FINAL REPORT
January 2002

REPORT NO. 01-16

M871A3 TACTICAL TRAILER
22.5-TON PAYLOAD CAPACITY
TP-94-01,
"TRANSPORTABILITY TESTING PROCEDURES"

Distribution Unlimited:
U.S. Army Tank-automotive & Armaments Command
ATTN: AMSTA-DSA-FP-IM
Warren, MI 48397-5000

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

VALIDATION ENGINEERING DIVISION
MCALESTER, OKLAHOMA 74501-9053
AVAILABILITY NOTICE

A copy of this report will be furnished each attendee on automatic distribution.
Additional copies or authority for reprinting may be obtained by written request from:

Director
U.S. Army Defense Ammunition Center
ATTN: SOSAC-DEV
1 C Tree Road, Bldg. 35
McAlester, OK 74501-9053

Reports may also be downloaded or viewed in PDF format from our web site at:

http://www/dac.army.mil/DEV/TestReports

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

Citation of trade names in this report does not constitute an official endorsement.

The information contained herein will not be used for advertising purposes.
ABSTRACT

The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division, (SOSAC-DEV), was tasked by the Program Manager, Medium Tactical Vehicles to conduct transportability testing on the M871A3 Tactical Trailer, 22.5-Ton Payload Capacity. The M871A3 was tested in accordance with TP-94-01, "Transportability Testing Procedures." Based on our review and testing, the M871A3 trailer, as designed and tested, is adequate but not ideal for transport of ammunition.

The following items were discovered during initial evaluation and testing of the M871A3 trailer:

a. Tie-down anchor ring spacing (longitudinal) - Current spacing is 24 inches center to center. This spacing creates situations where only 1 strap per row of pallets can be used to secure the load to the trailer. Recommended spacing is 18 inches.

b. Tie-down anchor ring spacing (lateral) - Current lateral spacing is 79 inches, side to side. This spacing makes securing many two-pallet-wide and three-pallet-wide loads difficult or impossible, since load widths can be near trailer width or approximately 96 inches wide.

c. Recessed deck channel - The trailer has a full-length recessed channel on each side that allows for mounting of the tie-down rings so that they are flat and flush with the trailer deck. This open channel will preclude many pallet units from being positioned properly on the trailer, will cause damage to the pallets, and/or inhibit the proper securement of the load. Recommend that the area between the rings be filled in or that the full-length recessed channel be eliminated.

d. Side panel stake storage area. The rear panel where the stakes are stored bowed outward during transport. This allowed the stakes to become wedged in the bottom of the storage area. Recommend that the securement provisions on the rear panel be changed to prevent this from occurring in the future.

Prepared by:

PHILIP W. BARICKMAN
Lead Validation Engineer

Reviewed by:

JERRY W. BEAVER
Chief, Validation Engineering Division
U.S. ARMY DEFENSE AMMUNITION CENTER
VALIDATION ENGINEERING DIVISION
MCALESTER, OK 74501-9053

REPORT NO. 01-16

M871 Tactical Trailer, 22.5-Ton Payload Capacity
TP-94-01, "Transportability Testing Procedures"

TABLE OF CONTENTS/

PART
PAGE NO.

1. INTRODUCTION ... 1-1
 A. BACKGROUND .. 1-1
 B. AUTHORITY .. 1-1
 C. OBJECTIVE ... 1-1
 D. CONCLUSION .. 1-1

2. ATTENDEES ... 2-1

3. TEST EQUIPMENT ... 3-1

4. TEST PROCEDURES ... 4-1
 A. RAIL IMPACT TEST METHOD ... 4-1
 B. HAZARD COURSE .. 4-3
 C. ROAD TRIP .. 4-4
 D. PANIC Stops .. 4-4
 E. WASHBOARD COURSE ... 4-4

5. TEST RESULTS .. 5-1
 5.1 M871A3 Trailer w/11,859 POUNDS PAYLOAD ... 5-1
 A. RAIL IMPACT .. 5-1
 B. HAZARD COURSE .. 5-4
 C. ROAD TRIP .. 5-4
 D. PANIC STOPS .. 5-4
 E. WASHBOARD .. 5-5
 5.2 M871A3 Trailer w/45,180 POUNDS PAYLOAD ... 5-5
 A. RAIL IMPACT .. 5-5
 B. HAZARD COURSE .. 5-8
 C. ROAD TRIP .. 5-8
 D. PANIC STOPS .. 5-8
 E. WASHBOARD .. 5-8
 F. RAIL IMPACT (RETEST) .. 5-9
5.3 M871A3 TRAILER W/33,940-POUND PAYLOAD .. 5-12
 A. RAIL IMPACT ... 5-13
 B. HAZARD COURSE .. 5-16
 C. ROAD TRIP ... 5-17
 D. PANIC STOPS .. 5-17
 E. WASHBOARD ... 5-17
5.4 M871A3 TRAILER W/45,180-POUND PAYLOAD 5-18
 A. RAIL IMPACT ... 5-19

6. ACCELEROMETER DATA .. 6-1

7. DRAWINGS ... 7-1
PART 1 – INTRODUCTION

A. BACKGROUND. The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SOSAC-DEV), was tasked by the Program Manager, Medium Tactical Trailers to conduct transportability testing on the M871A3 Tactical Trailer. The trailer was manufactured by Fontaine Trailer in Princeton, Kentucky. The trailer was tested in accordance with TP-94-01, "Transportability Testing Procedures."

B. AUTHORITY. This test was conducted IAW mission responsibilities delegated by the U.S. Army Operations Support Command (OSC), Rock Island, IL. Reference is made to the following:

C. OBJECTIVE. The objective of the testing was to determine if the M871A3 trailer was adequate to transport ammunition by road and rail. The trailer was rail impact tested using both a Trailer-on-Flatcar (TOFC) railcar and a flatcar with chains. The test loads included; intermodal end opening container with MLRS Pods, intermodal end opening container with 155MM Separate Loading Projectiles (SLPs), and a breakbulk cargo load with 155MM SLPs and 105MM boxed ammunition.

