REPORT DOCUMENTATION PAGE

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

12/6/01 FINAL PROGRESS: 6/1/98 - 5/31/01

SQUID Qubits for Quantum Computers DAAG55-98-1-0367

6. AUTHOR(S)

Marc J. Feldman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Electrical Engineering
University of Rochester
Rochester, NY 14627

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

38822.4 Ph QC

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Our aim was to develop the concepts and perform the experiments to establish a clear path towards useful quantum coherent computation using superconducting flux-based qubits. We have concentrated upon using superconducting single flux quantum (SFQ) circuitry integrated on the qubit chip to act as the interface between a quantum circuit and laboratory electronics. We have developed SFQ circuits for initialization and for read-out of the quantum state of a qubit, for precise timing of durations and exact biasing, all with picosecond-scale precision. We developed a set of techniques to design such qubit control circuitry while preserving proper isolation (not significantly contributing to decoherence). We also designed an SFQ experiment to investigate quantum behavior using foundry-fabricated chips at higher temperatures. We acquired and custom set-up a He3 refrigerator, and demonstrated SFQ circuit functionality at 300 mK for the first time. We have investigated a new method for quantum control both analytically and numerically, using isolated SFQ pulses instead of resonant excitation, and shown that the minimum operation time can be dramatically decreased in some cases. However, the complete lack of custom fabrication has prevented us from making progress towards our experimental goals.

14. SUBJECT TERMS

superconductivity; superconducting digital electronics; single flux quantum; RSFQ logic; SFQ pulses; qubit; quantum control; flux-based qubits; decoherence; quantum computer; interaction-free measurement; macroscopic quantum coherence

15. NUMBER OF PAGES

5

16. PRICE CODE

UL

17. SECURITY CLASSIFICATION OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18
298-102

RECEIVED
JAN 17 2002
By

20020125 277
MEMORANDUM OF TRANSMITTAL

U.S. Army Research Office
ATTN: AMSRL-RO-BI (TR)
P.O. Box 12211
Research Triangle Park, NC 27709-2211

☐ Reprint (Orig + 2 copies)        ☐ Technical Report (Orig + 2 copies)
☐ Manuscript (1 copy)              X Final Progress Report (Orig + 2 copies)
☐ Related Materials, Abstracts, Theses (1 copy)

CONTRACT/GRANT NUMBER: DAAG55-98-1-0367

REPORT TITLE: Final Progress Report for "SQUID Qubits for Quantum Computers"

is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript):

Sincerely,

Marc J. Feldman
(4) Statement of the PROBLEM studied:

Our aim in this research was to develop the concepts and perform the experiments to establish a clear path towards useful quantum coherent computation using superconducting flux-based qubits. Our first objective was to develop superconducting control and input/output circuitry as an interface to superconducting and other qubits, to bridge the classical-quantum boundary. We were to use this circuitry to demonstrate superconducting qubits with useful coherence times. This was to be done by measuring the time evolution of the Rabi-like "MQC" oscillations in a half-flux-biased rf SQUID. This would allow us to investigate the decoherence mechanisms which affected the qubits, and to do this in a controlled fashion.

(5) Summary of the most important RESULTS:

We have concentrated upon using superconducting single flux quantum (SFQ) circuitry, and in some cases RSFQ (rapid single flux quantum) digital circuits integrated on the qubit chip to act as the interface between a quantum circuit and laboratory electronics. RSFQ logic is an experimental technology which operates at clock rates of 10 to 800 GHz by transmitting and processing "bits" consisting of isolated quanta of magnetic flux, the SFQ's.

During the period covered by this grant we have made progress in the following areas: We have developed SFQ circuits for initialization and for read-out of the quantum state of a qubit; for precise timing of durations and exact biasing, all with picosecond-scale precision. We developed a set of techniques to design such qubit control circuitry while preserving proper isolation (not significantly contributing to decoherence). We designed an SFQ experiment to investigate quantum behavior using foundry-fabricated chips, and ran this experiment (without success as yet). We acquired and custom set-up a He3 refrigerator, and demonstrated SFQ circuit functionality at 300 mK for the first time. We have investigated a new method for quantum control both analytically and numerically, using isolated SFQ pulses instead of resonant excitation, and shown that the minimum operation time can be dramatically decreased in some cases. However, the complete lack of custom fabrication has prevented us from making progress towards our experimental goals.

