \(f_t\);
- \(L_{G2} = 0.3 \, \mu m\); large for high breakdown

- 65 GHz current-gain cutoff frequency
- 3.5 W/mm, 45 % PAE,
- 12 dB gain at 8.2 GHz
- 70 V breakdown

Charge: \(n_s = 1.1 \times 10^{13} \, \text{cm}^2\)

Mobility: \(\sim 1100 \, \text{cm}^2/\text{V-s}\)

Channel Lengths:

- \(L_{G1} = 0.15 \, \mu m\)
- \(L_{G2} = 0.3 \, \mu m\)

AlGaN

GaN

Sapphire substrate

Diagram:

- **Drain current (500 uA/div)**
- **V_{DS} (10V/div)**
- **Dual-gate**

Graph:

- **Offset:** 2.0
- **Peak volts:** 17.0
Accomplishments:

Deep submicron dual-gate GaN HEMTs

Third-Generation Device:
\(L_{G1} = 0.15 \, \mu m \); small for high \(f_T \);
\(L_{G2} = 0.3 \, \mu m \); large for high breakdown

65 GHz current-gain cutoff frequency
3.5 W/mm, 45 % PAE,
12 dB gain at 8.2 GHz
70 V breakdown

\(L_{G1} = 0.15 \, \mu m \)
\(L_{G2} = 0.3 \, \mu m \)

\begin{align*}
\text{mobility} & \approx 1100 \, \text{cm}^2/\text{V-s} \\
\text{charge} n_s & \approx 1.1 \times 10^{13} \, \text{cm}^{-2}
\end{align*}

\begin{tabular}{c|c|c|c}
 & S & G1 & G2 \hline
\text{AlGaN} & & & \\
\text{GaN} & & & \\
\text{Sapphire substrate} & & &
\end{tabular}
Lumped circuits: limited by f_{max} and f_{τ}
Distributed circuits: limited only by f_{max}
f_{τ} multipliers: also limited only by f_{max}
$f_τ$ Multiplier Principle of Operation

Simple Stage

\[\frac{I_{out}}{I_{in}} = \frac{1}{j \left(\frac{f_τ}{f} \right)} \]

$f_τ$ Doubler

\[\frac{I_{out}}{I_{in}} = \frac{1}{j \left(2 \cdot \frac{f_τ}{f} \right)} \]

Inputs connected in series, outputs connected in parallel, output currents add. Current gain is twice that of single stage, $f_τ$ is doubled.
Intrinsic Device Parameters:

- $g_m = 150 \text{ mS/mm}$
- $C_{gs} = 430 \text{ fF/mm}$
- $R_i = 5 \Omega \text{mm}$
- $C_{gd} = 22 \text{ fF/mm}$
- $R_{ds} = 60 \Omega \text{mm}$
- $f_\tau = 55 \text{ GHz}$

Measured from third-generation devices

MMIC Chip:

- SiC Substrate
- Co-planar Wave Guide Design
- f_τ doubler configuration with resistive feedback
- Total Gate Periphery = 1.2 mm
- Die Dimensions: $W = 2.65 \text{ mm}$ $L = 2.10 \text{ mm}$
Large Signal Simulations:
P1dB > 1 W from 1 – 20 GHz
Peak PAE = 20 %
Peak Pout = 3 W

Large Signal Simulations:
Soft saturation of GaN HEMT not taken into account in simulation
Darlington Configuration without $1/g_m$
resistor in source path of FET 1
Instability due to negative input resistance
Darlington Configuration with $1/g_m$ resistor in source path of FET 1
$1/g_m$ resistance removes negative input impedance
$1/g_m$ value chosen so FETs provide equal currents at all frequencies
Immediate improvement in S11 observed
Resistive feedback added to circuit
\(R_f = Z_0(1-A_v) \) provides input and output matching at lower frequencies
(< 10 GHz)
Flat gain response is also obtained
Input and output matching using high impedance transmission lines for inductors and MIM capacitors added to circuit S11 and S22 are improved above 10 GHz and upper band edge extended beyond 20 GHz.
Ohmic Layer: (Ti/Al/Ni/Au: 200/2000/550/450 A) RTA annealed

Mesa Isolation

NiCr Thin Film Resistors (50 Ω/□)

E-beam Gate Layer: Tri-layer resist process

Metal 1 Layer: Transmission lines, bottom of MIM capacitors
Process Flow

Nitride 1 Layer (N1): Gate Passivation

Nitride 2 Layer (N2): Capacitor Dielectric

Airbridge Post layer

Plated Airbridge
Ohmic layer complete
Rougher morphology than usual
$R_c = 0.55 \ \Omega \cdot \text{mm}$

Mesa isolation complete

NiCr resistor layer complete
$R_{sh} = 50 \ \Omega/\Box$

E-beam layer attempted, but T-gates lifted completely
Rework in progress
1-18 GHz Dual gate GaN HEMT power amplifiers for Naval Radar

Significance:
- high current gain and high breakdown
- sufficient bandwidth and power
- for Navy 1-18 GHz, 2 W amplifier

Status
- high ft dual gate GaN HEMTs demonstrated
- ft-doubler with resistive feedback circuit designed

Future Plans
- construct, test, power amplifiers

Expected Results
- 1-18 GHz amplifiers, 2-10 W output power

Alternatives
- GaAs-based power PHEMTs

Navy and DOD Impact
- 1-18 GHz TWT drivers
- power amplifier for AMRFS

Industry collaborations / transitions
- Cree Lighting