D. CONCLUSION. Based on our review and testing, the M871A3 trailer, as designed and tested, is adequate but not ideal for transport of ammunition. Several recommendations for improvements were discovered during evaluations and are listed in the Abstract.
PART 2 - ATTENDEES

DATE PERFORMED: 29 October – 8 November 2001

<table>
<thead>
<tr>
<th>ATTENDEE</th>
<th>MAILING ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philip Barickman</td>
<td>Director</td>
</tr>
<tr>
<td>General Engineer</td>
<td>U.S. Army Defense Ammunition Center</td>
</tr>
<tr>
<td>DSN 956-8992</td>
<td>ATTN: SOSAC-DEV</td>
</tr>
<tr>
<td>(918) 420-8992</td>
<td>1 C Tree Road, Bldg. 35</td>
</tr>
<tr>
<td>Steve Bohiman</td>
<td>McAlester, OK 74501-9053</td>
</tr>
<tr>
<td>Maintenance System Manager</td>
<td></td>
</tr>
<tr>
<td>DSN 786-8647</td>
<td></td>
</tr>
<tr>
<td>(586) 574-8647</td>
<td></td>
</tr>
<tr>
<td>Michael Allen</td>
<td>U.S. Army Tank-automotive &</td>
</tr>
<tr>
<td>Quality Assurance Manager</td>
<td>Armaments Command</td>
</tr>
<tr>
<td>DSN 786-8647</td>
<td>ATTN: AMSTA-LC-CHME/420</td>
</tr>
<tr>
<td>(586) 574-8647</td>
<td>6501 E. 11 Mile Road</td>
</tr>
<tr>
<td>Nicole Margrif</td>
<td>Warren, MI 48397-5000</td>
</tr>
<tr>
<td>Vehicle Product Engineer, Intern</td>
<td></td>
</tr>
<tr>
<td>DSN 786-8647</td>
<td></td>
</tr>
<tr>
<td>(586) 574-8647</td>
<td></td>
</tr>
</tbody>
</table>
PART 3 - TEST EQUIPMENT

1. Semi-trailer, Low bed, 22.5 tons
 Model: M871A3
 Manufactured by Fontaine Trailer Company, Princeton, Kentucky,
 Date of Manufacture: 08/2001
 VIN: 13N-2412A-X-15996058
 Gross Vehicle Weight Rating: 61,700 pounds
 Empty Weight: 17,500 pounds
 Length: 41 feet 3 inches
 Width: 96 inches

2. Truck, Tractor
 Model: M1088
 Serial #: T-011181BDKG
 NSN: 2320-01-355-4332
 Weight: 19,160 pounds
 Length: 281 inches
 Width: 96 inches
 Height: 112 inches

3. Trailer-on-Flatcar
 CNW 780784
 Built: 11/71
 LT WT: 46,700 pounds
 LD LMT: 70,000 pounds
 Length: 50.5 feet
4. Trailer-on-Flatcar (TOFC) Railcar
 CNW 780576
 Built: 07/75
 LT WT: 46,200 pounds
 LD LMT: 70,000 pounds
 Length: 50.5 feet

5. Flatcar
 ITTX 972861
 Built: 06/70
 LT WT: 78,000 pounds
 LD LMT: 142,000 pounds
 Length: 89.3 feet
 Equipped with 56 Chains
 Chain size: 0.5 inch
 Working Load Limit: 13,750 pounds
 Minimum Breaking Load Limit: 55,000 pounds

6. Intermodal Container with MLRS Pods
 Date of Manufacture: 02/90
 Manufacturer: J.D. Bertolini
 ID # USAG 060657 9
 Maximum Gross Weight: 44,800 pounds
 Tare Weight: 5,000 pounds

7. Intermodal Container with Separate Loading Projectiles
 Date of Manufacture: 12/96
 Manufacturer: Siam Cargo Container Company, Ltd.
 ID # MLCU 321109 0
 Maximum Gross Weight: 67,200 pounds
 Tare Weight: 4,850 pounds
PART 4 - TEST PROCEDURES

The test procedures outlined in this section were extracted from TP-94-01, "Transportability Testing Procedures," July 1994, for validating tactical vehicles and outloading procedures used for shipping munitions by tactical truck and railcar.

Inert (non-explosive) items were used to build the loads. The breakbulk test load (see Part 5.4) was prepared using the blocking and bracing procedures proposed for use with munitions (see Part 7 for procedures). The procedures were used as a guideline and the tiedown procedures were adjusted to accommodate the tiedown ring spacing and locations on the M871A3 trailer. The weight and physical characteristics (weights, physical dimensions, center of gravity, etc.) of the test loads were similar to live (explosive) ammunition.

A. RAIL IMPACT TEST METHOD. The loaded M871A3 trailer was secured to a conventional friction draft gear non-cushioned TOFC railcar with cushioned stanchion or chain-equipped flatcar. Three chains were used per tie-down ring to secure the trailer to the flatcar. MTMCTEA Pamphlet 55-19 was used as a general guide to build the wooden stanchion required to support the trailer during testing on the chain equipped flatcar. Modifications were required to the MTMCTEA Pamphlet design due to the trailer kingpin height. Equipment needed to perform the test included the specimen (hammer) car, four empty railroad cars connected together to serve as the anvil, and a railroad locomotive. The anvil cars were positioned on a level section of track with air and hand brakes set and with draft gears compressed. The locomotive unit pushed the specimen car toward the anvil at a predetermined speed, then disconnected from the specimen car approximately 50 yards away from the anvil cars allowing the specimen car to roll freely along the track until it struck the anvil. This constituted an impact. Impacting was accomplished at speeds of 4, 6, and 8.1 mph in one direction and at a speed of 8.1 mph in the reverse direction. Tolerances for the impact speeds are plus .5 mph and minus zero mph. The impact speeds were determined by
using an electronic counter to measure the time for the specimen car to traverse an 11-foot distance immediately prior to contact with the anvil cars (see Figure 1).

