THESIS

LEGACY SYSTEM UPGRADE FOR SOFTWARE RISK ASSESSMENT

by

Byron Vernon Terry Alexander

December 2001

Thesis Advisor: Valdis Berzins
Co-Advisor: Michael Murrah

Approved for public release; distribution is unlimited.
Report Documentation Page

<table>
<thead>
<tr>
<th>Report Date</th>
<th>Report Type</th>
<th>Dates Covered (from... to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19Dec2001</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title and Subtitle</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy Systems Upgrade for Software Risk Assessment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Project Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byron Alexander</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performing Organization Name(s) and Address(es)</th>
<th>Performing Organization Report Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Postgraduate School Monterey, California</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsoring/Monitoring Agency Name(s) and Address(es)</th>
<th>Sponsor/Monitor’s Acronym(s)</th>
<th>Sponsor/Monitor’s Report Number(s)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Distribution/Availability Statement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplementary Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abstract</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Subject Terms</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Report Classification</th>
<th>Classification of this page</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification of Abstract</th>
<th>Limitation of Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>UU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Pages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td></td>
</tr>
</tbody>
</table>

Classification of this page: unclassified

Limitation of Abstract: UU
Over the past 40 years limited progress has been made to help practitioners estimate the risk and the required effort necessary to deliver software solutions. Recent developments improve this outlook, one in particular, the research of Juan Carlos Nogueira. Dr. Nogueira developed a formal model for risk assessment that can be used to estimate a software project’s risk when examined against a desired development time-line.

Dr. Nogueira developed his model based on data collected from a series of experiments conducted on the VitéProject simulation. This unique approach provides a starting point towards a proven formal model for risk assessment. Another issue with software development, especially in the Department of Defense (DoD), is dealing with aging legacy software systems. These systems perform the functionality of their design, but their interfaces are obsolete and changing requirements limit their functional usefulness.

This thesis is an exercise in upgrading a legacy system licensed to the DoD, VitéProject, for use with ongoing DoD research that seeks to discern truly quantifiable criteria that can be used to more accurately estimate the length of time needed to complete any software project. Accurately projecting software development times and accurate software development costs have eluded software developers for decades.
LEGACY SYSTEM UPGRADE FOR SOFTWARE RISK ASSESSMENT

Byron Vernon Terry Alexander
Lieutenant, United States Navy
B.S., United States Naval Academy, 1994

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2001

Author: Byron Vernon Terry Alexander

Approved by: Valdis Berzins, Thesis Advisor

Michael Murrah, Co-Advisor

Chris Eagle, Chairman
Department of Computer Science
ABSTRACT

Over the past 40 years limited progress has been made to help practitioners estimate the risk and the required effort necessary to deliver software solutions. Recent developments improve this outlook, one in particular, the research of Juan Carlos Nogueira. Dr. Nogueira developed a formal model for risk assessment that can be used to estimate a software project’s risk when examined against a desired development time-line.

Dr. Nogueira developed his model based on data collected from a series of experiments conducted on the VitéProject simulation. This unique approach provides a starting point towards a proven formal model for risk assessment.

Another issue with software development, especially in the Department of Defense (DoD), is dealing with aging legacy software systems. These systems perform the functionality of their design, but their interfaces are obsolete and changing requirements limit their functional usefulness.

This thesis is an exercise in upgrading a legacy system licensed to the DoD, VitéProject, for use with ongoing DoD research that seeks to discern truly quantifiable criteria that can be used to more accurately estimate the length of time needed to complete any software project. Accurately projecting software development times and accurate software development costs have eluded software developers for decades.
TABLE OF CONTENTS

I. INTRODUCTION ..1
 A. BACKGROUND ...1
 B. PURPOSE ..3
 C. SCOPE AND METHODOLOGY3

II. SUPPORTING RESEARCH5

III. CODING METHODOLOGY9
 A. THE MODEL ...9
 B. VITÉPROJECT ...9
 1. VitéProject 2.09
 2. SIMVISION 3.011
 C. VISIO 5.0 ..11
 D. VISUAL BASIC 6.012
 E. MICROSOFT EXCEL13

IV. PROGRAM CODE AND DOCUMENTATION15
 A. CODE ...15
 1. Initial Display15
 2. Main Display18
 3. Information Mapping Display42
 B. DOCUMENTATION43
 C. EXTENSION VALIDATION49
 D. ADDITIONAL REQUIREMENTS51

V. CONCLUSION ...53

APPENDIX A ..55
 1. INITIAL DISPLAY55
 2. MAIN DISPLAY60
 3. INFORMATIONAL MAPPING DISPLAY70

LIST OF REFERENCES ..91

INITIAL DISTRIBUTION LIST93
LIST OF FIGURES

Figure 2.1 Mapping of Parameters to VitéProject7
Figure 4.1 Introductory Display45
Figure 4.2 Main Display46
Figure 4.3 Output Statistics47
Figure 4.4 Infomational Display48
Figure 4.5 VitéProject 16 Scenario output51
LIST OF TABLES

Table 4.1 Research 16 scenario output49
ACKNOWLEDGEMENTS

First, I wish to express my sincere gratitude to my loving family for all of the love and support.

Second, I wish to express my gratitude to Dr. Valdis Berzins and Richard Riehle for allowing me to pursue this research.

Finally, I wish to express my sincere gratitude to Major Michael Murrah, my co-advisor for his constant guidance, encouragement and mentorship. His perseverance, insight, and feedback were crucial to the timely completion of this thesis.
I. INTRODUCTION

A. BACKGROUND

New technologies procured by the Department of Defense (DoD) are becoming increasingly dependent upon software to operate. New hardware platforms like the Joint Strike Fighter and the planned destroyer (DD(X)), provide undisputable evidence that successful technological advantages are dependent upon the intricate integration of both the software and the hardware. The process of procuring any system for the DoD is based on estimates provided by contractors of how long and how costly project development will be. Currently, the software process is greatly flawed. Time and cost estimates of software projects have consistently been in error, leading to very costly overruns and schedule delays.

One of the greatest challenges facing the DoD is verifying time and cost estimations of software projects. Traditional engineering project estimates are based on measurable and tested criteria, subjecting the estimates submitted by contractors to fierce scrutiny. Unfortunately, software engineering projects are not amenable to quantifiable criteria, leaving DoD with little grounds to challenge development estimates. To solve this problem researchers are attempting to discern truly quantifiable criteria that can be used to more accurately estimate the length of time needed to complete any software project.
Another major problem facing the DoD is legacy systems. The DoD procures systems that meet a need at a given time, and much time and resources are invested into these systems. As technology continues to progress at astounding rates, many of these legacy systems are either no longer supported or are not compatible with the new technologies. DoD is faced with the problem of having to spend great sums of money to acquire redundant technology or to attempt to upgrade the legacy system.

One approach researches are investigating is using VitéProject to establish quantifiable measures for software development. VitéProject is a software based modeling and simulation tool that integrates organizational and work process views of strategic, time-critical projects to systematically engineer organizational projects. The underlying model of VitéProject was developed at Stanford University and has been validated for use to model organizational projects. It is the position of Dr. Juan Carlos Nogueira that the core model of VitéProject can also be applied to software projects. In his dissertation, *A Formal Model for Risk Assessment in Software Projects*, he determined metrics that could be used to estimate a software design timeline and adapted these metrics for use in VitéProject. The VitéProject software, in its current form, does not have the ability to allow for sensitivity analysis or for the collection of statistically significant sample sizes of input scenarios.
B. PURPOSE

The ultimate objective of this thesis is to develop a research tool capable of extending the effectiveness and lifecycle usefulness of legacy software, allow customization by analysts, and maintain the integrity of the original functionality. This goal will be achieved by extending the functionality of VitéProject and adapting it for use on a current DoD project; validating its core model for use with software engineering timeline estimation.

The extended functionality allows the use of VitéProject in the creation of a statistically significant number of simulations. The simulations will enable validation of the VitéProject model for use in modeling software engineering projects. The validated core model will allow for better software project time and cost estimation, thereby potentially saving DoD millions of dollars in cost overrun.

C. SCOPE AND METHODOLOGY

This thesis to extend the functionality of VitéProject will first begin with a review of the software engineering project estimation dissertation and the necessity for the program. Second, follow with a review of the enhancement algorithms and software extensions intended to add additional functionality. Third, continue with the code and documentation, as well as a validation of the extended program. Finally, this thesis will end with conclusions and recommendations for future research.
To achieve this goal of extended functionality of VitéProject there must be some steps taken prior to the programming. First, one must gain thorough understanding of the operation of VitéProject software and its interface with Visio (see Chapter III). Second, one must gain a baseline understanding of software project parameters to be used. Finally, one must understand the mapping of the software project parameters to VitéProject-specific parameters.

The implementation of this extension will provide the user an interface that allows the manipulation of VitéProject parameters. This manipulation will automate pre-simulation parameter changes to the VitéProject scenarios, and will allow for automatic or manual simulations of VitéProject scenarios. Finally, the extended program will capture desired data from the simulations and export the data to Microsoft Excel spreadsheet software, with minor formatting.
II. SUPPORTING RESEARCH

This chapter briefly discusses the research initiative that will directly benefit from the application of this thesis. An introduction to the research initiative is provided, followed by a discussion that details a simple validation of the thesis results.

Dr. Nogueira identifies automatically collectable measures in the software process that serve as project risk indicators. The results of Dr. Nogueira’s research initiative suggest that to assess software development risk, one must first determine the duration of a software project and consequently the required development effort (Nogueira, 2000). When these early measures are identified and properly correlated to project risk, a software project manager can more adequately assess software development cost. More accurate projections of the duration and cost of a software project in the requirements phase can save vast amounts of money and time, specifically in larger software projects.

In his dissertation, Dr. Nogueira surmised that the VitéProject Model could be used to accurately model a software engineering process. He implemented this modeling and simulation tool in a limited number of cases. The results, although not statistically significant, illustrated that a correlation could exist between the
VitéProject simulations and his mathematical estimates of software project duration.

The architecture of the proprietary VitéProject software imposes many limitations that must be mitigated prior to use outside of its original domain. Although the internal model is well suited and validated for business analysis, it is our belief that it can be extended to the software domain. However, the current working environment severely limits easy adaptation to the software domain. More on VitéProject limitations can be found in Chapter III.

To enable VitéProject 2.0 to conduct sensitivity analysis and multiple discrete simulations of a scenario, this research will extend the proprietary system. The software extension is accomplished by encapsulating the desired functionality of VitéProject, Visio and Microsoft Excel using Microsoft Visual Basic.

To adapt VitéProject for use in his research, Dr Nogueira first had to adapt his respective model parameters into VitéProject-specific parameters. The parameters Dr. Nogueira selected for measurement were Requirements Volatility, Efficiency and Complexity. The significance of each parameter within the software timeline estimate is not relevant for this thesis. More information on these parameters and their role in the software timeline estimate can be found in (Nogueira, 2000).
Figure 2.1 Mapping of Parameters to VitéProject

Figure 2.1 is extracted from Dr. Nogueira’s dissertation (Nogueira, 2000). It demonstrates the mapping between user-defined parameters and VitéProject-specific parameters. It was incumbent upon this research to make Dr. Nogueira’s model parameters into objects themselves, such that changes to the model parameters were echoed into the respective VitéProject-specific parameters.

In extending VitéProject, one has to ensure that the integrity of the internal Virtual Design Team (VDT_2) model is maintained. In his dissertation, Dr. Nogueira presented a table of simulation results that provide a logical validation baseline for this thesis. However, in this thesis, raw data simulations from the original VitéProject program were used to ensure that the extension did not
produce any deviation from the expected output of VitéProject. See Chapter IV, Section C.
III. CODING METHODOLOGY

A. THE MODEL

VitéProject is a commercial modeling and simulation tool based on the Virtual Design Tool (VDT). The VDT was based on contingency theory directed by Dr. Raymond Levitt at Stanford (Jin, 1996). The underlying model of VitéProject, which was based on VDT-2, has been validated on three levels at the Center for Integrated Facility Engineering at Stanford University (CIFE):

- micro-level analysis, using toy problems
- meso-level analysis, using toy problems and experiments
- macro-level analysis, by testing for authenticity, reproducibility, generalizability, and prospective.

A full accounting of VitéProject validation strategy can be found in the dissertation of (Nogueira, 2000) and (Thomsen et al., 1999).

