Thermal issues in high current power semiconductor devices

Dr. P.R. Palmer
University of Cambridge
Department of Engineering
Thermal issues in high current power semiconductor devices

1. Introduction to High Power IGBTs
2. Issues in IGBT operation
3. IGBTs in series
4. Future devices

See Also ADM001348, Thermal Materials Workshop 2001, held in Cambridge, UK on May 30-June 1, 2001. Additional papers can be downloaded from: http://www-mech.eng.cam.ac.uk/onr/
OUTLINE

I. Introduction to High Power IGBTs

II. Issues in IGBT operation

III. IGBTs in series

• Future devices
I Introduction to High Power IGBTs
The IGBT schematic

Main Features

1. MOS gate control
2. Bipolar assisted on-state
3. Latch-up free

Ratings up to 2000A and 4.5kV
IGBT STRUCTURES

- Parasitic Thyristor is shorted out
- Wide-base pnp transistor
- Conventional MOS gate input

There are many variations including some Trench and Terraced Gates
MODULE IGBTs

- Permit simple inverter arrangement - Laminated busbars.
- Can be easily air cooled.
- Reliability is high.
- Are short circuit current rated.
CAPSULE IGBTs

- Double sided cooling.
- Are easily water cooled.
- Reliable capsule package.
- Fail short circuit.
II Issues in IGBT operation
SUMMARY OF ISSUES

For devices made of paralleled chips we must consider

1. Steady State current sharing
2. Transient current sharing
3. Stability in operation - gate resistors

Chip manufacturing and selection cannot produce closely matched chips and the package often introduces asymmetry in the cooling
TYPICAL IGBT SWITCHING WAVEFORMS

C1 Gate voltage (10V/div)
C3 Collector current (50A/div)
C4 Collector-emitter voltage (200V/div)

Note the significant gate ‘plateau’ period
TRANSIENT CURRENT SHARING

Hard switched

- The divergence of the chip currents coincides with the gently rising collector-emitter voltage.
- No obvious problems.
THERMAL IMAGE

Hard switched @ 4kHz

- Maximum temperature difference of about 3 °C

Positive feedback mechanism!
TRANSIENT CURRENT SHARING

Active dv/dt Snubber

The form of the divergence varies with the circuit conditions.
THERMAL IMAGE

Active dv/dt Snubber @ 4kHz

- Maximum temperature difference of about 10°C
TRANSIENT CURRENT SHARING
Matched Pair, Hot (100°C and 50°C)

• Ideal behaviour is lost when the chips are at different temperatures.

And a positive feedback mechanism appears in the transient losses!
1% Gate oxide difference

2.7% P-base doping difference

Ideally matched devices cannot be made!
III IGBTs in series and the 2-Step method
THE SERIES CONFIGURATION

Necessity for seriesing:

1. To achieve high voltage ratings
2. To utilise low voltage devices - cheaper?
3. Redundancy

• Many new applications are appearing due to deregulation and distributed generation with new energy sources.

For example: ABB’s ‘HVDC Lite’
HIGH VOLTAGE SERIES IGBT RIG

Three capsule IGBTs and three Diodes in series with water cooling
Specification of the Westcode Capsule IGBT

• 400A, 1700V ‘development’ devices
• 47mm diameter, hermetic, cold weld
• Each capsule has 5 IGBT chips, 2 anti-parallel diodes
• On state volts of 5V
• Internal diode rating 400A, Vf= 2V, tr=550ns
• Thermal resistance IGBT 55K/kW, diode 84K/kW
ISSUES IN SERIES CONNECTION

The voltage sharing problem can be divided up:

- transient behaviour
- steady state behaviour
- losses.

Driven by:

- differences between similar devices
- long term maintainability
- total cost over whole life.
HARD SWITCHED - 3 devices in series

- The poor transient sharing is followed by poor sharing in the off state.
ACTIVE VOLTAGE CONTROL PRINCIPLES

- Utilises the IGBT's gate control capability
- Closed Loop Voltage Control
- Collector voltage follows reference waveform
ACTIVE VOLTAGE CONTROL - 3 devices in series

- Small preconditioning step followed by turn-off ramp.
- Poor transient sharing in step 1 followed by excellent sharing in the ramp.
ACTIVE VOLTAGE CONTROL - 3 devices in series

- Sharing in the off state is much improved also.

Off-state characteristics are temperature dependent.
IV Future Devices
TECHNOLOGY DRIVERS

• High Ratings: 6.5 kV, 1000A IGBTs
 - Very high switching losses per unit volume

• High Temperatures: SiC , 300 °C
 - Materials issues within the package

• Integrated Systems: Power chips and logic/microprocessors in one plastic package
 - Large Power ‘Bricks’
CONCLUSIONS

- The thermal arrangement must be symmetrical to ensure balanced operation.

- Plastic and Capsule devices are reliable under typical conditions, but asymmetries cause problems when switching at a high frequency.

- Feedback control offers exciting opportunities.

- New Si and SiC devices demand better packages.

- New package topologies are needed to remove some of the stability problems and make power bricks more practical.
V SELECTED PUBLICATIONS

All rights reserved.
For further publications: email prp@eng.cam.ac.uk