Figure 1. Rail Impact Sketch
B. **HAZARD COURSE.** The loaded M871A3 trailer was transported over the 200-foot-long segment of concrete-paved road consisting of two series of railroad ties projecting 6 inches above the level of the road surface. The hazard course was traversed two times (see Figure 2).

![Figure 2. Hazard Course Sketch](image)

1. The first series of ties are spaced on 10-foot centers and alternately positioned on opposite sides of the road centerline for a distance of 50 feet.
2. Following the first series of ties, a paved roadway of 75 feet separates the first and second series of railroad ties.
3. The second series of ties are spaced on 8-foot centers and alternately positioned on opposite sides of the road centerline for a distance of 50 feet.

The test load is driven across the hazard course at speeds that would produce the most violent vertical and side-to-side rolling reaction obtainable in traversing the hazard course (approximately 5 mph).
C. **ROAD TRIP.** The loaded M871A3 trailer was transported for a distance of 35 miles over a combination of roads surfaced with gravel, concrete and asphalt. The test route included curves, corners, railroad crossings and stops and starts. The trailers traveled at the maximum speed for the particular road being traversed, except as limited by legal restrictions.

D. **PANIC STOPS.** This testing was not required since the M871A3 trailer was rail impact tested.

E. **WASHBOARD COURSE.** The loaded M871A3 trailer was driven over the washboard course at a speed that produced the most violent response in the vehicles.

![Washboard Course Sketch](image)

Figure 3. Washboard Course Sketch
PART 5 – TEST RESULTS

5.1 Test Specimen: M871A3 Trailer
 Manufacturer: Fontaine Trailers
 Payload: Intermodal container with MLRS Pods
 Gross Weight: 11,859 pounds
 Testing Date: 29-31 October 2001

A. RAIL IMPACT.

Photo 1: Trailer-on-Flatcar Rail Impact Testing of M871A3 Trailer
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flatcar Number:</td>
<td>46,700 lbs.</td>
</tr>
<tr>
<td>CNW 780784</td>
<td></td>
</tr>
<tr>
<td>ISO Container with MLRS Pods</td>
<td>11,859 lbs.</td>
</tr>
<tr>
<td>M871A3 Trailer</td>
<td>17,640 lbs.</td>
</tr>
<tr>
<td>Total Specimen Wt.</td>
<td>76,199 lbs.</td>
</tr>
<tr>
<td>Buffer Car (four cars)</td>
<td>250,000 lbs.</td>
</tr>
</tbody>
</table>

Figure 4

<table>
<thead>
<tr>
<th>IMPACT NUMBER</th>
<th>AVERAGE VELOCITY (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>6.4</td>
</tr>
<tr>
<td>3</td>
<td>8.1</td>
</tr>
<tr>
<td>4</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Figure 5

Remarks:
1. No damage or excessive movement occurred with the trailer, container or twistlocks during testing.
2. The test times for impacts 1-3 were obtained using a stopwatch. For impact 4 an electronic speed sensor was used.
3. Impacts 1-3 were conducted with the rear of the trailer in the direction of impact. Impact 4 was with the trailer front in the direction of impact.
4. The trailer was inspected following the removal from the railcar. The kingpin had sustained some galling or flattening damage during the rail impact testing. This was due to the railcar stanchion locking plates had some wear which
prevented secure engagement against the trailer kingpin. The trailer was mission capable and testing continued.

5. Impact No. 4 was not repeated to obtain average velocity of 8.1 MPH due to additional rail impact testing scheduled on the TOFC with trailer at full payload.

Photo 2: Galling on the kingpin

Photo 3
B. HAZARD COURSE.

Date of Testing: 31 October 2001

<table>
<thead>
<tr>
<th>PASS NO.</th>
<th>ELAPSED TIME</th>
<th>AVERAGE VELOCITY (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27 Seconds</td>
<td>5.7</td>
</tr>
<tr>
<td>2</td>
<td>26 Seconds</td>
<td>5.9</td>
</tr>
<tr>
<td>3</td>
<td>27 Seconds</td>
<td>5.7</td>
</tr>
<tr>
<td>4</td>
<td>27 Seconds</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Figure 6

Remarks: No damage or excessive movement occurred with the trailer, container or the twistlocks during testing. The trailer and load were inspected following each pass. The velocity data represents the average velocity.

C. ROAD TRIP. No damage or excessive movement occurred with the trailer, container or twistlocks during testing.

D. PANIC STOPS. Testing was not required since the M871A3 was rail impact tested.

E. WASHBOARD. No damage or excessive movement occurred with the trailer, container or twistlocks during testing.
5.2 Test Specimen: M871A3 Trailer
Manufacturer: Fontaine Trailers

Payload: Intermodal container with 155MM Separate Loading Projectiles. In addition, one pallet of MK-82, 500-pound bombs was secured against the trailer bulkhead.

Gross Weight: 45,180 pounds
42,180 pounds (container and 155MM SLPs) plus 3,000 pounds for the MK-82 bomb pallet.

Testing Date: 1 November 2001

A. RAIL IMPACT.

Photo 4: Trailer-on-Flatcar Rail Impact Testing of M871A3 Trailer at Full Payload
Photo 5: Trailer on Flatcar Rail Impact Testing of M871A3 Trailer at Full Payload

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flatcar Number: CNW 780784</td>
<td>46,700 lbs.</td>
</tr>
<tr>
<td>ISO container with 155MM SLPs and additional MK-82 pallet of 500# bombs</td>
<td>45,180 lbs.</td>
</tr>
<tr>
<td>M871A3 Trailer</td>
<td>17,640 lbs.</td>
</tr>
<tr>
<td>Total Specimen Wt.</td>
<td>109,520 lbs.</td>
</tr>
<tr>
<td>Buffer Car (four cars)</td>
<td>250,000 lbs.</td>
</tr>
</tbody>
</table>

Figure 7
<table>
<thead>
<tr>
<th>IMPACT NUMBER</th>
<th>AVERAGE VELOCITY (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>4.3</td>
</tr>
<tr>
<td>3</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>8.2</td>
</tr>
<tr>
<td>5</td>
<td>See 3 of Remarks</td>
</tr>
</tbody>
</table>

Remarks:

1. The brake on the railcar did not fully release on Impact 1. The rail crew corrected the problem and testing continued.