B. VITÉPROJECT

1. VitéProject 2.0

As previously mentioned VitéProject is the commercial software of the VDT-2 framework. Dr. Nogueira used the VitéProject 2.0 in an attempt to apply CPM/Pert modeling techniques to software engineering vis-à-vis VitéProject 2.0. Dr. Nogueira parameterized VitéProject to adequately simulate sixteen different software project developments
Nogueira, 2000). His research implemented 30 simulations for each scenario development.

VitéProject has several limitations that must be addressed in order to maximize its potential. First, VitéProject limits a maximum of 100 simulated runs for a given scenario. Second, the resulting data is presented in summary format. The summary format provides very limited ability to conduct histograms or a sensitivity analysis. When validating the VDT-2 model for software projects, a larger sample size must be simulated throughout a larger range of software project scenarios.

To change software project scenarios, users must make changes to each individual activity or actors in a given scenario before a new scenario can be simulated. This process, even for the smallest organizational structures, becomes time consuming and inconvenient.

In a communication with Vité Incorporated, technicians informed me that Vité no longer supports VitéProject 2.0. The new product supported by Vité is SimVision 3.0. Although the analytical engine within VitéProject is the same as SimVision, SimVision provides a much needed user interface enhancement. However, for our research, the decomposed architecture of the original VitéProject 2.0 provides the most logical choice for any enhancements.
2. SIMVISION 3.0

SimVision 3.0, while providing a much improved user interface and the ability to increase simulation executions, still does not allow for histogram development and sensitivity analysis. Although SimVision 3.0 is the latest product of Vité and is also based on the VDT-2 research, its lack of a Windows Application Programming Interface (API) interface and a programming language interface make it unusable for the purposes of this research, and will not be discussed.

C. VISIO 5.0

VitéProject modeling and simulation software requires a graphical input of the organization’s structure. Visio provides the graphics tool for VitéProject 2.0. Visio opens all VitéProject documents via the VitéProject stencil, which is akin to a template in Microsoft Word. The initial organizational structure for a given scenario, as well as all changes to a scenario or an organization’s parameters occur within Visio.

Scenario simulations can be run from Visio, via a VitéProject add-in, or from VitéProject itself. If the scenario is executed from Visio, all data in the scenario drawing is first written to the VitéProject database file prior to the simulation run. If the simulation is run from Vité, the simulation relies solely on the data currently saved in the VitéProject database file.
Data is only saved to the database file from Visio during the course of a simulation. Therefore, as was discovered during this research, changes made in Visio are ignored until the simulation is executed at least once from Visio after any changes. If changes to organization parameters are made directly to the database, the changes will be reflected in the VitéProject scenario simulation, but will not be realized in Visio. Therefore changes made directly to the database will be overwritten if the scenario is run from Visio after the changes.

D. VISUAL BASIC 6.0

Neither VitéProject nor the follow-on, SimVision allow the user to run a simulation for a large number of trial runs and capture the data for each discrete run. Neither allow for parameter updates for multiple objects simultaneously. Furthermore, they do not allow the user to export data to a spreadsheet for more detailed analysis. However, only VitéProject allows for a programming language interface.

Although neither have a Windows API, VitéProject, because of its dependence upon Visio, can be manipulated in a limited way with Visual Basic. In VitéProject, organizational structure, updates to the organization and the scenario, and saving to the database are all done through Visio. VitéProject itself only accesses the data from the database and runs it through the simulator engine
to produce results. The results in turn are written to the database.

The dependence on Microsoft Visio allowed me to write a program in Visual Basic that utilizes the structure provided by Visio and the simulator engine of VitéProject to execute multiple scenarios. The use of Visual Basic also facilitates the export of all data to Microsoft Excel for analysis. Visual Basic, while not the most robust language, serves as the perfect tool for a rapid legacy system upgrade.

E. MICROSOFT EXCEL

Microsoft Excel provides a robust spreadsheet for analyzing the output data. Although other tools may prove better suited for establishing the type of curves and analyses warranted by the research, Excel has the added advantage of being widely used. The wide use of Excel in the area of data collection and statistical analysis ensures that should there be other, better-suited analysis programs, those programs will most likely interface seamlessly with Excel.

\[
\left(\frac{OutputVolume(min\ s)}{60\ min\ \cdot\ HoursWkd\ \cdot\ DaysWkd\ \cdot\ Week\ \cdot\ Day\ \cdot\ hour} \right) \times 7(days/week) \quad [Eq. 3-1]
\]

The output data from the simulations is exported to Excel with minimum loss. The areas of output are either cost or volume. Volume is a measure of time in minutes and
cost is measured in dollars. All data will be averaged in the last filled row if its column. The Volume data will be averaged and converted to days. The conversion to days takes into account the hours worked daily and the number of days worked per week. The conversion determines the number of weeks required to complete a task. Eq. 3-1 is used to calculate the number of working days and non-work days.
IV. PROGRAM CODE AND DOCUMENTATION

A. CODE

Visual Basic 6.0 (VBA) was used in the creation of the program. The program consists of three displays. The initial display allows the user to open the Visio file, the associated VitéProject database file, and indicate the storage location for the Excel file. The second display is the main program graphical user interface (GUI). The GUI allows the user to indicate the number of simulation trials, adjust the software project simulation parameters, and choose amongst possible output data to export to Excel. The third display is purely informational in that it illustrates the mapping from the software engineering parameters into the VitéProject parameters, and is called through hyperlinks in the main GUI.

The integrated development environment (IDE) of VBA, by virtue of its drag and drop nature for graphics and GUI, supplies some code as a precursor to the code entered by the programmer. This precursor code is not directly programmed, and therefore shall not be included in this chapter. Appendix A contains the code in its entirety.

1. Initial Display

Public dbsMyDB As DAO.Database
Dim szDbLocation As String
Dim szDir As String
Dim VisioApp As Visio.Application
Private Declare Function CloseWindow Lib "user32" (ByVal hwnd As Long) As Long

' Load the form with the initial instructions
Private Sub Form_Load()

 szCaption$ = "To begin the program some tasks must be completed:" & vbCrLf & vbCrLf
 szCaption = szCaption & "(1) Input the location of the Visio file that " & vbCrLf
 szCaption = szCaption & "will be used for the organizations structure." & vbCrLf
 szCaption = szCaption & "(2) Indicate the location of the Vite Database " & vbCrLf
 szCaption = szCaption & "to be used for the simulation." & vbCrLf
 szCaption = szCaption & "(3) Select directory to save output files" & vbCrLf
 szCaption = szCaption & "Depressing Cancel during this portion, " & vbCrLf
 szCaption = szCaption & "or inputting invalid" & vbCrLf
 szCaption = szCaption & "data will cause the program to exit."

 lblIntro.Caption = szCaption

 Form2.Height = 4530
End Sub

' Cancel button for first frame. If selected, quit the program
Private Sub cmdCancel1_Click()
 End
End Sub

' Cancel button for second frame. If selected, end the visio application then quit the program
Private Sub cmdCancel2_Click()
 VisioApp.Quit
End Sub

' Cancel button for third frame. If selected, end the visio application then quit the program
Private Sub cmdCancel3_Click()
 VisioApp.Quit
End Sub

' Call the procedure to open visio and allow the user to select a file to use with this program
Private Sub cmdContinue1_Click()
 Set VisioApp = OpenVisioDoc
 Form2.Height = 6345
 Label1.Enabled = False
End Sub
cmdContinue1.Enabled = False
cmdCancel1.Enabled = False
Frame1.Enabled = False
End Sub

' Call the procedure to open the VitéProject database
' file for use and manipulation

Private Sub cmdContinue2_Click()
 szDbLocation = setDataBase
 Form2.Height = 8520
 Label2.Enabled = False
 cmdContinue2.Enabled = False
 cmdCancel2.Enabled = False
 Frame2.Enabled = False
End Sub

' Select a directory to output the generated Excel files

Private Sub cmdContinue3_Click()
 Dim check As String
 szDir = Dir1.Path
 check = Right(szDir, 1)
 If check <> "\" Then
 szDir = szDir + "\\"
 End If
 Form2.Hide
 Form1.Show
End Sub

' Unload the form

Private Sub Form_Terminate()
 Unload Me
End Sub

' Method of the form2 that allows the database file
' location to be retrieved by another form

Public Function returnDBfile() As String
 returnDBfile = szDbLocation
End Function

' Method of the form2 that allows the directory to save
' Excel files be retrieved by another form

Public Function returnDir() As String
 returnDir = szDir
End Function

' Opens the Visio document, with rudimentary error handling

Public Function OpenVisioDoc() As Visio.Application
 Dim errMsg As String

Dim Vis50 As Visio.Application
Dim work As Long

errMsg = "File Failed to Open." & vbCrLf
errMsg = errMsg & "Please ensure that the path and " & vbCrLf
errMsg = errMsg & "file name are correct"
Set Vis50 = CreateObject("visio.application")

On Error GoTo Handler:
 Vis50.Application.DoCmd (visCmdFileOpen)
 Set OpenVisioDoc = Vis50
 work = CloseWindow(Vis50.WindowHandle32)
 Exit Function

Handler:
 MsgBox errMsg, vbExclamation + vbOKOnly, "File Error"
End

End Function

' Method of the form2 that allows Visio Application
' object to be retrieved by another form

Public Function returnVisApp() As Visio.Application
 Set returnVisApp = VisioApp
End Function

' Allows user to open the database and set the Database object
' with rudimentary error handling

Public Function setDatabase() As String
 errMsg = "DB File Failed to Open." & vbCrLf
 errMsg = errMsg & "You must specify a file name " & vbCrLf
 dlgOpen.ShowOpen
 szFileName$ = dlgOpen.FileName
 On Error GoTo Handler
 If dlgOpen.FileTitle <> "" Then
 Set dbsMyDB = DBEngine.OpenDatabase(szFileName, False)
 dbsMyDB.Close
 setDatabase = szFileName
 Exit Function
 End If
 Handler:
 MsgBox errMsg, vbExclamation + vbOKOnly, "File Error"
End

End Function

2. Main Display

Public dbsMyDB As DAO.Database
Dim g_szDefFileName As String
Dim szCPM$, szDuration$, szSimCost$, szWorkV$, szReV$, szReC$ Dim szCordV$, szCordC$, szWaitV$, szWaitC$, szWorkD$, szWorkW$
Private Sub AutoSim_Click()
 ' disable the form combo boxes that allow for updates
 ' to Requirements Volatility, Efficiency, and Complexity
 boolAutoSim = True
 ReqCtl.Enabled = True
 EffCtl.Enabled = True
 CompCtl.Enabled = True

 updateDB.Visible = True
 updateDB.FontBold = False
 updateDB.Caption = "Enter Lower Bound"
 boolBeginEntry = True

 ' disable the labels and the textboxes that allow the user
 ' to pick a Complexity multiple max and the steps
 lblMultMax.Visible = True
 lblMult.Visible = False
 MultCtl.Visible = True
 RunSimulation.Enabled = False

End Sub

' If the complexity Control gets the focus, it is assumed that the
' user will make a change to current value of the controls. The
' ability to run the simulation will be disabled until the pre-
' run database updates are complete
Private Sub CompCtl_GotFocus()
 updateDB.Visible = True
 RunSimulation.Enabled = False
End Sub

' If the Efficiency Control gets the focus, it is assumed that the
' user will make a change to current value of the control. The
' ability to run the simulation will be disabled until the pre-run
' database updates are complete

Private Sub EffCtl_GotFocus()
 updateDB.Visible = True
 RunSimulation.Enabled = False
End Sub

' Give the user a little help when deciding whether to enact an
' automatic simulation or a manual simulation

Private Sub Helper_Click()
 Dim szExplain As String
 szExplain = "Select which mode to run the program" & vbCrLf & vbCrLf
 szExplain = szExplain + "AUTO SIM will simulate all " & vbCrLf
 szExplain = szExplain + "scenarios between what is input" & vbCrLf
 szExplain = szExplain + "for LOWER BOUND and " & vbCrLf
 szExplain = szExplain + "UPPER BOUND." & vbCrLf
 szExplain = szExplain + "MANUAL SIM will allow the user to " & vbCrLf
 szExplain = szExplain + "input the parameters for" & vbCrLf
 szExplain = szExplain + "a single scenario."
 szExplain = szExplain + vbCrLf & vbCrLf
 szExplain = szExplain + "After inputting the necessary data" & vbCrLf
 szExplain = szExplain + "press RUN SIMULATION." & vbCrLf
 szExplain = szExplain + "For AUTO SIM, after simulation this" & vbCrLf
 szExplain = szExplain + "program will end" & vbCrLf
 szExplain = szExplain + "and the generated Excel file will " & vbCrLf
 szExplain = szExplain + "be opened." & vbCrLf
 szExplain = szExplain + "For MANUAL SIM, after simulation " & vbCrLf
 szExplain = szExplain + "control will return" & vbCrLf
 szExplain = szExplain + "once again to the main program for " & vbCrLf
 szExplain = szExplain + "further scenarios."

