Micro-Stereolithography: Physics and Technologies

Xiang Zhang

Department of Mechanical and Aerospace Engineering
University of California, Los Angeles
Micro-Stereolithography: Physics and Technologies

Zhang, Xiang

Department of Mechanical and Aerospace Engineering
University of California, Los Angeles

Office of Naval Research International Field Office
Office of Naval Research
Washington, DCxxxxx

APUBLIC RELEASE
See Also ADM001348, Thermal Materials Workshop 2001, held in Cambridge, UK on May 30-June 1, 2001. Additional papers can be downloaded from: http://www-mech.eng.cam.ac.uk/onr/

mSL principles and apparatus design
Prototyping of polymeric and ceramic microstructures
Experiment and modeling

a. REPORT Unclassified
b. ABSTRACT Unclassified
c. THIS PAGE Unclassified

703767-9007
427-9007
Acknowledgement:

Students at my group:

Cheng Sun, Nick Fang, Xiaoning Jiang, Ming Xi, Dongmin Wu, Zhiliang Wan

NSF CAREER award
ONR Young Investigator Award
Outline

- Introduction

- Micro-Stereolithography (µSL)
 - µSL principles and apparatus design
 - Prototyping of polymeric and ceramic microstructures
 - Experiment and modeling

- Applications
Background

- Future high Performance MEMS requires:
 - 3D complex micro-structures
 - Incorporating with a broader spectrum of materials (Smart materials, functional polymer, and magnetic alloys)

- However, current silicon IC fabrication can not provide an effective solution.

- Other efforts:
 - X-ray LIGA: high aspect ratio 2.5D, but not true 3D
 - Micro-mechanical machining: complex 3D, but very slow and severe tool wear
 - EFAB, 3D, need many masks needed and limited to metal
A New Approach—Scale Down Rapid Prototyping Technologies

Micro-Stereolithography

- UV laser micro photo-forming of 3D complex micro-parts
- A layer-by-layer additive process
- CAD design capability
- Incorporation of many functional materials

(Ikuta, 1996)
An Advanced Micro-Stereolithography Apparatus

- Laser: $\lambda = 364$ nm
- X-Y-Z stepper resolution: 0.5 μm
- UV beam spot: 1 μm
Test Pattern with 2 μm Line Width
Micro-Stereolithography of 3D Complex Structures

- Micro-spring
- Micro-mushroom
- **Micro-tube**
 (50 µm inner diameter and 800 µm long)

- **Micro-rod Array**
 (50 µm diameter and 500 µm long)
Simulation of Micro-Stereolithography of Polymer

Photopolymerization

• **Initiation:**

 Photon \(\rightarrow\) Initiator \(\rightarrow\) Radical

 Initiator + Heat

• **Propagation:**

 Radical + Monomer \(\rightarrow\) Polymer + Heat

• **Termination:**

 Polymer + Polymer \(\rightarrow\) Solidified Part

 Laser Beam

 UV curable resin

 Radicals
Simulation Approach

- **Light absorption:**
 \[
 \frac{dI}{dz} = - \varepsilon [S] I
 \]

- **Photoinitiation:**
 \[
 \frac{d}[S]}{dt} = - \psi \varepsilon [S] I
 \]

- **Diffusion of Radicals:**
 \[
 \frac{d[R]}{dt} = D \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial [R]}{\partial r} \right) + \frac{\partial^2 [R]}{\partial z^2} \right] + \phi \varepsilon [S] I - k_t [R]^2
 \]

- **Polymerization Kinetics:**
 \[
 \frac{d[M]}{dt} = - k_p [R][M]
 \]

- **Heat Transfer:**
 \[
 \rho C_p \frac{\partial T}{\partial t} = k \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^2 T}{\partial z^2} \right] - k_p [R][M] \Delta H
 \]
Monte-Carlo Simulation of µSL of Ceramics

Single photon tracing processes:

- Scattering
 - Mie theory

- Absorption during traveling
 - travel: $P = e^{-1/\lambda}$, $\lambda = \frac{4 \cdot r}{3 \cdot s}$ (MFP)
 - absorption: $P_a = e^{-s}$

- Photo polymerization
3D Ceramic μSL

30 μm Alumina Micro Channels 400 μm Alumina Micro Gear
Micro-Stereolithography of Ceramic Structures

- Green Alumina Gear
- Sintered Alumina Gear

Sintered at 1400 °C and 3 hours
Shrinkage due to sintering: 5-16%
Lateral Resolution Limit in µSL of Ceramics

![Graph showing the relationship between Curing Radius (µm) and Laser Beam Radius (µm). The graph displays a positive correlation between the two variables, with the Curing Radius increasing as the Laser Beam Radius increases.]
3D Matrix by DMD-µSL
3D Coils Array and Micro-Matrix
3D Photonic Band-gap Crystals

- Transmit/forbid light beam of selected wavelength (12 dB)

- Defects are pre-designed by CAD and embedded into the PBG by micro-stereolithography (decide what type defects and where they localed, which is impossible in atomic scale defects in semiconductor)

Applications

- Loss-free optical fiber
- High efficiency visible –IR bandpass filter/waveguide
- Resonant cavity in solid state laser

(Joannopoulos, 1996)

(Zhang, 1999)
Artificial Materials With Unprecedented Properties
(Theoretical work of John Pendry, 2000)

Artificial Magnetism at High f

Super-lens

Artificial Plasma
3D Valveless Micropump

- Truly 3D cavity structure to optimize the design
- High reliability due to no movable valves
- A wide variety of materials (e.g., Bio-polymer)
Near Field Optical nanolithography (NSOL)

- Near field scanning optical microscopy (NSOM)- a proven technology to break the diffraction limit.
- 2D nanopatterning with NSOM demonstrated features with ~100nm lateral resolution
- Computer simulation propose that NSOM has the potential in 3D nanolithography
Conclusions

- Scanning micro-stereolithography has been developed

- Micro-stereolithography of complex 3D micro-structures has been demonstrated; For the first time, μSL of ceramic micro-structures has been succeeded

- Theoretical Simulation of micro-stereolithography shows good agreements with preliminary experimental results

- The unique 3D techniques enable exciting applications in photonics, bioMEMS and possibly novel thermally engineered materials.