SFQ circuits: Our work has established the benefits of using superconducting control circuitry. At the time of our proposal this seemed a radical departure, but now it is most generally agreed that superconducting control circuitry is likely to play a roll in a future solid-state quantum computer. There are three separate types of interfaces between the classical circuitry and the qubits that we have studied. The first is a dc bias, using current and/or magnetic flux as required for a particular experiment. The second is high speed electric and magnetic field coupling from waveforms on microstrip, for qubit quantum control. The third is direct coupling to RSFQ circuits for read-out and other functionality. We developed a variety of circuits to perform each of these functions:
A solid superconducting loop will hold its current, and hence the fields generated by that current, precisely constant; in our version a very large Josephson junction in the loop serves to allow the loop current to be approximately set, and then currents weakly coupled to that loop enable fine adjustment: the result being a device to generate a precisely constant magnetic field of appropriate strength with vanishing fluctuations. Our calculations indicate that the bias stability and noise immunity are easily sufficient by several orders of magnitude. In many cases it is desirable to turn on and off a small offset current very rapidly, with precisely controlled duration; in our version a superconducting loop provides this current, with allowance for the introduction and removal of an SFQ with picosecond-scale timing and precision. This small loop is weakly coupled to the larger loop, which in turn is weakly coupled to the qubits. The weak coupling allows the use of resistors in these circuits.

We developed several circuits to make classical measurements of the state of a quantum system, to read-out the quantum state, on a time scale much more rapid that the quantum evolution, the most recent circuit being similar to the quasi-one-junction SQUID used in SFQ A-to-D converters. Read-out circuits must be more strongly coupled to the qubits. We developed a strategy whereby the readout circuitry contains no resistors, and looks like a bulk superconductor during qubit evolution; the readout measurement is very rapid; the circuit needs to be reinitialized to its quiescent state after readout. This works because after readout the quantum state evolution is ended in any case.

We developed techniques for quantum control using high speed electric and magnetic field coupling from waveforms on microstrip. [Note that such quantum control is not necessary for our simplest MQC experiments.] This is done using large currents very weakly transformer coupled to the qubit. Control information can get into the qubit from the microstrip, but very little information about the state of the qubit system can get out to the external world. The information leakage goes as the square of the transformer ratio. This strategy works because the energy scale of RSFQ and other classical superconducting circuitry is hundreds to many thousands of times larger than realistic qubit energy scales. We design this using superconducting microstrip which has a much larger aspect ratio than normal microstrip. Typically it may be 10 μm wide by 0.2 μm high. This means that the fringe fields are extremely small and can be ignored, and that two microstrips have zero coupling except by design. Larger fringe fields would be detrimental for quantum computing.

We developed several on-chip superconducting (sinusoidal) oscillator designs. In addition we investigated "digital" quantum control, the use of SFQ pulses to provide a method to control quantum systems that presents an appealing alternative to the conventional methods. Rather than manipulating the state of the qubit adiabatically using relatively slow pulses close to resonant frequency of the qubit, in analogy to magnetic resonance, one subjects the qubit to a sequence of non-adiabatic picosecond-scale SFQ pulses, each with area 2.07 mV·ps. One distinct advantage is operation speed. Our calculations indicate that qubit operations can be speeded up dramatically without permanently exciting higher energy levels. We have only begun to explore SFQ pulse quantum control. So far we have only investigated regular pulse trains, but in fact arbitrary SFQ pulse sequences can be generated, with relative timing to a precision much better than a picosecond.

All of the above and many more are general-purpose circuits which are adaptable to a variety of qubit experiments. We developed a set of techniques to design these circuits while preserving proper isolation for the qubits. These are based on an intuitive and far from strictly rigorous view of decoherence, which uses the electrical engineering concepts of impedance matching and impedance transformations rather than a quantum physics calculation from a rigorous model. In our view qubit decoherence is caused by the coupling to an environment consisting of a large number of degrees of freedom, with very small coupling strength to each. In many cases such an environment may be represented as a resistor R, and it may actually be a resistor. In general however R
represents all of the dissipation coupled to the qubit, including any coupling to free space. We maintain that rigorous model calculations are inaccurate because of unrealistic assumptions which must be made to allow a tractable calculation, and in any case the final model is of limited applicability to real experimental conditions.