 MsgBox szExplain, vbQuestion + vbOKOnly, "Program Help"
End Sub

' Allow the user to see the mapping for its components in a
' hyperlink fashion

Private Sub lblComp_DblClick()
 templ.Show
 templ.ShowComplexity
End Sub

Private Sub lblEff_DblClick()
 templ.Show
 templ.ShowEfficiency
End Sub
' Allow the user to see the mapping for its components in a hyperlink fashion

Private Sub lblMult_Db1Click()
 templ.Show
 templ.showMult
End Sub

' Allow the user to see the mapping for its components in a hyperlink fashion

Private Sub lblMultMax_Db1Click()
 templ.Show
 templ.showMult
End Sub

' Allow the user to see the mapping for its components in a hyperlink fashion

Private Sub lblReqVol_Db1Click()
 templ.Show
 templ.showReqVol
End Sub

Private Sub MultCtl_GotFocus()
 If Not boolAutoSim Then
 updateDB.Visible = True
 RunSimulation.Enabled = False
 End If
End Sub

' Provides for input of the high complexity multiple with rudimentary error protection. Once a valid number is input convert the number to minutes

Private Sub MultCtl_LostFocus()
 Dim work As Long
 If Not IsNumeric(MultCtl) Then
 MsgBox "Enter a number for work volume", vbExclamation
 MultCtl = 1
 MultCtl.SetFocus
 ElseIf MultCtl <= 0 Then
 MsgBox "Enter a number greater than 0", vbExclamation
 MultCtl = 1
 End If
End Sub

' If the Requirements Complexity Control gets the focus, it is assumed that the user will make a change to current value of the control. The ability to run the simulation will be disabled until the pre run database updates are complete

Private Sub ReqCtl_GotFocus()
Private Sub Form_Load()

 ' Variable Declarations
 Dim InitShpsObj As Visio.Shapes
 Dim activity As Visio.Shape
 Dim intTick As Integer
 Dim szDrive As String
 Dim work As Long

 ' Variable Initialization
 boolExit = True
 Set Vis50 = Form2.returnVisApp
 g_szDefFileName = Form2.returnDBfile
 szDrive = Form2.returnDir
 Set DocsObj = Vis50.Documents
 Set DocObj = Vis50.ActiveDocument
 Set InitShpsObj = Vis50.ActivePage.Shapes
 setInitScenarioTrials

 ' Output Excel file name to the form
 szWkbkName = "output" & "_" & Format(Now, "Medium Date") & "_" & Hour(Now) & Minute(Now) & Second(Now) & ".XLS"
 Set Wrkbk = Ex.Workbooks.Add
 szDrive = szDrive & szWkbkName
 Wrkbk.SaveAs (szDrive)
 boolExit = False
 lblFileSaved.Caption = "Excel File Name: " & szWkbkName
 szWkbkName = szDrive

 ' Set up the Software project estimate parameters Requirements
 ' Volatility, Efficiency, and Complexity.
 RatingComboBox ReqCtl
 RatingComboBox EffCtl
 RatingComboBox CompCtl

 ' Set the initial values for the controls in the pre-run
 ' database, and in the Visio drawing itself
 ' For intTick = 1 To InitShpsObj.Count
 ' Set activity = InitShpsObj.Item(intTick)
 ReqCtl = ReqCtl.List(2)
 EffCtl = EffCtl.List(2)
 CompCtl = CompCtl.List(2)
' Next intTick

CompMult = MultCtl
' boolAutoSim = True

End Sub

' When the form is ended ensure that Excel is closed if desired
' and that Visio and its documents are closed

Private Sub Form_Terminate()
closeExcel
DocObj.Save
DocObj.Close
Vis50.Quit
End
End Sub

' When Clicked will allow the user to manually change parameters
' for each run

Private Sub ManSim_Click()

' All Control Areas Enabled

ReqCtl.Enabled = True
EffCtl.Enabled = True
CompCtl.Enabled = True
boolAutoSim = False

' Disable the controls to set the Max and the step levels

lblMultMax.Visible = False
lblSteps.Visible = False
stepsCtl.Visible = False

' Allow for a multiple to use for a high complexity

lblMult.Visible = True
MultCtl.Visible = True
MultCtl.Enabled = True

' Set the text for the update database button for use
' after parameters are chosen
updateDB.FontBold = True
updateDB.Caption = "Update Database"
updateDB.Visible = True
RunSimulation.Enabled = False

End Sub

' Command button to run the simulation once the pre-run database
' is updated for a manual simulation or for all database
' combinations for autosimulation

Private Sub RunSimulation_Click()
' First hide the form then check to see if this is an auto or ' manual simulation. After the simulation display a message ' box indicator. If it is manual Prevent a follow-on autosim
Form1.Hide
If boolAutoSim Then

' If the autosimulate was selected run all of the scenarios ' Then end the program and display the Excel spreadsheet
autoSimulate
finishMsg "Simulation", True
Wrkbk.Save
Ex.Visible = True
boolExit = True
Call Form_Terminate
Else

' Else Run one scenario input and allow for nore scenarios
SimRun
AutoSim.Enabled = False
finishMsg wksName
End If
Form1.Show
End Sub

' Allow for all Shapes to have a string property changed
Public Sub IterativeChange(masterName As String, visID As String, _
 rootTable As String, activity As String, _
 value As String, ID As String)

 ' Variable declarations
Dim shpsObj As Visio.Shapes
Dim szActID As String
Dim shpObj As Visio.shape

 ' Variable initialization
Set rstMyRecordSet = dbsMyDB.OpenRecordset(rootTable) 'root
Set shpsObj = Vis50.ActivePage.Shapes

 ' Check all shape objects on the Active Page for any shape that ' is either an "Activity" or an "Actor" and change its value in ' the pre-run database
For intTick = 1 To shpsObj.Count

 ' Set the shpObj to the shape in the collection of shapes ' at the current number.
 Set shpObj = shpsObj.Item(intTick)
' If that shape is of the type needed to change

If shpObj.Master.name = masterName Then

 SetCellStr shpObj, visID, value
 szActID = shpObj.Text
 rstMyRecordSet.MoveFirst

 ' Then search through the recordset until the specific
 ' shape is found and change its value

 Do While Not rstMyRecordSet.EOF

 If rstMyRecordSet.Fields(ID).value = szActID Then
 rstMyRecordSet.Edit
 rstMyRecordSet(activity) = value
 rstMyRecordSet.Update
 rstMyRecordSet.MoveLast
 End If
 rstMyRecordSet.MoveNext

 Loop
End If
Next intTick

rstMyRecordSet.Close

End Sub

' Allow for the Vital Actor properties to be changed

Public Sub ActorPropChange()

 ' Variable Declarations

 Dim shpsObj As Visio.Shapes
 Dim actor As Visio.shape
 Dim intTick As Integer

 ' Variable Initialization

 Set shpsObj = Vis50.ActivePage.Shapes

 IterativeChange "Actor", "ViteAppExperience", "ViteActors", _
 "AppExperience", EffCtl, "ID"
 IterativeChange "Actor", "ViteSkills", "ViteActorCrafts", _
 "SkillLevel", EffCtl, "Actor"

End Sub

' Iterate through all activities to change the Requirements
' Volatility values, which is comprised of the Requirements
' Complexity and Uncertainty parameters

Private Sub ReqCtl_XChange()
Set dbsMyDB = DBEngine.OpenDatabase(g_szDefFileName, False)
IterativeChange "Activity", "ViteReqComplexity",
 "ViteActivities", "RequirementComplexity",
 ReqCtl, "ID"
IterativeChange "Activity", "ViteUncertainty",
 "ViteActivities", "Uncertainty", ReqCtl, "ID"
dbsMyDB.Close
End Sub

' Iterate through the activities and actors to change the value of
' Efficiency, which is comprised of Team Experience, Application
' Experience, and Skill Levels
Private Sub EffCtl_XChange()
 'Variable declarations and initializations
 sz_TeamTable$ = "ViteTeams"
sz_FieldExper$ = "Experience"
sz_VisExp$ = "ViteTeamExperience"
Set dbsMyDB = DBEngine.OpenDatabase(g_szDefFileName, False)
Set rstMyRecordSet = dbsMyDB.OpenRecordset(sz_TeamTable)
Set rstRecordSets = dbsMyDB.Recordsets

'Change team Experience
SetCellStr Vis50.ActivePage.PageSheet, sz_VisExp, EffCtl
rstMyRecordSet.Edit
rstMyRecordSet(sz_FieldExper) = EffCtl
rstMyRecordSet.Update
rstMyRecordSet.Close

'Change App Experience and Skill levels
ActorPropChange

dbsMyDB.Close
End Sub

' Allows for the selection of other output statistics to Excel
Private Sub Tester_Click()
 Dim work As Long, work2 As Integer
 Dim szMyString As String
 Dim boolEnable As Boolean
 If frameStats.Enabled Then
 boolEnable = False
 Height = 4630
 Else
 boolEnable = True
 Height = 6900
 End If
 frameStats.Enabled = boolEnable
 CKBxCPM(0).Enabled = boolEnable
 CKBxDuration(6).Enabled = boolEnable
' Work Cost
CkBxWorkC(7).Enabled = boolEnable
' Work Volume
CkBxWorkV(1).Enabled = boolEnable
' Rework Cost
CkBxReC(8).Enabled = boolEnable
' Rework Volume
CkBxReV(2).Enabled = boolEnable
' Coordination Volume
CkBxCordV(3).Enabled = boolEnable
' Coordination Cost
CkBxCordC(9).Enabled = boolEnable
' Wait Volume
CkBxWaitV(4).Enabled = boolEnable
' Wait Cost
CkBxWaitC(10).Enabled = boolEnable
' Minute worked in a week
CkBxWeek(11).Enabled = boolEnable
' Minutes worked in a day
CkBxDay(5).Enabled = boolEnable
End Sub

' Iterate through all activities to change the value of Complexity,
' which is comprised of Solution Complexity

Private Sub CompCtl_XChange()
 Set dbsMyDB = DBEngine.OpenDatabase(g_szDefFileName, False)
 IterativeChange "Activity", "ViteSolComplexity",
 "ViteActivities", "SolutionComplexity",
 CompCtl, "ID"
 dbsMyDB.Close
End Sub

' Used to enter the database and extract the post-run data to
' export to Excel

Private Sub extractAccess()

 'Variable initialization

 ' Table names and table headings in the Vite created database

 sz_TableName$ = "ViteScenarioStatistics"
sz_Table2Name$ = "ViteScenarios"
sz_FieldCPM$ = "CPMDuration"
sz_FieldDuration$ = "Duration"
sz_FieldWorkCost$ = "WorkCost"
sz_FieldWorkV$ = "WorkVolume"
sz_FieldReV$ = "ReworkVolume"
sz_FieldReC$ = "ReworkCost"
sz_FieldCordV$ = "CoordinationVolume"
sz_FieldCordC$ = "CoordinationCost"
sz_FieldWaitV$ = "WaitVolume"
sz_FieldWaitC$ = "WaitCost"
sz_FieldWorkD$ = "WorkDay"
sz_FieldWorkW$ = "WorkWeek"

Set dbsMyDB = DBEngine.OpenDatabase(g_szDefFileName, False)
Set rstMyRecordSet = dbsMyDB.OpenRecordset(sz_TableName)
Set rstRecordSets = dbsMyDB.Recordsets

' If the specified box is checked the extract the corresponding data form the post-run database
If CkBxCPM(0) Then
 szCPM = rstMyRecordSet(sz_FieldCPM)
End If