2. Following Impact 4 the twistlock at the door end of the container, driver’s side, jammed and would not turn freely. No damage was found on the twistlock or container corner casting. The problem occurred due to the tolerances between the twist lock and the deck opening. This allowed the twistlock to be pushed up and caused it to jam. This did not affect offloading of the container.

3. The reverse 8 mph impact was not performed. Inspection of the area around the stanchion kingpin locking plate revealed a gap of 0.50 to 0.75 inches. This gap was deemed to be excessive and rail impact testing was discontinued until an acceptable flatcar was provided by the rail carrier. The rail impact retest results are shown in "F" of this section.

4. The trailer was offloaded from the railcar in preparation for the Hazard Course Testing.

5. Impacts 1-4 were conducted with the rear of the trailer facing the direction of impact.

6. No damage or excessive movement occurred with the trailer, container, or twistlocks during testing.

7. The velocity data represents the average speed during the test.
B. **HAZARD COURSE.**

<table>
<thead>
<tr>
<th>PASS NO.</th>
<th>ELAPSED TIME</th>
<th>AVERAGE VELOCITY (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31 Seconds</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>26 Seconds</td>
<td>5.9</td>
</tr>
<tr>
<td>3</td>
<td>26 Seconds</td>
<td>5.9</td>
</tr>
<tr>
<td>4</td>
<td>23 Seconds</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Figure 9

Remarks:
1. No damage or excessive movement occurred with the trailer, container, or twistlocks during testing. The trailer and load were inspected following each pass.
2. Following Pass #4 the twistlock at the non-door end of the container, driver’s side, jammed and would not turn freely. No damage was found on the twistlock or container corner casting. This problem occurred due to the tolerances between the twistlock and the deck opening. This enabled the twistlock to be pushed up and caused it to jam. This did not affect the offloading of the container.
3. The velocity data represents the average speed during the test.

C. **ROAD TRIP.** No damage or excessive movement occurred with the trailer, container, or twistlocks during testing.

D. **PANIC STOPS.** Testing was not required since the M871A3 was rail impact tested.

E. **WASHBOARD.** No damage or excessive movement occurred with the trailer, container or twistlocks during testing.
F. RAIL IMPACT (RETEST).

Payload: Intermodal container with 155MM Separate Loading Projectiles. In addition, one pallet of MK-82, 500-pound bombs was secured against the bulkhead of the trailer.

Gross Weight: 45,180 pounds
42,180 pounds (container and 155MM SLPS) plus 3,000 pounds for the MK-82 bomb pallet.

Testing Date: 8 November 2001

Photo 6: Trailer-on-Flatcar Rail Impact Testing of M871A3 Trailer at Full Payload
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flatcar Number:</td>
<td>46,200 lbs.</td>
</tr>
<tr>
<td>CNW 780576</td>
<td></td>
</tr>
<tr>
<td>ISO container with 155MM</td>
<td>45,180 lbs.</td>
</tr>
<tr>
<td>SLPs and additional MK-82 pallet of 500# bombs</td>
<td></td>
</tr>
<tr>
<td>M871A3 Trailer</td>
<td>17,640 lbs.</td>
</tr>
<tr>
<td>Total Specimen Wt.</td>
<td>109,020 lbs.</td>
</tr>
<tr>
<td>Buffer Car (four cars)</td>
<td>250,000 lbs.</td>
</tr>
</tbody>
</table>

Figure 10

<table>
<thead>
<tr>
<th>IMPACT NUMBER</th>
<th>AVERAGE VELOCITY (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>6.0</td>
</tr>
<tr>
<td>4</td>
<td>8.4</td>
</tr>
<tr>
<td>5</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Figure 11

Remarks:

1. Following Impact 2, the twistlock at the door end of the container, driver’s side, jammed and would not turn freely. The reason has been explained previously. This did not affect offloading of the container. The twistlock jammed following the reverse impact.

2. The container moved 0.375 inches following the reverse impact.
3. Impacts 1-4 were conducted with the rear of the trailer facing the direction of impact. Impact No. 1 was low average velocity due to improper brake release on the specimen flatcar. Impact 5 was conducted with the front of the trailer facing the direction of impact.

4. No damage or excessive movement occurred with the trailer, container or twistlocks during testing.

5. The velocity data represents the average speed during the test.
5.3. Test Specimen: M871A3 Trailer
Manufacturer: Fontaine Trailers
Payload: Breakbulk load with pallets of 155MM SLPs and pallets of 105MM boxed ammunition
Gross Weight: 33,940 pounds
Testing Date: 6 November 2001

Photo 7: Breakbulk Load on M871A3 Trailer

Photo 8: M871A3 Trailer with Breakbulk Cargo on Flatcar
A. RAIL IMPACT.