**Fabrication:** The lack of appropriate fabrication over the last several years has prevented us from making progress towards our experimental goals. Our proposal and this grant included a subcontract to Arthur Lichtenberger at the University of Virginia to fabricate the circuits we required. The Virginia laboratory was not fully capable of fabricating to our specifications (nor was any other laboratory at the time), and process modifications were required. The scope of the subcontract ($55,000 per year) was too small to allow rapid progress on these process modifications, and it eventually became clear that we could not expect appropriate experimental chips during this grant. We then cancelled the subcontract to Virginia; ARO then took back the unspent subcontract funds from us. Although much time and effort was directed towards obtaining alternative fabrication resources, we never did have a single custom fabrication run during this entire grant.

Most superconducting circuit chips are made at the company Hypres, Inc., foundry. Hypres uses molybdenum film resistors, which go superconducting at 0.915 K. [Hypres originally told us that their resistors did not go superconducting at all, because of the state of the molybdenum, but this proved incorrect.] We did acquire a special test chip with PbPdAu resistors from Hypres and we were able to verify SFQ circuit functionality running at 300 mK., in our new He3 refrigerator, which is the first time anyone has done this.

Towards the end of this grant we established a collaboration with MIT Lincoln Laboratory for fabrication of superconducting qubit chips. One of our students spent three months at Lincoln this past Spring, to assist with the fabrication. Now we can proceed with the experimental demonstrations of our various concepts developed during this ARO grant.

**ELQ experiment:** We designed another SFQ experiment to investigate quantum behavior -- to demonstrate the quantization of energy levels in a Josephson junction biased near its critical current. The experiment requires that the bias current of the Josephson junction be swept more rapidly than the level population can rethermalize. This is very similar to experiments performed by other groups, with the modification that we use on-chip RSFQ circuits for all high speed functions instead of laboratory instrumentation. The great advantage for us, compared to the MQC experiment, is that standard foundry chips should be sufficient to perform this experiment, without custom fabrication. The first several times we tried this experiment our layouts were found to contain design errors which prevented the chips from working. The last batch of chips were far out-of-spec. This experiment is significantly more complicated than the MQC experiment. Nevertheless, it is extremely less complicated than many RSFQ experiments our group has succeeded to demonstrate in the past, and we have every reason to believe that we will be successful once more careful attention is paid.

**NQI:** We also have attempted to better understand quantum measurements by studying model systems, much simpler but in some ways analogous to our dc SQUID, in collaboration with G.C. Guo and his group at the University of Science and Technology of China. We have studied what we call "Nondistortion Quantum Interrogation," which is a subset of the more familiar "interaction-free measurement" (IFM) in which the quantum state of the object interrogated is left undisturbed. NQI could play future roles in quantum computing, in the extreme allowing that a "quantum computer can solve problems even without being switched on." [Proc. Royal Soc. London A 457, 1175 (2001)]
(6) List of all PUBLICATIONS and technical reports:

(a) Papers published in peer-reviewed journals


(c) Papers presented at meetings, but not published in conference proceedings


(d) Manuscripts not published in conference proceedings

(7) All participating scientific personnel, advanced degrees earned while employed this project.

PROFESSORS:  
Prof. Mark F. Bocko  
Prof. Marc J. Feldman  
Prof. Alan M. Kadin

POSTDOCTORAL AND RESEARCH ASSISTANT:  
Dr. Igor Vernik  
Dr. Cesar Mancini  
Ms. Gui-Zhen Zhang

GRADUATE STUDENTS:  
Dr. Andrea M. Herr received the degree of Doctor of Philosophy in Physics  
Dr. Cesar Mancini received the degree of Doctor of Philosophy in Electrical Engineering  
Mr. Pavel Rott  
Mr. Roberto Rey-de-Castro  
Mr. XingXiang Zhou  
Mr. Jonathan Habif  
Mr. Kevin Wright

(8) Report of INVENTIONS: No reportable inventions