If CkBxDuration(6) Then
 szDuration = rstMyRecordSet(sz_FieldDuration)
End If

If CkBxWorkC(7) Then
 szSimCost = rstMyRecordSet(sz_FieldWorkCost)
End If

If CkBxWorkV(1) Then
 szWorkV = rstMyRecordSet(sz_FieldWorkV)
End If

If CkBxReC(8) Then
 szReC = rstMyRecordSet(sz_FieldReC)
End If

If CkBxReV(2) Then
 szReV = rstMyRecordSet(sz_FieldReV)
End If

If CkBxCordV(3) Then
 szCordV = rstMyRecordSet(sz_FieldCordV)
End If

If CkBxCordC(9) Then
 szCordC = rstMyRecordSet(sz_FieldCordC)
End If

If CkBxWaitV(4) Then
 szWaitV = rstMyRecordSet(sz_FieldWaitV)
End If

If CkBxWaitC(10) Then
 szWaitC = rstMyRecordSet(sz_FieldWaitC)
End If

rstMyRecordSet.Close

' Always retrieve the values for minutes worked in a day and in a week. These are used to convert Volumes to days.
Set rstMyRecordSet = dbsMyDB.OpenRecordset(sz_Table2Name)
Set rstRecordSets = dbsMyDB.Recordsets
szWorkW = rstMyRecordSet(sz_FieldWorkW)
szWorkD = rstMyRecordSet(sz_FieldWorkD)
rstMyRecordSet.Close

dbsMyDB.Close

End Sub

' If the check Box is checked for a certain data output, then on
' the first run the column names in Excel will be set. On
' subsequent runs the data is input into the columns

Private Sub inputForExcel(intIndex As Integer)

'Variable declaration

Dim Wks As Excel.Worksheet
Dim Rng As Excel.Range
Dim intColNum As Integer

'Variable initialization

Set Wks = Wrkbk.Worksheets(wksName)
Set Rng = Wks.UsedRange.Columns
intColNum = 1

If CkBxCPM(0) Then
 Wks.Cells(intIndex + 2, intColNum) = szCPM
 intColNum = intColNum + 1
End If

If CkBxDuration(6) Then
 Wks.Cells(intIndex + 2, intColNum) = szDuration
 intColNum = intColNum + 1
End If

If CkBxWorkC(7) Then
 Wks.Cells(intIndex + 2, intColNum) = szSimCost
 intColNum = intColNum + 1
End If

If CkBxWorkV(1) Then
 Wks.Cells(intIndex + 2, intColNum) = szWorkV
 intWorkV = intColNum
 intColNum = intColNum + 1
End If

If CkBxReC(8) Then
 Wks.Cells(intIndex + 2, intColNum) = szReC
 intColNum = intColNum + 1
End If

If CkBxReV(2) Then
 Wks.Cells(intIndex + 2, intColNum) = szReV
29
intReV = intColNum
intColNum = intColNum + 1
End If

If CkBxCordV(3) Then
 Wks.Cells(intIndex + 2, intColNum) = szCordV
 intCordV = intColNum
 intColNum = intColNum + 1
End If

If CkBxCordC(9) Then
 Wks.Cells(intIndex + 2, intColNum) = szCordC
 intColNum = intColNum + 1
End If

If CkBxWaitV(4) Then
 Wks.Cells(intIndex + 2, intColNum) = szWaitV
 intWaitV = intColNum
 intColNum = intColNum + 1
End If

If CkBxWaitC(10) Then
 Wks.Cells(intIndex + 2, intColNum) = szWaitC
 intColNum = intColNum + 1
End If

If CkBxWeek(11) Then
 Wks.Cells(intIndex + 2, intColNum) = szWorkW
 intColNum = intColNum + 1
End If

If CkBxDay(5) Then
 Wks.Cells(intIndex + 2, intColNum) = szWorkD
 intColNum = intColNum + 1
End If

' Format the column for decimal places and column fit

g_intColNum = intColNum
Rng.NumberFormat = "#.00"
Rng.AutoFit

End Sub

' Uses the previously created file and sets the initial column names
' and creates and names each new worksheet

Private Sub useExcel(szRunName As String)

 'Variable declaration and initialization

 Dim Wks As Excel.Worksheet
 Static intWksNum As Integer

 ' Sets the column names. Only the chosen output stats will
 ' be shown
szCPM = "CPM Duration"
szDuration = "Duration"
szSimCost = "Simulation Cost"
szWorkV = "Work Volume"
szReV = "Rework Volume"
szReC = "Rework Cost"
szCordV = "Coordination Volume"
szCordC = "Coordination Cost"
szWaitV = "Wait Volume"
szWaitC = "Wait Cost"
szWorkD = "Work Day"
szWorkW = "Work Week"

' boolExit = False
' Ex.Visible = False

If intWksNum = 0 Then
 intWksNum = 1
Else
 intWksNum = intWksNum + 1
End If

On Error GoTo ErrHandler
 Set Wks = Wrkbk.Worksheets.Add
 Wks.name = szRunName
 inputForExcel (-1)
 Exit Sub

ErrHandler:
 MsgBox Err.Description, vbExclamation + vbOKOnly, "ERROR"
 Call Form_Terminate

End Sub

' Used to change the high complexity multiple, which is the WORK value of the Activities

Public Sub WorkPropChange(rootTable As String, activity As String, _
 ByVal value As Long)

 ' Variable Declaration
 Dim shpsObj As Visio.Shapes
 Dim shpObj As Visio.shape
 Dim szTestString As String
 Dim intTick As Integer
 Dim szActID As String

 ' Variable initialization
 Set dbsMyDB = DBEngine.OpenDatabase(g_szDefFileName, False)
 Set rstMyRecordSet = dbsMyDB.OpenRecordset(rootTable)
 Set shpsObj = Vis50.ActivePage.Shapes

 ' Iterate through all shapes in the Visio drawing
For intTick = 1 To shpsObj.Count
 Set shpObj = shpsObj.Item(intTick)
 If shpObj.Master.name = "Activity" Then
 SetCellInt shpObj, "ViteWorkVolume", CLng(value)
 szActID = shpObj.Text
 rstMyRecordSet.MoveFirst
 Do While Not rstMyRecordSet.EOF
 If rstMyRecordSet.Fields("ID").value = szActID Then
 rstMyRecordSet.Edit
 rstMyRecordSet(activity) = value
 rstMyRecordSet.Update
 rstMyRecordSet.MoveLast
 Else
 rstMyRecordSet.MoveNext
 End If
 Loop
 End If
Next intTick
rstMyRecordSet.Close
dbsMyDB.Close

End Sub

' Used to run the complete automatic simulation from LLL to HHH
' with a complexity multiple. There is an inner loop iterative
' run that is common to both cases of complexity, that is either
' with or without the multiple

Public Sub autoSimulate()

 ' Variable Declaration
 Dim intUncTick As Integer
 Dim work As Long

 For intUncTick = g_CompLB To g_CompUB Step -1
 ' Outer loop is the complexity. The inner loop will be
 ' Efficiency and Requirements Volatility
 CompCtl = CompCtl.List(intUncTick)
 Call CompCtl_XChange ' Set the value of Complexity pre-run
 If CompCtl = CompCtl.List(0) Then

 ' If high complexity, step through multiple from low to high
 For CompMult = g_MultLB To MultCtl Step stepsCtl
 work = Units2Mins(CompMult, "days")
 WorkPropChange "ViteActivities", "WorkVolume", work
 innerLoop
 Next CompMult
 Else
' Then do the non-high-complexity runs
' first ensure the multiple is one
 work = Units2Mins(1, "days")
 WorkPropChange "ViteActivities", "WorkVolume", _
 work

 innerLoop
End If

Next intUncTick

End Sub

Public Sub innerLoop()

 Dim intReqTick As Integer, intSolTick As Integer

 For intReqTick = g_ReqLB To g_ReqUB Step -1
 ' Set Requirements Volatility Parameter for the runs
 ReqCtl = ReqCtl.List(intReqTick)
 Call ReqCtl_XChange

 For intSolTick = g_EffLB To g_EffUB Step -1
 ' Set Efficiency Parameter for the runs
 EffCtl = EffCtl.List(intSolTick)
 Call EffCtl_XChange

 ' Run the simulation
 SimRun

 Next intSolTick

 Next intReqTick

End Sub

' Opens then resident Excel file with a new worksheet then
' runs the simulation for the number of times indicated in the
' TrialsCtl. Averages each active column of the spreadsheet
' Then closes the resident Excel file

Public Sub SimRun()

 Dim myVite As New ViteProject.Project
 Dim r As Long
 Dim intTick As Integer
 Dim szMyString As String
 wksName = WorksheetName
 useExcel (wksName)

 ' For the number of trials indicated run the sim.
 ' Always run the sim. via Vite using scenario 1
 szMyString = CellStr(Vis50.ActivePage.PageSheet, _,
 "ViteScenName", "S001")

 For intTick = 1 To TrialsCtl
r = myVite.Simulate(g_szDefFileName, szMyString)
extractAccess
inputForExcel (intTick)
Next intTick
averageWks

End Sub

' Sets the worksheet name based on the first letter of the text
' in each of the comboboxes. Also, for manual simulation, if this
' is a repeat scenario name add an integer identifier to
' distinguish the new worksheet from a previous run

Public Function WorksheetName() As String

 ' Variable declaration
 Dim ReqString As String, UncString As String
 Dim SolString As String, MultString As String
 Dim element As Integer
 Static intWksNum As Integer

 ' Variable initialization
 szDuplicate$ = ""
 szWksName$ = ""
 SolString = Left$(EffCtl, 1)
 ReqString = Left$(ReqCtl, 1)
 UncString = Left$(CompCtl, 1)

 ' If there is a complexity multiple higher than one then put
 ' it in the worksheet name
 If CompMult > 1 Then
 MultString = Str(CompMult)
 szWksName = SolString & ReqString & UncString & MultString
 Else
 szWksName = SolString & ReqString & UncString
 End If

 ' In manual sim mode prevent duplicate worksheet names which
 ' will crash Excel
 If Not boolAutoSim Then
 element = LinearSearch(strArray(), szWksName)
 If element <> -1 Then
 indexArray(intWksNum) = indexArray(element) + 1
 szDuplicate = "(" & Str(indexArray(intWksNum)) & ")"
 Else
 indexArray(intWksNum) = 1
 End If
 strArray(intWksNum) = szWksName
 End If

 WorksheetName = szWksName & szDuplicate
 intWksNum = intWksNum + 1
End Function

' Function from Access 2000 Programming for Dummies
' This function is used to set the column letter for use in formulas
' created in Excel format

Public Function ColumnLetter(ColNumber)

 Dim Letter1, Letter2
 If ColNumber < 27 Then
 ColumnLetter = Chr(64 + ColNumber)
 Else
 Letter1 = Chr(Int(ColNumber / 26) + 64)
 Letter2 = Chr((ColNumber Mod 26) + 64)
 ColumnLetter = Letter1 + Letter2
 End If

End Function

' Places a space between the bulk data and a line used to average
' the individual columns that were selected for display

Public Sub averageWks()

 ' Variable declarations
 Dim Wks As Excel.Worksheet
 Dim Rng As Excel.Range
 Dim intColNum As Integer

 ' Variable initialization
 RowMax% = TrialsCtl + 2
 intUnitRow% = 2
 intColStart% = 1
 szUnitLbl$ = "(Minutes)"
 szAvgLbl$ = "(Days)"
 Set Wks = Wrkbk.Worksheets(wksName)
 Set Rng = Wks.UsedRange.Columns
 Rng.NumberFormat = "#.00"

 ' All columns have some formatting involved
 If CkBxCPM(0) Then
 Set Rng = Wks.Cells(intUnitRow, intColStart)
 Rng.Formula = szUnitLbl
 Rng.HorizontalAlignment = xlCenterAcrossSelection
 Set Rng = Wks.Cells(RowMax + 1, intColStart)
 Rng.Formula = szAvgLbl
 Rng.HorizontalAlignment = xlCenterAcrossSelection
 Set Rng = Wks.Cells(RowMax + 2, intColStart)
 Rng.Formula = "=(Average(" & ColumnLetter(intColStart) _
 & ") * 7)/" & szWorkW
 Rng.NumberFormat = "#.00"

35
intColStart = intColStart + 1
End If

If CkBxDuration(6) Then
 Set Rng = Wks.Cells(intUnitRow, intColStart)
 Rng.Formula = szUnitLbl
 Rng.HorizontalAlignment = xlCenterAcrossSelection
 Set Rng = Wks.Cells(RowMax + 1, intColStart)
 Rng.Formula = szAvgLbl
 Rng.HorizontalAlignment = xlCenterAcrossSelection
 Set Rng = Wks.Cells(RowMax + 2, intColStart)
 Rng.Formula = "=(Average(" & ColumnLetter(intColStart) _
' & ") * 7) / " & szWorkW
 Rng.NumberFormat = ".00"
End If