Photo 9: Wood Stanchion Used During Breakbulk Load Testing
Photo 10: M871A3 Trailer Loaded with Pallets of 155MM SLPs & 105MM Boxed Ammunition

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flatcar Number:</td>
<td>78,000 lbs.</td>
</tr>
<tr>
<td>ITTX 972861</td>
<td></td>
</tr>
<tr>
<td>Pallets of 155MM SLPs and 105MM and dunnage</td>
<td>33,940 lbs.</td>
</tr>
<tr>
<td>M871A3 Trailer</td>
<td>17,640 lbs.</td>
</tr>
<tr>
<td>Total Specimen Wt.</td>
<td>129,580 lbs.</td>
</tr>
<tr>
<td>Buffer Car (four cars)</td>
<td>250,000 lbs.</td>
</tr>
</tbody>
</table>

Figure 12
Table

<table>
<thead>
<tr>
<th>IMPACT NUMBER</th>
<th>AVERAGE VELOCITY (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>6.3</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
</tr>
<tr>
<td>4</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Figure 13

Remarks:
1. Following Impact 3 there was 0.125 inch of movement between the wood stanchion and the trailer plate.
2. Following Impact 3 the 105MM wood boxes moved 0.375 inch away from the bulkhead.
3. Impacts 1-3 were conducted with the rear of the trailer facing the direction of impact. Impact 4 was conducted with the front of the trailer facing the direction of impact.
4. No damage or excessive movement occurred with the trailer or cargo during testing.
5. The velocity data represents the average speed during the test.
B. HAZARD COURSE.

Photo 11: M871A3 Trailer with Breakbulk Cargo Load

<table>
<thead>
<tr>
<th>PASS NO.</th>
<th>ELAPSED TIME</th>
<th>AVERAGE VELOCITY (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29 Seconds</td>
<td>5.3</td>
</tr>
<tr>
<td>2</td>
<td>26 Seconds</td>
<td>5.9</td>
</tr>
<tr>
<td>3</td>
<td>25 Seconds</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>26 Seconds</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Figure 14

Remarks:
1. No damage or excessive movement occurred with the trailer or cargo tie-down rings during testing.
2. Following Pass No. 2, the strapping board broke and the end gate started to collapse. The load straps were tightened. This failure was not a result of the trailer design, and therefore, testing was continued.
3. The velocity data represents the average speed during the test.

C. **ROAD TRIP**: No damage or excessive movement occurred with the trailer or cargo rings during testing.

D. **PANIC STOPS**: Testing was not required since the M871A3 was rail impact tested.

E. **WASHBOARD**: No damage or excessive movement occurred with the trailer or cargo tie-down rings during testing.
5.4 Test Specimen: M871A3 Trailer
Manufacturer: Fontaine Trailers

Payload: End opening intermodal container with 155MM SLPs. In addition, one pallet of MK-82, 500-pound bombs was secured to the bulkhead of the trailer.

Gross Weight: 45,180 pounds
42,180 pounds (container and 155MM SLPs) plus 3000 pounds for the MK-82 bomb pallet.

Testing Date: 7 November 2001

Photo 12: Rear Chain Tie-down Configuration of the M871A3 with Full Payload
A. RAIL IMPACT.

![Image: M871A3 Trailer Testing with Full Payload Chained to the Flatcar]

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flatcar Number: ITTX 972861</td>
<td>78,000 lbs.</td>
</tr>
<tr>
<td>ISO container with 155MM SLPs and additional MK-82 pallet of 500# bombs</td>
<td>45,180 lbs.</td>
</tr>
<tr>
<td>M871A3 Trailer</td>
<td>17,640 lbs.</td>
</tr>
<tr>
<td>Total Specimen Wt.</td>
<td>140,820 lbs.</td>
</tr>
<tr>
<td>Buffer Car (four cars)</td>
<td>250,000 lbs.</td>
</tr>
</tbody>
</table>

Figure 15
Photo 14: Wood Stanchion for Full Payload Testing

<table>
<thead>
<tr>
<th>IMPACT NUMBER</th>
<th>AVERAGE VELOCITY (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.1</td>
</tr>
<tr>
<td>2</td>
<td>6.2</td>
</tr>
<tr>
<td>3</td>
<td>8.3</td>
</tr>
<tr>
<td>4</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Figure 16

Remarks:
1. No damage or excessive movement occurred with the trailer, tiedown rings, or twistlocks during testing. Chains remained tight throughout testing.
2. Impacts 1-3 were conducted within the rear of the trailer facing the direction of impact. Impact 4 was conducted with the front of the trailer facing the direction of impact.

3. The velocity data represents the average speed during the test.

Photo 15: Chain tiedown configuration on forward end of the M871A3

Photo 16: Unloading of Empty M871A3 Trailer from the Flatcar
PART 6 – ACCELEROMETER DATA

The first accelerometers were located in various areas on the test specimen. These areas are described on each of the following graphic depictions of each of the railcar impacts, hazard course, road course, and washboard course. The axial orientation of the accelerometers is as follows:

- x – longitudinal axis
- y – lateral axis
- z – vertical axis

A table depicting the identification and location of the graphic illustrations is below:

<table>
<thead>
<tr>
<th>TEST LOAD</th>
<th>TEST</th>
<th>PAGE</th>
<th>SENSOR LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,859# Payload</td>
<td>Rail Impact</td>
<td>6-2</td>
<td>Rear Railcar</td>
</tr>
<tr>
<td>11,859# Payload</td>
<td>Rail Impact</td>
<td>6-3</td>
<td>Rear Trailer</td>
</tr>
<tr>
<td>11,859# Payload</td>
<td>Hazard Course</td>
<td>6-4/5</td>
<td>Trailer Bulkhead</td>
</tr>
<tr>
<td>11,859# Payload</td>
<td>Hazard Course</td>
<td>6-6/7</td>
<td>Rear Trailer</td>
</tr>
<tr>
<td>11,859# Payload</td>
<td>Road Trip</td>
<td>6-8</td>
<td>Rear Trailer</td>
</tr>
<tr>
<td>11,859# Payload</td>
<td>Road Trip</td>
<td>6-9</td>
<td>Trailer Bulkhead</td>
</tr>
<tr>
<td>11,859# Payload</td>
<td>Washboard Course</td>
<td>6-10</td>
<td>Trailer Bulkhead</td>
</tr>
<tr>
<td>11,859# Payload</td>
<td>Washboard Course</td>
<td>6-11</td>
<td>Rear Trailer</td>
</tr>
<tr>
<td>45,180# Payload</td>
<td>Rail Impact</td>
<td>6-12</td>
<td>Rear Trailer</td>
</tr>
<tr>
<td>45,180# Payload</td>
<td>Rail Impact</td>
<td>6-13</td>
<td>Rear Trailer</td>
</tr>
<tr>
<td>45,180# Payload</td>
<td>Rail Impact</td>
<td>6-14</td>
<td>Trailer Bulkhead</td>
</tr>
<tr>
<td>45,180# Payload</td>
<td>Hazard Course</td>
<td>6-15</td>
<td>Trailer Bulkhead</td>
</tr>
<tr>
<td>45,180# Payload</td>
<td>Washboard Course</td>
<td>6-16</td>
<td>Trailer Bulkhead</td>
</tr>
<tr>
<td>45,180# Payload</td>
<td>Retest- Rail Impact</td>
<td>6-17</td>
<td>Rear Railcar</td>
</tr>
<tr>
<td>45,180# Payload</td>
<td>Retest- Rail Impact</td>
<td>6-18</td>
<td>Trailer Bulkhead</td>
</tr>
<tr>
<td>45,180# Payload</td>
<td>Retest- Rail Impact</td>
<td>6-19</td>
<td>Rear Trailer</td>
</tr>
<tr>
<td>33,940# Payload</td>
<td>Rail Impact</td>
<td>6-20</td>
<td>Rear Railcar</td>
</tr>
<tr>
<td>33,940# Payload</td>
<td>Rail Impact</td>
<td>6-21</td>
<td>Trailer Bulkhead</td>
</tr>
<tr>
<td>33,940# Payload</td>
<td>Rail Impact</td>
<td>6-22</td>
<td>Rear Trailer</td>
</tr>
<tr>
<td>33,940# Payload</td>
<td>Hazard Course</td>
<td>6-23/24</td>
<td>Trailer Bulkhead</td>
</tr>
<tr>
<td>33,940# Payload</td>
<td>Hazard Course</td>
<td>6-25/26</td>
<td>Rear Trailer</td>
</tr>
<tr>
<td>33,940# Payload</td>
<td>Road Trip</td>
<td>6-27</td>
<td>Trailer Bulkhead</td>
</tr>
<tr>
<td>33,940# Payload</td>
<td>Road Trip</td>
<td>6-28</td>
<td>Rear Trailer</td>
</tr>
<tr>
<td>33,940# Payload</td>
<td>Washboard Course</td>
<td>6-29</td>
<td>Trailer Bulkhead</td>
</tr>
<tr>
<td>33,940# Payload</td>
<td>Washboard Course</td>
<td>6-30</td>
<td>Rear Trailer</td>
</tr>
<tr>
<td>45,180# Payload</td>
<td>Rail Impact</td>
<td>6-31</td>
<td>Rear Railcar</td>
</tr>
<tr>
<td>45,180# Payload</td>
<td>Rail Impact</td>
<td>6-32</td>
<td>Rear Trailer</td>
</tr>
</tbody>
</table>
Rail Impact of M871A3 Trailer with 11,859-lb Payload Sensor Location: Trailer Rear

Test Date: 29 Oct 2001
Test Date: 31 Oct 2001
Hazard of M871A3 Trailer with 11,859-lb Payload
Sensor Location: Trailer Bulkhead

Test Date: 31 Oct 2001
Hazard of M871A3 Trailer with 11,859-lb Payload

Sensor Location: Trailer Rear

Test Date: 31 Oct 2001
Washboard Course of M871A3 Trailer with 11,859-lb Payload
Sensor Location: Trailer Rear

Test Date: 31 Oct 2001
Washboard Course of M871A3 Trailer with 45,800-lb Payload

Sensor Location: Trailer Bulkhead

X
(5) Acceleration
Y
(5) Acceleration
Z
(5) Acceleration
R
(5) Acceleration

Test Date: 1 Nov 2001

Time (ms)
Rail Impact of M871A3 Trailer with 33,940-lb Payload

Sensor Location: Trailer Rear

Accelerations (g)

X

Y

Z

R

Test Date: 6 Nov 2001

Time (ms)
Hazard Course of M871A3 Trailer with 33,940-lb Payload
Sensor Location: Trailer Bulkhead

Test Date: 6 Nov 2001
Hazard Course of M871A3 Trailer with 33,940-lb Payload
Sensor Location: Trailer Rear

Test Date: 6 Nov 2001
PART 7 – DRAWINGS

The following excerpts from drawing, DA-106, represents the load configuration that was subjected to the test criteria. The drawing can be obtained by contacting the following office:

Director
U.S. Army Defense Ammunition Center
ATTN: SOSAC-DET
1 C Tree Road
McAlester, OK 74501-9053
LOADING, TIEDOWN AND UNLOADING PROCEDURES* FOR CONVENTIONAL AMMUNITION ITEMS, IN/ON TACTICAL VEHICLES, FOR RAPID DEPLOYMENT BY RAIL AND SHIP

INDEX

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PAGE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL NOTES AND MATERIAL SPECIFICATIONS</td>
<td>2</td>
</tr>
<tr>
<td>ITEMIZED INDEX, AND LOAD PLANNING GUIDANCE CHART</td>
<td>3</td>
</tr>
<tr>
<td>LOAD GUIDANCE NOTES</td>
<td>4</td>
</tr>
<tr>
<td>TYPICAL PALLETIZED/SKIDDED UNIT</td>
<td>5</td>
</tr>
<tr>
<td>SECUREMENT OF CONVENTIONAL AMMUNITION ITEMS ON TACTICAL VEHICLES</td>
<td>6-41</td>
</tr>
<tr>
<td>DETAILS</td>
<td>42-60</td>
</tr>
</tbody>
</table>

* THE PROCEDURES DEPICTED WITHIN THIS DRAWING ARE FOR TRANSPORTING CONVENTIONAL AMMUNITION LOADED IN/ON TACTICAL VEHICLES, BY RAIL AND/OR SHIP. HOWEVER, THEY MAY ALSO BE USED FOR ON AND/OR OFF HIGHWAY MOVEMENT, IF DESIRED.
ISOMETRIC VIEW

SIX SKIDDED UNITS OF 105MM BOXED AMMUNITION.