For intColNum = intColStart To g_intColNum - 1
 Set Rng = Wks.Cells(RowMax + 2, intColNum)
 Rng.Formula = "=Average(" & ColumnLetter(intColNum) _
' & ")"
 Rng.NumberFormat = ".00"
Next intColNum

If CkBxWorkV(1) Then
 Set Rng = Wks.Cells(intUnitRow, intWorkV)
 Rng.Formula = szUnitLbl
 Rng.HorizontalAlignment = xlCenterAcrossSelection
 Set Rng = Wks.Cells(RowMax + 1, intWorkV)
 Rng.Formula = szAvgLbl
 Rng.HorizontalAlignment = xlCenterAcrossSelection
 Set Rng = Wks.Cells(RowMax + 2, intWorkV)
 Rng.Formula = "=(Average(" & ColumnLetter(intWorkV) _
' & ") * 7) / " & szWorkW
 Rng.NumberFormat = ".00"
End If

If CkBxReV(2) Then
 Set Rng = Wks.Cells(intUnitRow, intReV)
 Rng.Formula = szUnitLbl
 Rng.HorizontalAlignment = xlCenterAcrossSelection
 Set Rng = Wks.Cells(RowMax + 1, intReV)
 Rng.Formula = szAvgLbl
 Rng.HorizontalAlignment = xlCenterAcrossSelection
 Set Rng = Wks.Cells(RowMax + 2, intReV)
 Rng.Formula = "=(Average(" & ColumnLetter(intReV) _
' & ") * 7) / " & szWorkW
 Rng.NumberFormat = ".00"
End If

If CkBxCordV(3) Then
 Set Rng = Wks.Cells(intUnitRow, intCordV)
 Rng.Formula = szUnitLbl
 Rng.HorizontalAlignment = xlCenterAcrossSelection
 Set Rng = Wks.Cells(RowMax + 1, intCordV)
 Rng.Formula = szAvgLbl
 Rng.HorizontalAlignment = xlCenterAcrossSelection
 Set Rng = Wks.Cells(RowMax + 2, intCordV)
 Rng.Formula = "=(Average(" & ColumnLetter(intCordV) _
' & ") * 7) / " & szWorkW
 Rng.NumberFormat = ".00"
End If
Rng.HorizontalAlignment = xlCenterAcrossSelection
Set Rng = Wks.Cells(RowMax + 1, intCordV)
Rng.Formula = szAvgLbl
Rng.HorizontalAlignment = xlCenterAcrossSelection
Set Rng = Wks.Cells(RowMax + 2, intCordV)
Rng.Formula = "=(Average(" & ColumnLetter(intCordV) & ":" & ColumnLetter(intCordV) & RowMax & ") * 7)/" & szWorkW
Rng.NumberFormat = "#.00"
End If
If CkBxWaitV(4) Then
Set Rng = Wks.Cells(intUnitRow, intWaitV)
Rng.Formula = szUnitLbl
Rng.HorizontalAlignment = xlCenterAcrossSelection
Set Rng = Wks.Cells(RowMax + 1, intWaitV)
Rng.Formula = szAvgLbl
Rng.HorizontalAlignment = xlCenterAcrossSelection
Set Rng = Wks.Cells(RowMax + 2, intWaitV)
Rng.Formula = "=(Average(" & ColumnLetter(intWaitV) & ":" & ColumnLetter(intWaitV) & RowMax & ") * 7)/" & szWorkW
Rng.NumberFormat = "#.00"
End If

End Sub

' If there is a resident Excel file to close save it and its corresponding worksheets then Exit Excel and indicate that there is no resident Excel file
Private Sub closeExcel()
If Not boolExit Then
Wrkbk.Save
Ex.Quit
Set Ex = Nothing
boolExit = True
End If
End Sub

' When the Exit button is clicked ensure terminate the form
Private Sub ExitCmd_Click()
Form_Terminate
End
End Sub

' Display appropriate message for the end of the sim run
Public Sub finishMsg(typeRun As String, Optional ifMore As Boolean)
Dim szText As String
szText = "DONE!" & vbCrLf
szText = szText & typeRun & " completed."
If MoreBool Then
szText = szText & "Press OK, the program will Exit " & vbCrLf & vbCrLf szText = szText & "and the Excel Spreadsheet will Open"
End If
MsgBox szText, vbInformation + vbOKOnly, "Program Status"

End Sub

' An array that maintains the list of worksheets that have been already used will be searched with this function

Public Function LinearSearch(inArray() As String, inKey As String) As Integer
Dim ArrIndex As Integer
For ArrIndex = UBound(inArray) To LBound(inArray) Step -1
 If inArray(ArrIndex) = inKey Then
 LinearSearch = ArrIndex
 Exit Function
 End If
Next ArrIndex
LinearSearch = -1
End Function

' Convert time in specified units to minutes

Public Function Units2Mins(value As Single, unit As String) As Single
If InStr(unit, "mins") Then
 Units2Mins = value
ElseIf InStr(unit, "hours") Then
 Units2Mins = value * 60#
ElseIf InStr(unit, "days") Then
ElseIf InStr(unit, "weeks") Then
 Units2Mins = value * Vis50.ActivePage.PageSheet.Cells("User.ViteScenWorkWeek").Result(visNumber)
Else
 Units2Mins = -1
End If
End Function

' Initialize combo box with ratings
' From ViteProject template

Public Sub RatingComboBox(ctl As ComboBox)
 ctl.Clear
 ctl.AddItem ("High")
ctl.AddItem ("Medium")
ctl.AddItem ("Low")

End Sub

' Assign integer value to user-defined cell
' This will be used if later users desire to see the changes
' made reflected in Visio
' LT Alexander Added

Public Sub SetCellInt(shape As Visio.shape, name As String, _
value As Long)
If Not shape.CellExists("User." & name, 0) Then
shape.AddNamedRow visSectionUser, name, 0
End If
shape.Cells("User." & name).Formula = value
End Sub

' Return value of specified user-defined cell as string
' This will be used if later users desire to see the changes
' made reflected in Visio
' From ViteProject template

Public Function CellStr(shape As Visio.shape, name As String, _
default As String) As String
If shape.CellExists("User." & name, 0) Then
CellStr = shape.Cells("User." & name).ResultStr(""")
Else
CellStr = default
End If
End Function

' Set specified user-defined cell to string
' This will be used if later users desire to see the changes
' made reflected in Visio
' LT Alexander Added

Public Sub SetCellStr(shape As Visio.shape, name As String, _
ByVal value As String)
skills$ = "ViteSkills"
craft$ = "Generic..",
If Not shape.CellExists("User." & name, 0) Then
shape.AddNamedRow visSectionUser, name, 0
End If
If name = skills Then
value = craft + value
End If
shape.Cells("User." & name).Formula = Chr$(34) & value _
& Chr$(34)
End Sub

' Number of trials to run in a given simulation with rudimentary
' error check

Private Sub TrialsCtl_LostFocus()
If Not IsNumeric(TrialsCtl) Then
MsgBox "Enter a Number greater than 0 ", vbExclamation
TrialsCtl = 5
TrialsCtl.SetFocus
ElseIf TrialsCtl <= 0 Then
 MsgBox "Enter a number greater than 0 ", vbExclamation
 TrialsCtl = 5
 TrialsCtl.SetFocus
End If
End Sub

' For MANUAL SIMULATION when the comboboxes have been set
' this button is pressed to update the pre-run database, but only
' update if there has been an actual change
' For AUTO SIMULATION this button is used to enter the low end
' and high end scenarios that bracket the simulations

Private Sub updateDB_Click()
 If Not boolAutoSim Then
 ' Update DB if Manual Sim
 Static szReqCtl$, szCompCtl$, szEffCtl$
 'If Requirements Volatility selection has changed
 If Not szReqCtl = ReqCtl Then
 szReqCtl = ReqCtl
 Call ReqCtl_XChange
 End If
 ' If Complexity selection has changed
 If Not szCompCtl = CompCtl Then
 szCompCtl = CompCtl
 Call CompCtl_XChange
 End If
 ' If Efficiency selection has changed
 If Not szEffCtl = EffCtl Then
 szEffCtl = EffCtl
 Call EffCtl_XChange
 End If
 If CompCtl = CompCtl.List(0) Then 'MultCtl.DataChanged
 'Update the Work parameter of Activity
 CompMult = MultCtl
 Else
 ' Ensure that the database multiple is 1
 CompMult = 1
 End If
 work = Units2Mins(CompMult, "days")
 WorkPropChange "ViteActivities", "WorkVolume", work
 updateDB.Visible = False
 End If
End Sub
RunSimulation.Enabled = True

ElseIf boolBeginEntry Then
 ' If Auto sim chosen and the lower bound has not been
 ' entered, then enter the lower bound data

 RunSimulation.Enabled = False
 ManSim.Enabled = False
 g_ReqLB = ReqCtl.ListIndex
 g_EffLB = EffCtl.ListIndex
 g_CompLB = CompCtl.ListIndex
 ' If the complexity is High then allow for a multiple
 If CompCtl = CompCtl.List(0) Then
 ' Its High, therefore set the lowerbound Multiple
 g_MultLB = MultCtl
 Else
 g_MultLB = 1
 End If
 boolBeginEntry = False
 ' change the caption of the control for the next part
 updateDB.FontBold = False
 updateDB.Caption = "Enter Upper Bound"

 lblMultMax.Visible = True
 MultCtl.Visible = True
 MultCtl.Enabled = True
 lblSteps.Visible = True
 stepsCtl.Visible = True
 lblMult.Visible = False
Else
 ' Auto sim has been chosen and lower bound data has
 ' been entered. Enter upper bound data.

 g_ReqUB = ReqCtl.ListIndex
 g_EffUB = EffCtl.ListIndex
 g_CompUB = CompCtl.ListIndex
 RunSimulation.Enabled = True
 updateDB.Visible = False
 ReqCtl.Enabled = False
 EffCtl.Enabled = False
 CompCtl.Enabled = False
 stepsCtl.Enabled = False
 MultCtl.Enabled = False
 If Not g_MultLB <= MultCtl Then
 szMsg$ = "The higher bound Multiple is less than the"
 szMsg = szMsg + vbCrLf
 szMsg = szMsg + " lower bound, they will be switched"
 MsgBox szMsg, vbInformation + vbOKOnly, "Invalid Order"
 CompMult = g_MultLB
 g_MultLB = MultCtl
 MultCtl = CompMult
 End If
End If

End Sub
'Used to ensure that the number of runs in the Vite program is maintained at 1 so that this program can make all the runs

Public Sub setInitScenarioTrials()

'Variable declarations and initializations

sz_TeamTable$ = "ViteScenarios"
sz_FieldExper$ = "Trials"
Set dbsMyDB = DBEngine.OpenDatabase(g_szDefFileName, False)
Set rstMyRecordSet = dbsMyDB.OpenRecordset(sz_TeamTable)
Set rstRecordSets = dbsMyDB.Recordsets

'Change team Experience

rstMyRecordSet.Edit
rstMyRecordSet(sz_FieldExper) = 1
rstMyRecordSet.Update
rstMyRecordSet.Close
dbsMyDB.Close

End Sub

3. Information Mapping Display

Const TRANSPARENT_BACK = 0
Const TRANSPARENT_FILL = 1
Const BACK_COLOR = 1
Const FILL_COLOR = 0

' Close this form and return to the calling form

Private Sub Command1_Click()
 templ.Hide
 Form1.Show

 shpEff(12).FillStyle = TRANSPARENT_FILL
 shpTeam(5).BackStyle = TRANSPARENT_BACK
 shpApp(2).BackStyle = TRANSPARENT_BACK
 shpSkills(1).BackStyle = TRANSPARENT_BACK

 shpComp(20).FillStyle = TRANSPARENT_FILL
 shpSolComp(3).BackStyle = TRANSPARENT_BACK
 shpFTE(0).BackStyle = TRANSPARENT_BACK

 shpReqV(19).FillStyle = TRANSPARENT_FILL
 shpUnc(8).BackStyle = TRANSPARENT_BACK
 shpReqComp(7).BackStyle = TRANSPARENT_BACK

End Sub

' When the Requirements Volatility link is selected
' illustrate the vite parameters that will be affected
Public Sub showReqVol()
 shpReqV(19).FillStyle = FILL_COLOR
 shpUnc(8).BackStyle = BACK_COLOR
 shpReqComp(7).BackStyle = BACK_COLOR
End Sub

' When the Efficiency link is selected
' illustrate the vite parameters that will be affected
Public Sub showEfficiency()
 shpEff(12).FillStyle = FILL_COLOR
 shpTeam(5).BackStyle = BACK_COLOR
 shpApp(2).BackStyle = BACK_COLOR
 shpSkills(1).BackStyle = BACK_COLOR
End Sub

' When the Complexity link is selected
' illustrate the vite parameter that will be affected
Public Sub ShowComplexity()
 shpComp(20).FillStyle = FILL_COLOR
 shpSolComp(3).BackStyle = BACK_COLOR
End Sub

' When the "high" complexity Multiple link is selected
' illustrate the vite parameter that will be affected
Public Sub showMult()
 shpFTE(0).BackStyle = BACK_COLOR
End Sub

' Unload the form
Private Sub Form_Terminate()
 Call Command1_Click
 Unload Me
End Sub

B. DOCUMENTATION

There are some prerequisites that must be set prior to using this research for analysis. Visio 5.0 or better, VitéProject 2.0, and Excel must be loaded onto the computer designated to run the simulation. Preferably a new VitéProject project with only one scenario should be used to run the analysis. If an older project is to be used, only
Scenario 1 will be manipulated and simulated via this program. It is imperative to ensure Scenario 1 has the correct organization structure and parameter settings (not affected by this program) for the analysis.

Ensure also that if a large sample size is to be used that there is enough storage space for the generated Excel files. All Excel file size limitations still apply. For comparison, the Excel file generated for an execution from LLL to HHH25 (1000 trials each) is in excess of 12Mb. It is also recommended that when simulating large samples the designated computer be used exclusively for the simulation and subsequent storage.

As previously discussed, the first display, Figure 4.1, is designed to set up the program. The analyst, through this display, locates the Visio file containing the organization’s structure, the corresponding VitéProject database file, and where to output the analysis data’s Excel file.
The main form, Figure 4.2 has various user (analyst) interfaces that allow the analyst to set the previously discussed VitéProject parameters for simulation. The illustration is labeled with five areas for ease of discussion. The large underlined numbers do no appear on the actual main display of the program.
In Area 1, the user indicates the number of simulation trials for a chosen set of parameters. It is incumbent upon the analyst to remain cognizant of computer storage limitations. Only integer values are accepted.

Area 2 allows the user to determine whether to manually simulate individually defined scenarios, or to simulate scenarios between a designated lower and upper bound. When a manual simulation is executed, the analyst loses the option of automatic simulation for the current instance of the program. When an automatic simulation is initiated, the program terminates upon completion of the simulation. Area 2a is a control that either updates the database prior to a scenario simulation or is used to set the lower and upper bounds for an auto simulation.
The controls in Area 3 are the RUN SIMULATION and CHANGE SELECTED OUTPUT STATISTICS control. The analyst will not be allowed to run a simulation until the pre-run database is updated for a manual simulation or the lower and upper bound are set for the automatic simulation. The analyst may choose to change the statistical information collected in the output Excel file. Three default statistics are initially selected: CPM Duration, Duration, and Work Cost. See Figure 4.3.

![Output Statistics](image)

Figure 4.3 Output Statistics

The VitéProject parameters are adjusted in Area 4. The three areas, as previously discussed, are Efficiency, Requirements Volatility, and Complexity. The labels for the combo boxes are hyperlinks to the third display. The analyst can manipulate the three parameters from low, medium, and high. When an Automatic simulation is selected, other selection controls are enabled below the Complexity control; this allows the analyst to pick the “high” complexity multiple. This multiple can influence either bound that stipulates a “high” complexity. Entering a value for the multiple when a “high” complexity is not selected has no effect.
The name of the output Excel file is displayed in Area 5, minus the path. The output file is named for the day and time of its creation, thus making each new file name unique and distinguishable.

Figure 4.4 is the third display in the research program and is titled Informational Display. As shown, the display shows the mapping of the research parameter EFFICENCY to its actual VitéProject parameters. This display is solely used to illustrate the mapping from the research parameters to the actual VitéProject parameters. The only access to this display is via hyperlinks in the
main display; see Area 4 of Figure 4.2. The graphics of the informational display, other than the CLOSE control, are non-interactive.

C. EXTENSION VALIDATION

To validate the thesis, 100 trials were simulated for 16 scenarios. The scenarios were chosen to somewhat mirror the scenarios of (Nogueira, 2000). Given that the VitéProject model is a stochastic process whereby each particular simulation has some randomness involved, the values per simulation will vary by a small amount. Table 2.1 lists the 16 scenarios and the corresponding output values using the extension produced by this thesis. Figure 2.1 displays the output from VitéProject. Three individual simulation batches using each method were implemented. The following displays are each a representative average.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>CPM Duration</th>
<th>Duration</th>
<th>Simulation Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLL</td>
<td>67</td>
<td>85</td>
<td>14400</td>
</tr>
<tr>
<td>LLH</td>
<td>67</td>
<td>111</td>
<td>14400</td>
</tr>
<tr>
<td>LLH3</td>
<td>202</td>
<td>218</td>
<td>43200</td>
</tr>
<tr>
<td>LLH5</td>
<td>336</td>
<td>356</td>
<td>72000</td>
</tr>
<tr>
<td>LHL</td>
<td>67</td>
<td>89</td>
<td>14400</td>
</tr>
<tr>
<td>LHH</td>
<td>67</td>
<td>113</td>
<td>14400</td>
</tr>
<tr>
<td>LHH3</td>
<td>202</td>
<td>222</td>
<td>43200</td>
</tr>
<tr>
<td>LHH5</td>
<td>336</td>
<td>358</td>
<td>72000</td>
</tr>
<tr>
<td>HLL</td>
<td>17</td>
<td>34</td>
<td>3600</td>
</tr>
<tr>
<td>HLM</td>
<td>17</td>
<td>40</td>
<td>3600</td>
</tr>
<tr>
<td>HLH 3</td>
<td>50</td>
<td>63</td>
<td>10800</td>
</tr>
<tr>
<td>HLH 5</td>
<td>84</td>
<td>89</td>
<td>18000</td>
</tr>
<tr>
<td>HHL</td>
<td>17</td>
<td>42</td>
<td>3600</td>
</tr>
<tr>
<td>HHH</td>
<td>17</td>
<td>48</td>
<td>3600</td>
</tr>
<tr>
<td>HHH3</td>
<td>50</td>
<td>68</td>
<td>10800</td>
</tr>
<tr>
<td>HHH5</td>
<td>84</td>
<td>93</td>
<td>18000</td>
</tr>
</tbody>
</table>

Table 4.1 Research 16 scenario output
As previously mentioned, some VitéProject parameters were set to mirror the work done in (Nogueira, 2000) to ensure research integrity for particular scenarios. Particularly, scenario properties that were customized for the validation were: Work Day (hrs) – 6, Centralization – “Low”, Formalization – “Low”, Matrix Strength – “High”, Functional Error Rate – 0.01, and Information Exchange – 0.8. Additionally, each Dependency is initialized with strength of 10. The significance of the aforementioned scenario properties is negligible for this thesis. For a more detailed understanding of these parameters and how they pertain to modeling and simulating the software process refer to (Nogueira, 2000). Of note, the scenario property Project Error Rate was set at 0.1 for the thesis validation simulations whereas in (Nogueira, 2000) it is set to 0.01.\footnote{This change was made after consultation with Major Michael Murrah, who’s Dissertation shall use this research to further the work of Dr. Nogueira de León}
D. ADDITIONAL REQUIREMENTS

Due to time constraints and a high requirements volatility, some aspects of the research lend themselves to improvement. There are also some legacy system improvements that might prove useful as the research progresses. The most needed improvement, for future research, is better access to the VitéProject database file. In the current version of the research program, the VitéProject database is accessed via data access objects (DAO). The DAO method `recordset.seek` will search the recordset (table) for a value based on a key. This method of search is theoretically faster than searching the entire table, however repeated attempts at its implementation have failed. Understanding and successfully implementing the
seek method will speed up database searches and reduce some of the program’s overhead.

Another overhead reduction can occur if the graphic generated by VitéProject, for each simulation run, could be suppressed or inactivated. Also, an initial data file where the working files and directories can be hard coded could allow for suppression of the introductory display.

This research program makes updates to the database on all similar objects. For instance, each task in the software development lifecycle is represented as an Activity shape. Changes in the parameters of any Activity will make the same change to all activities on the Visio drawing. Workers are represented as Actor shapes, and changes to any one Actor, as with the Activity, will occur for all actors implemented via this research.

Follow-on upgrades to this research should look at providing the ability to group many Activities or many Actors such that changes can be made for groups of shapes without necessitating an all-encompassing parameter change. This will allow the analyst to better refine assumptions throughout the organizational structure.
V. CONCLUSION

This thesis developed an extension to VitéProject, a proprietary software product, to expand its functionality. The expanded functionality enables use of VitéProject for sensitivity analysis and allows validation of the VDT-2 model, the core model of VitéProject. Research analysts can now implement this thesis when estimating software engineering timelines.

The automation of parameter manipulation and multiple scenario simulations has been tailored to the work done by Dr. Nogueira. However, this thesis is easily adaptable to additional organizational structures.

Future work on the software risk assessment model that uses this research might find that the extensions created for VitéProject are not sufficient. Then it will be time for the product of this thesis to be extended. To aid in the development of additional extensions, the code and the interfaces are outlined within this thesis.
APPENDIX A

1. INITIAL DISPLAY

VERSION 5.00
Object = "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0"
"COMDLG32.OCX"

Begin VB.Form Form2
 BorderStyle = 1 'Fixed Single
 Caption = "Software Risk Assessment"
 ClientHeight = 7365
 ClientLeft = 780
 ClientTop = 330
 ClientWidth = 7125
 Icon = "Form2.frx":0000
 LinkTopic = "Form2"
 MaxButton = 0 'False
 MinButton = 0 'False
 ScaleHeight = 7365
 ScaleWidth = 7125

Begin VB.Frame Frame2
 Height = 1695
 Left = 0
 TabIndex = 10
 Top = 3900
 Width = 7095

Begin VB.CommandButton cmdContinue2
 Caption = "CONTINUE"
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 12
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 495
 Left = 600
 TabIndex = 12
 Top = 1080
 Width = 2295
End

Begin VB.CommandButton cmdCancel2
 Caption = "CANCEL"
End
Press CONTINUE to select the Vite file that contains the Database, or press CANCEL to exit program.
Size = 12
Charset = 0
Weight = 400
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False
EndProperty
Height = 495
Left = 2880
TabIndex = 8
Top = 960
Width = 1815
End
Begin VB.CommandButton cmdCancel3
Cancel = -1 'True
Caption = "CANCEL"
BeginProperty Font
 Name = "MS Sans Serif"
 Size = 12
 CharSet = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
EndProperty
Height = 495
Left = 4920
TabIndex = 7
Top = 960
Width = 1815
End
Begin VB.DirListBox Dir1
Height = 765
Left = 240
TabIndex = 6
Top = 840
Width = 2415
End
Begin VB.Label Label3
 Alignment = 2 'Center
 Caption = "Press CONTINUE to use
selected output file Directory, or CANCEL to exit program"
BeginProperty Font
 Name = "MS Sans Serif"
 Size = 12
 CharSet = 0
EndProperty
57
Weight = 400
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False
EndProperty
Height = 600
Left = 120
TabIndex = 9
Top = 240
Width = 6615
End
End
Begin MSComDlg.CommonDialog dlgOpen
 Left = 6480
 Top = 1680
 _ExtentX = 847
 _ExtentY = 847
 _Version = 393216
 DialogTitle = "Specify Vite Source/ Destination File"
 Filter = "Vite Database file (*.vnb) | *.vnb"
 InitDir = "c:\"
End
Begin VB.Frame Frame1
 Height = 1695
 Left = 0
 TabIndex = 1
 Top = 2160
 Width = 7095
Begin VB.CommandButton cmdCancel1
 Caption = "CANCEL"
BeginProperty Font
 Name = "MS Sans Serif"
 Size = 12
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
EndProperty
Height = 495
Left = 3600
TabIndex = 4
Top = 1080
Width = 2295
End
Press CONTINUE to select the Visio file that contains the Organizations format, or press CANCEL to exit program.
2. MAIN DISPLAY