TWENTY Palletized units of 8-inch SLP.

FORWARD SKIDHEAD ON SEMITRAILER.

TYPE II TIE-DOWN ANCHOR (FIVE LOCATIONS EACH SIDE). SEE LOAD GUIDANCE NOTE 8 ON PAGE 4.

TYPE III TIE-DOWN ANCHOR (FIVE LOCATIONS EACH SIDE). SEE LOAD GUIDANCE NOTE 8 ON PAGE 4.

TYPE I TIE-DOWN ANCHOR (TEN LOCATIONS EACH SIDE). SEE LOAD GUIDANCE NOTE 8 ON PAGE 4.

KEY NUMBERS

1. END GATE ASSEMBLY F (1 REGO). SEE THE DETAIL ON PAGE 47 AND SPECIAL NOTES 10 AND 11 ON PAGE 25.

3. HOLD-DOWN ASSEMBLY C (1 REGO). POSITION AS SHOWN. SEE THE DETAIL ON PAGE 56.

4. FILL MATERIAL, 2" X 8" X 12" (DOUBLED) (4 REGO). POSITION BETWEEN THE BOTTOM BEARING PIECE AND THE HORIZONTAL PIECE ON EACH END GATE ASSEMBLY C AND CENTERED ON THE JOINT BETWEEN THE SLP PALLETS. (TOENAIL TO THE BEARING PIECE W/2-10D NAILS).

5. HEADER, 2" X 8" X 80" (TRIPLE) (3 REGO). POSITION THE FIRST PIECE AGAINST THE END GATE ASSEMBLY AND NAIL TO THE TRAILER FLOOR W/11-12D NAILS. NAIL EACH ADDITIONAL PIECE W/7-20D NAILS.

6. STRUT, 2" X 8" BY CUT-TO-FIT (TRIPLE) (5 REGO). POSITION THE STRUT IN LINE WITH THE SLP PALLETS AND ONE CENTERED BETWEEN THE SLP PALLETS. NAIL THE FIRST PIECE TO THE TRAILER FLOOR W/7-12D NAILS. NAIL EACH ADDITIONAL PIECE W/7-20D NAILS. SEE SPECIAL NOTE 12 ON PAGE 25.

7. BACK-UP CLEAT, 2" X 8" BY CUT-TO-FIT BETWEEN THE HEADER AND THE REAR OF THE TRAILER (TRIPLE) (5 REGO). POSITION THE CLEAT IN LINE WITH THE SLP PALLETS AND ONE CENTERED BETWEEN THE SLP PALLETS. NAIL THE FIRST PIECE TO THE TRAILER FLOOR W/7-12D NAILS. NAIL EACH ADDITIONAL PIECE W/7-20D NAILS. SEE SPECIAL NOTE 12 ON PAGE 25.

8. WEB STRAP TIE-DOWN ASSEMBLY (6 REGO). INSTALL EACH STRAP TO ENCIRCLE FOUR LATERALLY ADJACENT SLP PALLETS AND THE HOLD-DOWN ASSEMBLY C. POSITION STRAP SLEEVE AT SHARP EDGES. HOOK ENDS OF STRAP TOGETHER. TAKE UP EXCESS SLACK IN STRAP AND THEN RATCHET TIGHT. SEE SPECIAL NOTES 8 ON PAGE 25, AND GENERAL NOTES "F", "6" AND "J" ON PAGE 2.

9. WEB STRAP TIE-DOWN ASSEMBLY (5 REGO). INSTALL EACH STRAP TO ENCIRCLE FOUR LATERALLY ADJACENT SLP PALLETS AND THE HOLD-DOWN ASSEMBLY C. POSITION STRAP SLEEVE AT SHARP EDGES. TIE ENDS OF STRAP TOGETHER. TAKE UP EXCESS SLACK IN STRAP AND THEN RATCHET TIGHT. SEE SPECIAL NOTES 8 ON PAGE 25, AND GENERAL NOTES "F", "6" AND "J" ON PAGE 2.

10. WEB STRAP TIE-DOWN ASSEMBLY (5 REGO). INSTALL EACH STRAP TO ENCIRCLE FOUR LATERALLY ADJACENT SLP PALLETS AND THE HOLD-DOWN ASSEMBLY C. POSITION STRAP SLEEVE AT SHARP EDGES. TIE ENDS OF STRAP TOGETHER. TAKE UP EXCESS SLACK IN STRAP AND THEN RATCHET TIGHT. SEE SPECIAL NOTES 8 ON PAGE 25, AND GENERAL NOTES "F", "6" AND "J" ON PAGE 2.

11. WEB STRAP TIE-DOWN ASSEMBLY (5 REGO). INSTALL EACH STRAP TO ENCIRCLE FOUR LATERALLY ADJACENT SLP PALLETS AND THE HOLD-DOWN ASSEMBLY C. POSITION STRAP SLEEVE AT SHARP EDGES. TIE ENDS OF STRAP TOGETHER. TAKE UP EXCESS SLACK IN STRAP AND THEN RATCHET TIGHT. SEE SPECIAL NOTES 8 ON PAGE 25, AND GENERAL NOTES "F", "6" AND "J" ON PAGE 2.

12. WEB STRAP TIE-DOWN ASSEMBLY (5 REGO). INSTALL EACH STRAP TO ENCIRCLE FOUR LATERALLY ADJACENT SLP PALLETS AND THE HOLD-DOWN ASSEMBLY C. POSITION STRAP SLEEVE AT SHARP EDGES. TIE ENDS OF STRAP TOGETHER. TAKE UP EXCESS SLACK IN STRAP AND THEN RATCHET TIGHT. SEE SPECIAL NOTES 8 ON PAGE 25, AND GENERAL NOTES "F", "6" AND "J" ON PAGE 2.