VERSION 5.00
Object = "\{F9043C88-F6F2-101A-A3C9-08002B2F49FB\}#1.2#0";
"COMDLG32.OCX"
Begin VB.Form Form1
 BorderStyle = 1 'Fixed Single
 Caption = "Thesis User Form"
 ClientHeight = 4260
 ClientLeft = 780
 ClientTop = 330
 ClientWidth = 6030
 ControlBox = 0 'False
 Icon = "ThesisWk.frx":0000
 LinkTopic = "Form1"
 MinButton = 0 'False
 ScaleHeight = 4260
 ScaleWidth = 6030
 Begin VB.Frame frameStats
 Caption = "Output Statistics"
 Enabled = 0 'False
 Height = 2175
 Left = 0
 TabIndex = 12
 Top = 4300
 Width = 6015
 Begin VB.CheckBox CkBxWeek
 Caption = "Work Week"
 Enabled = 0 'False
 Height = 375
 Index = 11
 Width = 60
Begin VB.CheckBox CkBxWaitC
Caption = "Wait Cost"
Enabled = 0 'False
Height = 375
Index = 10
Left = 2400
TabIndex = 23
Top = 1680
Width = 1095
End

Begin VB.CheckBox CkBxCordC
Caption = "Coordination Cost"
Enabled = 0 'False
Height = 375
Index = 9
Left = 2400
TabIndex = 22
Top = 1200
Width = 1815
End

Begin VB.CheckBox CkBxReC
Caption = "Rework Cost"
Enabled = 0 'False
Height = 375
Index = 8
Left = 2400
TabIndex = 21
Top = 720
Width = 1335
End

Begin VB.CheckBox CkBxWorkC
Caption = "Work Cost"
Enabled = 0 'False
Height = 375
Index = 7
Left = 2400
TabIndex = 20
Top = 240
Value = 1 'Checked
Width = 1215
End
Begin VB.CheckBox CkBxDuration
 Caption = "Duration"
 Enabled = 0 'False
 Height = 375
 Index = 6
 Left = 4200
 TabIndex = 19
 Top = 720
 Value = 1 'Checked
 Width = 975
End

Begin VB.CheckBox CkBxDay
 Caption = "Work Day"
 Enabled = 0 'False
 Height = 375
 Index = 5
 Left = 4200
 TabIndex = 18
 Top = 1680
 Width = 1095
End

Begin VB.CheckBox CkBxWaitV
 Caption = "Wait Volume"
 Enabled = 0 'False
 Height = 375
 Index = 4
 Left = 240
 TabIndex = 17
 Top = 1680
 Width = 1815
End

Begin VB.CheckBox CkBxCordV
 Caption = "Coordination Volume"
 Enabled = 0 'False
 Height = 375
 Index = 3
 Left = 240
 TabIndex = 16
 Top = 1200
 Width = 1815
End

Begin VB.CheckBox CkBxReV
 Caption = "Rework Volume"
 Enabled = 0 'False
 Height = 375
 Index = 2
End
Left = 240
TabIndex = 15
Top = 720
Width = 1815

Begin VB.CheckBox CkBxWorkV
Caption = "Work Volume"
Enabled = 0 'False
Height = 375
Index = 1
Left = 240
TabIndex = 14
Top = 240
Width = 1815

End

Begin VB.CheckBox CkBxCPM
Caption = "CPM Duration"
Enabled = 0 'False
Height = 375
Index = 0
Left = 4200
TabIndex = 13
Top = 240
Value = 1 'Checked
Width = 1335

End

Begin VB.Frame Frame1
Height = 4215
Left = 0
TabIndex = 1
Top = 0
Width = 6015

Begin VB.ComboBox EffCtl
Enabled = 0 'False
Height = 315
ItemData = "ThesisWk.frx":0442
List = "ThesisWk.frx":0444
Style = 2 'Dropdown List
TabIndex = 33
Top = 1200
Width = 1335

End

Begin VB.CommandButton Helper
Caption = "?"
63
BeginProperty Font
 Name = "MS Sans Serif"
 Size = 12
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
EndProperty
Height = 375
Left = 4920
TabIndex = 28
Top = 360
Width = 615
End
Begin VB.CommandButton RunSimulation
 Caption = "Run Simulation"
 Enabled = 0 'False
 Height = 495
 Left = 240
 TabIndex = 27
 Top = 1080
 Width = 1455
End
Begin MSComDlg.CommonDialog dlgOpen
 Left = 5160
 Top = 2640
 _ExtentX = 847
 _ExtentY = 847
 _Version = 393216
 DialogTitle = "Specify Vite Source/ Destination File"
 Filter = "Vite Database file (*.vnb) | *.vnb"
 InitDir = "c:"
End
Begin VB.CommandButton updateDB
 Caption = "Update Database"
BeginProperty Font
 Name = "Arial"
 Size = 12
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
EndProperty
?
EndProperty
Height = 615
Left = 240
TabIndex = 26
Top = 2280
Visible = 0 'False
Width = 1455
End

Begin VB.ComboBox ReqCtl
 Enabled = 0 'False
 Height = 315
 ItemData = "ThesisWk.frx":0446
 Left = 4200
 List = "ThesisWk.frx":0448
 Style = 2 'Dropdown List
 TabIndex = 11
 Top = 1650
 Width = 1335
End

Begin VB.TextBox TrialsCtl
 Alignment = 2 'Center
 Height = 345
 Left = 1680
 TabIndex = 10
 Text = "5"
 Top = 480
 Width = 615
End

Begin VB.TextBox stepsCtl
 Alignment = 2 'Center
 Height = 345
 Left = 4200
 TabIndex = 9
 Text = "1"
 Top = 3195
 Visible = 0 'False
 Width = 615
End

Begin VB.TextBox MultCtl
 Alignment = 2 'Center
 Height = 345
 Left = 4200
 TabIndex = 8
 Text = "1"
 Top = 2595
 Visible = 0 'False
 Width = 615
End
BeginProperty Font
 Name = "MS Sans Serif"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = -1 'True
 Italic = 0 'False
 Strikethrough = 0 'False
EndProperty
ForeColor = &H00FF0000&
Height = 315
Left = 2280
TabIndex = 34
Top = 1200
Width = 855
End
Begin VB.Label lblComp
 Caption = "Complexity"
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = -1 'True
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 ForeColor = &H00FF0000&
 Height = 315
 Left = 2280
 TabIndex = 34
 Top = 2160
 Width = 975
End
Begin VB.Label lblSteps
 Caption = "Steps (integer)"
 Height = 255
 Left = 2280
 TabIndex = 30
 Top = 3240
 Visible = 0 'False
 Width = 1095
End
Begin VB.Label lblReqVol
 Caption = "Requirements Volatility"
 BeginProperty Font

Name = "MS Sans Serif"
Size = 8.25
Charset = 0
Weight = 400
Underline = -1 'True
Italic = 0 'False
Strikethrough = 0 'False
EndProperty
ForeColor = &H00FF0000&
Height = 495
Left = 2280
TabIndex = 29
Top = 1560
Width = 1095
End
Begin VB.Label lblFileSaved
BeginProperty Font
Name = "MS Sans Serif"
Size = 8.25
Charset = 0
Weight = 700
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False
EndProperty
Height = 285
Left = 240
TabIndex = 25
Top = 3720
Width = 5295
End
Begin VB.Label Label1
Alignment = 2 'Center
Caption = "Number of Trials to Run"
Height = 495
Left = 240
TabIndex = 4
Top = 360
Width = 1095
WordWrap = -1 'True
End
Begin VB.Label lblMult
Caption = "High Complexity Multiple"
BeginProperty Font
Name = "MS Sans Serif"
Size = 8.25
EndProperty
68
Charset = 0
Weight = 400
Underline = -1 'True
Italic = 0 'False
Strikethrough = 0 'False
EndProperty
ForeColor = &H00FF0000&
Height = 495
Left = 2280
TabIndex = 32
Top = 2520
Visible = 0 'False
Width = 1215
End
Begin VB.Label lblMultMax
Caption = "High Complexity Multiple: Max"
BeginProperty Font
Name = "MS Sans Serif"
Size = 8.25
Charset = 0
Weight = 400
Underline = -1 'True
Italic = 0 'False
Strikethrough = 0 'False
EndProperty
ForeColor = &H00FF0000&
Height = 405
Left = 2280
TabIndex = 6
Top = 2520
Visible = 0 'False
Width = 1335
End
End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
3. INFORMATIONAL MAPPING DISPLAY

VERSION 5.00
Begin VB.Form templ
 BorderStyle = 1 'Fixed Single
 Caption = "Software Template"
 ClientHeight = 6585
 ClientLeft = 45
 ClientTop = 330
 ClientWidth = 10515
 ControlBox = 0 'False
 Icon = "Templ.frx":0000
 LinkTopic = "Form1"
 MaxButton = 0 'False
 MinButton = 0 'False
 ScaleHeight = 6585
 ScaleWidth = 10515
Begin VB.CommandButton Command1
 Caption = "CLOSE"
 BeginProperty Font
 Name = "Arial"
 Size = 14.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 735
 Left = 600
 TabIndex = 22
 Top = 5520
 Width = 1815
End
Begin VB.Label Label5
 Alignment = 2 'Center
 BackStyle = 0 'Transparent
 Caption = "Team Experience"
 Height = 375
 Left = 4845
 TabIndex = 16
 Top = 3855
 Width = 975
End
Begin VB.Label Label7
 BackStyle = 0 'Transparent
 Caption = "Skill Levels"
 70
BackStyle = 0 'Transparent
Caption = "Solution Complexity"
Height = 390
Left = 6480
TabIndex = 11
Top = 2010
Width = 855

End

Begin VB.Line Line30
BorderWidth = 4
Index = 17
X1 = 8880
X2 = 8760
Y1 = 1920
Y2 = 1800
End

Begin VB.Line Line29
BorderWidth = 4
Index = 17
X1 = 8880
X2 = 9000
Y1 = 1920
Y2 = 1800
End

Begin VB.Line Line30
BorderWidth = 4
Index = 16
X1 = 7680
X2 = 7680
Y1 = 3120
Y2 = 3000
End

Begin VB.Line Line29
BorderWidth = 4
Index = 16
X1 = 7680
X2 = 7800
Y1 = 3120
Y2 = 3120
End

Begin VB.Line Line30
BorderWidth = 4
Index = 15
X1 = 7800
X2 = 7800
Y1 = 4200
Y2 = 4200

End
Y2 = 4080
End
Begin VB.Line Line29
BorderWidth = 4
Index = 15
X1 = 7440
X2 = 7560
Y1 = 4080
Y2 = 4080
End
Begin VB.Line Line30
BorderWidth = 4
Index = 14
X1 = 7560
X2 = 7560
Y1 = 4200
Y2 = 4080
End
Begin VB.Line Line29
BorderWidth = 4
Index = 14
X1 = 7800
X2 = 7920
Y1 = 4080
Y2 = 4080
End
Begin VB.Line Line30
BorderWidth = 4
Index = 13
X1 = 8760
X2 = 8760
Y1 = 5280
Y2 = 5280
End
Begin VB.Line Line29
BorderWidth = 4
Index = 13
X1 = 8640
X2 = 8760
Y1 = 5280
Y2 = 5280
End
Begin VB.Line Line30
BorderWidth = 4
Index = 12
X1 = 8880
73
X2 = 9000
Y1 = 3720
Y2 = 3600
End
Begin VB.Line Line29
 BorderWidth = 4
 Index = 12
 X1 = 8880
 X2 = 9000
 Y1 = 3480
 Y2 = 3600
End
Begin VB.Line Line30
 BorderWidth = 4
 Index = 11
 X1 = 7080
 X2 = 7080
 Y1 = 5400
 Y2 = 5280
End
Begin VB.Line Line29
 BorderWidth = 4
 Index = 11
 X1 = 7080
 X2 = 7200
 Y1 = 5280
 Y2 = 5280
End
Begin VB.Line Line30
 BorderWidth = 4
 Index = 10
 X1 = 7560
 X2 = 7560
 Y1 = 3120
 Y2 = 3000
End
Begin VB.Line Line29
 BorderWidth = 4
 Index = 10
 X1 = 7440
 X2 = 7560
 Y1 = 3120
 Y2 = 3120
End
Begin VB.Line Line30
 BorderWidth = 4

Index = 9
X1 = 7080
X2 = 7200
Y1 = 1920
Y2 = 1800
End

Begin VB.Line Line29
 BorderWidth = 4
 Index = 9
 X1 = 6960
 X2 = 7080
 Y1 = 1800
 Y2 = 1920
End

Begin VB.Line Line30
 BorderWidth = 4
 Index = 8
 X1 = 8040
 X2 = 8160
 Y1 = 480
 Y2 = 600
End

Begin VB.Line Line29
 BorderWidth = 4
 Index = 8
 X1 = 8040
 X2 = 8160
 Y1 = 720
 Y2 = 600
End

Begin VB.Line Line30
 BorderWidth = 4
 Index = 7
 X1 = 4680
 X2 = 4800
 Y1 = 4920
 Y2 = 5040
End

Begin VB.Line Line29
 BorderWidth = 4
 Index = 7
 X1 = 4680
 X2 = 4800
 Y1 = 5160
 Y2 = 5040
End

End
Y2 = 3480
End

Begin VB.Line Line30
 BorderWidth = 4
 Index = 3
 X1 = 4680
 X2 = 4800
 Y1 = 3120
 Y2 = 3000
End

Begin VB.Line Line29
 BorderWidth = 4
 Index = 3
 X1 = 4680
 X2 = 4800
 Y1 = 2880
 Y2 = 3000
End

Begin VB.Line Line30
 BorderWidth = 4
 Index = 2
 X1 = 4680
 X2 = 4800
 Y1 = 2520
 Y2 = 2400
End

Begin VB.Line Line29
 BorderWidth = 4
 Index = 2
 X1 = 4680
 X2 = 4800
 Y1 = 2280
 Y2 = 2400
End

Begin VB.Line Line30
 BorderWidth = 4
 Index = 1
 X1 = 2400
 X2 = 2520
 Y1 = 2880
 Y2 = 2760
End

Begin VB.Line Line29
 BorderWidth = 4
 Index = 1
 X1 = 2400
 X2 = 2520
 Y1 = 2280
 Y2 = 2400
X2 = 2520
Y1 = 2640
Y2 = 2760

End
Begin VB.Line Line32
 BorderWidth = 4
 X1 = 6240
 X2 = 6360
 Y1 = 705
 Y2 = 585
End
Begin VB.Line Line31
 BorderWidth = 4
 X1 = 6240
 X2 = 6360
 Y1 = 465
 Y2 = 585
End
Begin VB.Line Line28
 BorderWidth = 4
 X1 = 4440
 X2 = 4560
 Y1 = 720
 Y2 = 600
End
Begin VB.Line Line27
 BorderWidth = 4
 X1 = 4440
 X2 = 4560
 Y1 = 480
 Y2 = 600
End
Begin VB.Line Line30
 BorderWidth = 4
 Index = 0
 X1 = 7080
 X2 = 7200
 Y1 = 3720
 Y2 = 3600
End
Begin VB.Line Line29
 BorderWidth = 4
 Index = 0
 X1 = 7080
 X2 = 7200
 Y1 = 3480

78
Y2 = 3600
End

Begin VB.Label Label14
 Alignment = 2 'Center
 BackStyle = 0 'Transparent
 Caption = "Time"
 Height = 255
 Left = 9000
 TabIndex = 21
 Top = 1320
 Width = 735
End

Begin VB.Line Line26
 X1 = 8880
 X2 = 8880
 Y1 = 840
 Y2 = 1920
End

Begin VB.Line Line25
 X1 = 7080
 X2 = 7080
 Y1 = 1680
 Y2 = 1920
End

Begin VB.Line Line24
 X1 = 5160
 X2 = 6480
 Y1 = 840
 Y2 = 1440
End

Begin VB.Label Label1
 Alignment = 2 'Center
 BackStyle = 0 'Transparent
 Caption = "Complexity"
 Height = 255
 Index = 8
 Left = 6600
 TabIndex = 20
 Top = 1280
 Width = 855
End

Begin VB.Shape shpComp
 BackStyle = 1 'Opaque
 FillColor = &H00FFC0C0&
 Height = 615
 Index = 20
End
Begin VB.Line Line16
 X1 = 7080
 X2 = 7560
 Y1 = 4680
 Y2 = 4080
End

Begin VB.Line Line15
 X1 = 8160
 X2 = 9000
 Y1 = 3600
 Y2 = 3600
End

Begin VB.Line Line14
 X1 = 8640
 X2 = 7680
 Y1 = 2520
 Y2 = 3120
End

Begin VB.Line Line13
 X1 = 6960
 X2 = 7560
 Y1 = 2520
 Y2 = 3120
End

Begin VB.Line Line12
 X1 = 5880
 X2 = 7200
 Y1 = 5040
 Y2 = 3600
End

Begin VB.Line Line11
 X1 = 5880
 X2 = 7200
 Y1 = 4560
 Y2 = 3600
End

Begin VB.Line Line10
 X1 = 5880
 X2 = 7200
 Y1 = 3960
 Y2 = 3600
End

Begin VB.Line Line9
 X1 = 5880
 X2 = 7200
 Y1 = 3600
 Y2 = 3600
End
Y2 = 3600
End
Begin VB.Line Line8
 X1 = 5880
 X2 = 7200
 Y1 = 3000
 Y2 = 3600
End
Begin VB.Line Line7
 X1 = 5880
 X2 = 7200
 Y1 = 2520
 Y2 = 3600
End
Begin VB.Line Line6
 X1 = 4800
 X2 = 3480
 Y1 = 3000
 Y2 = 2760
End
Begin VB.Line Line5
 X1 = 4800
 X2 = 3480
 Y1 = 3480
 Y2 = 2760
End
Begin VB.Line Line4
 X1 = 4800
 X2 = 3480
 Y1 = 2400
 Y2 = 2760
End
Begin VB.Line Line3
 X1 = 4800
 X2 = 3480
 Y1 = 4080
 Y2 = 4440
End
Begin VB.Line Line2
 X1 = 3480
 X2 = 4800
 Y1 = 4440
 Y2 = 4560
End
Begin VB.Line Line1
 X1 = 3480
End
X2 = 4800
Y1 = 4440
Y2 = 5040

End

Begin VB.Shape shpFTE
 BackColor = &H000000FF&
 FillColor = &H0080FF80&
 Height = 615
 Index = 0
 Left = 8085
 Shape = 4 'Rounded Rectangle
 Top = 1920
 Width = 1095
End

Begin VB.Shape shpSolComp
 BackColor = &H000000FF&
 FillColor = &H0080FF80&
 Height = 615
 Index = 3
 Left = 6405
 Shape = 4 'Rounded Rectangle
 Top = 1920
 Width = 1095
End

Begin VB.Shape Shape1
 FillColor = &H0080FF80&
 Height = 735
 Index = 6
 Left = 9045
 Top = 3240
 Width = 1095
End

Begin VB.Shape shpReqComp
 BackColor = &H000000FF&
 FillColor = &H0080FF80&
 Height = 615
 Index = 7
 Left = 7965
 Shape = 4 'Rounded Rectangle
 Top = 4680
 Width = 1215
End

Begin VB.Shape shpUnc
 BackColor = &H000000FF&
 FillColor = &H0080FF80&
 Height = 615
End
Index = 8
Left = 6405
Shape = 4 'Rounded Rectangle
Top = 4680
Width = 1095
End

Begin VB.Shape Shape1
 FillColor = &H0080FF80&
 Height = 975
 Index = 9
 Left = 6885
 Shape = 3 'Circle
 Top = 3120
 Width = 1575
End

Begin VB.Shape shpSkills
 BackColor = &H000000FF&
 FillColor = &H0080FF80&
 Height = 390
 Index = 1
 Left = 4800
 Shape = 4 'Rounded Rectangle
 Top = 4920
 Width = 1095
End

Begin VB.Shape shpApp
 BackColor = &H000000FF&
 FillColor = &H0080FF80&
 Height = 405
 Index = 2
 Left = 4800
 Shape = 4 'Rounded Rectangle
 Top = 4380
 Width = 1095
End

Begin VB.Shape Shape1
 FillColor = &H0080FF80&
 Height = 405
 Index = 4
 Left = 4800
 Shape = 4 'Rounded Rectangle
 Top = 3330
 Width = 1095
End

Begin VB.Shape shpTeam
 BackColor = &H000000FF&
FillColor = &H0080FF80&
Height = 405
Index = 5
Left = 4800
Shape = 4 'Rounded Rectangle
Top = 3840
Width = 1095
End

Begin VB.Shape Shape1
FillColor = &H0080FF80&
Height = 390
Index = 10
Left = 4800
Shape = 4 'Rounded Rectangle
Top = 2805
Width = 1095
End

Begin VB.Shape Shape1
FillColor = &H0080FF80&
Height = 390
Index = 11
Left = 4800
Shape = 4 'Rounded Rectangle
Top = 2280
Width = 1095
End

Begin VB.Label Label2
Alignment = 2 'Center
BackStyle = 0 'Transparent
Caption = "Centralization"
Height = 255
Index = 0
Left = 4845
TabIndex = 19
Top = 2400
Width = 975
End

Begin VB.Label Label3
BackStyle = 0 'Transparent
Caption = "Formalization"
Height = 255
Left = 4845
TabIndex = 18
Top = 2880
Width = 975
End

85
Begin VB.Label Label1
Alignment = 2 'Center
BackColor = 0 'Transparent
Caption = "Requirements Volatility"
Height = 375
Left = 7465
TabIndex = 7
Top = 5955
Width = 975
End

Begin VB.Shape shpReqV
BackColor = 1 'Opaque
Fillstyle = &H00FFC0C0&
Height = 615
Index = 19
Left = 7440
End
Top = 5880
Width = 1095

Begin VB.Label Label1
Alignment = 2 'Center
BackColor = 0 'Transparent
Caption = "Ada Loc"
Height = 255
Index = 7
Left = 6480
TabIndex = 6
Top = 420
Width = 855
End

Begin VB.Label Label1
Alignment = 2 'Center
BackColor = 0 'Transparent
Caption = "Time Conversion"
Height = 375
Index = 6
Left = 8280
TabIndex = 5
Top = 360
Width = 855
End

Begin VB.Label Label1
Alignment = 2 'Center
BackColor = 0 'Transparent
Caption = "Typical Software Organization CMM 2-3"
Height = 840
Index = 5
Left = 480
TabIndex = 4
Top = 2400
Width = 855
End

Begin VB.Label Label1
Alignment = 2 'Center
BackColor = 0 'Transparent
Caption = "Efficiency"
Height = 255
Index = 4
Left = 2520
TabIndex = 3
Top = 4280
End
Width = 855

Begin VB.Label Label1
 Alignment = 2 'Center
 BackStyle = 0 'Transparent
 Caption = "OrgCon"
 Height = 255
 Index = 3
 Left = 2640
 TabIndex = 2
 Top = 2640
 Width = 855
End

Begin VB.Label Label1
 Alignment = 2 'Center
 BackStyle = 0 'Transparent
 Caption = "LGC"
 Height = 255
 Index = 1
 Left = 4680
 TabIndex = 1
 Top = 420
 Width = 855
End

Begin VB.Label Label1
 Alignment = 2 'Center
 BackStyle = 0 'Transparent
 Caption = "PSDL Spec."
 Height = 375
 Index = 0
 Left = 2880
 TabIndex = 0
 Top = 360
 Width = 855
End

Begin VB.Shape Shape1
 FillColor = &H0080FF80&
 Height = 615
 Index = 18
 Left = 4560
 Top = 240
 Width = 1095
End

Begin VB.Shape Shape1
 FillColor = &H0080FF80&
 Height = 615
End
Index = 17
Left = 6360
Top = 240
Width = 1095
End
Begin VB.Shape Shape1
 FillColor = &H0080FF80&
 Height = 615
 Index = 16
 Left = 8160
 Top = 240
 Width = 1095
End
Begin VB.Shape Shape1
 FillColor = &H0080FF80&
 Height = 975
 Index = 15
 Left = 360
 Top = 2280
 Width = 1095
End
Begin VB.Shape Shape1
 FillColor = &H0080FF80&
 Height = 615
 Index = 14
 Left = 2760
 Top = 240
 Width = 1095
End
Begin VB.Shape Shape1
 FillColor = &H0080FF80&
 Height = 975
 Index = 13
 Left = 2250
 Shape = 3 'Circle
 Top = 2280
 Width = 1575
End
Begin VB.Shape shpEff
 BackStyle = 1 'Opaque
 FillColor = &H00FFC0C0&
 Height = 615
 Index = 12
 Left = 2400
 Top = 4080
 Width = 1095
End

89
End
End
Attribute VB_Name = "templ"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. LT Byron Alexander
 Naval Submarine School
 Groton, CT. 06349-5700

4. Ms. Reba Alexander
 712 E. 51st Street
 Chicago, IL. 60615