13. WEB STRAP TIE-DOWN ASSEMBLY (4 REGO). INSTALL EACH STRAP TO ENCIRCLE FOUR LATERALLY ADJACENT SLP PALLETS AND THE HOLD-DOWN ASSEMBLY C. POSITION STRAP SLEEVE AT SHARP EDGES. TIE ENDS OF STRAP TOGETHER. TAKE UP EXCESS SLACK IN STRAP AND THEN RATCHET TIGHT. SEE SPECIAL NOTES 8 ON PAGE 25, AND GENERAL NOTES "F", "6" AND "J" ON PAGE 2.

SIX SKIDDED UNITS OF 105mm BOXED AMMUNITION, AND TWENTY Pallet units of separate
LOADING PROJECTILES ON A 221/2-TON M871 SEMITRAILER

PAGE 24

PROJECT DA 7-90
10. If the forward load unit is not positioned against the forward bulkhead, one additional end gate assembly marked A and one additional strap marked C will be required at the forward end. Also, a forward blocking assembly similar to forward blocking assembly B on page 54 must be fabricated and installed between the forward bulkhead on the trailer and the end gate assembly marked B. If the space is 12" or less, 3010 fill material of 2" x 8" by 36" x 48" will be installed between the sides of the trailer and the end gate assembly marked B. The trailer must be positioned on edge and lashed to each other, may be used.

11. When fabricating end gate assemblies marked B, and/or C, the bottom of the strap retainer pieces must be 6" above the floor to allow the header pieces marked D to be positioned tight against the horizontal piece on the end gate.

12. When positioning and nailing straps marked B, and/or B, in trailers having steel bolsters in the floor, position as near to desired location as possible but not on top of steel bolsters.

13. A total of thirty-one web strap tie-down assemblies are required for the load shown. Note: Each web strap marked A requires two web strap tie-down assemblies hooked together.

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>Lumber</th>
<th>Linear Feet</th>
<th>Board Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" x 2"</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>2" x 4"</td>
<td>101</td>
<td>310</td>
</tr>
<tr>
<td>2" x 8"</td>
<td></td>
<td>310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nails</th>
<th>No.</th>
<th>Rego</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (3")</td>
<td>330</td>
<td></td>
<td>1-1/4</td>
</tr>
<tr>
<td>125 (3-1/4")</td>
<td>25</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>200 (4")</td>
<td>50</td>
<td>1/2</td>
<td></td>
</tr>
</tbody>
</table>

Special Notes:

1. Typical load of six skidded units and twenty palletized units is shown loaded on a 22-1/2-ton semitrailer having dimensions of 38'6" wide by 36'4" long.

2. The vehicle shown was selected as typical only, and other vehicles of other dimensions which have a sufficient quantity of tiedown anchors located near the ground, end wall, and floor may be used to transport the load shown, or a partial load.

3. A load of six skidded units of 105mm boxed ammunition having dimensions of 35-3-1/2" wide by 34-1/2" long by 30-3/4" high and weighing 1,950 pounds each, and twenty palletized units of 6-inch separate loading projectiles having dimensions of 23-1/2" wide by 18-1/2" long by 38-1/2" high and weighing 1,253 pounds each are shown as a typical load. If loading palletized units and skidded units of other items, quantities, dimensions and weights follow these same procedures.

4. Caution: The maximum weight that can be secured using the procedures is shown on page 24 is 25,500 pounds. Therefore a load weighing more than 25,500 pounds, up to a maximum load weighing 45,000 pounds, must be divided into two separate load units. A load unit weighing 12,000 pounds or less only requires one strap marked A for longitudinal restraint at the top. A load unit weighing over 12,000 pounds up to 25,000 pounds requires two straps marked C at each end of the load for longitudinal restraint at the top. A minimum space of 48" must be maintained between load units, and between the rear of the load and the aft end of the vehicle. Note that the total weight of the load shown on page 24 is 37,583 and therefor the load was divided into two load units.

5. Prior to loading vehicle determine the total quantity of palletized and/or skidded units to be loaded. If the total load weight is greater than 25,500 pounds, the load must be divided into two load units as instructed in Special Note 4 above. Determine what items are to be grouped together, how many across vehicle width, how many across vehicle height, how many long and the total weight of each load unit. For ease of loading and securing of load each row of palletized separate loading projectiles positioned across the vehicle width must contain the same quantity. Use an "Omited SLP palletized unit assembly A" as shown in the load on page 16, per each omitted SLP palletized unit as necessary to maintain even rows. Select a location within the vehicle length which will allow strapping procedures, as shown in the load on page 24. To be applied to each load unit.

6. If the vehicle being loaded is not equipped with tiedown anchors, or for an alternative method of securing the load using steel strapping in lieu of web straps, use the procedures shown in the load on pages 26 and 27.

7. Load units weighing over 12,000 pounds will require two straps marked C at each end of the load and ratchet tight both straps at the same time. Install the longer straps first at each end of the load unit and ratchet tight both straps at the same time. Install the shorter straps over top of the long strap at each end of the load unit and ratchet tight both straps at the same time.

8. Position the longer straps marked C and C at an approximate angle of 30° with the floor. Position the shorter straps marked C at an approximate angle of 45° with the floor.

9. If the location of the tiedown anchors on the floor of the vehicle does not allow straps marked C or C to be positioned straight over top of load, they may be crossed as shown over top of the rearmost skidded units in the load on page 24.

Load as Shown

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Weight (Approx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-inch SLP</td>
<td>20</td>
<td>25,000 lbs</td>
</tr>
<tr>
<td>105mm Cartridges</td>
<td>6</td>
<td>11,700 lbs</td>
</tr>
<tr>
<td>Damage</td>
<td></td>
<td>773 lbs</td>
</tr>
</tbody>
</table>

Total Weight: 37,583 lbs (Approx)

Six Skidded Units of Boxed Ammunition, and Twenty Palletized Units of Separate Loading Projectiles on a 22-1/2-ton M971 Semitrailer