Award Number: DAMD17-99-1-9099

TITLE: Peptide Antiestrogens for Human Breast Cancer Therapy

PRINCIPAL INVESTIGATOR: Richard J. Pietras, Ph.D., M.D.

CONTRACTING ORGANIZATION: University of California, Los Angeles
Los Angeles, California 90095-1406

REPORT DATE: July 2001

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.
Peptide Antiestrogens for Human Breast Cancer Therapy

Richard J. Pietras, Ph.D., M.D.

University of California, Los Angeles
Los Angeles, California 90095-1406
E-Mail: rpietas@ucla.edu

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

Estrogen binds specific receptors that are present in 60-70% of breast cancers. The estrogen receptor (ER) is a phosphoprotein that regulates transcription and growth by binding estrogen response elements (ERE) in DNA. Inactive ER is a monomer that forms dimers on estrogen-induced phosphorylation. Transcriptional activity of ER is regulated by distinct conformational states resulting from ligand binding, and the induced signal complex recruits steroid receptor coactivator proteins, such as SRC-1, that are essential for growth. Peptides modeled from interacting sites of ER proteins may selectively inhibit ER signaling and act as antiestrogens. To test this hypothesis, we prepared small peptides to mimic a highly conserved ER sequence including tyrosine-537 and surrounding leucine residues. Peptide antiestrogens, but not control peptides, block ER association with SRC-1 and disrupt binding of ER to ERE. In in vitro studies, estradiol stimulates breast cell growth, and this estrogen effect is blocked by peptide antiestrogens conjugated with Antennapedia carrier but not by control peptides.

Using in vivo tumor xenografts, treatment of nude mice with peptide antiestrogens shows significant activity in arresting growth of estrogen-dependent breast tumors. This work provides target validation but also shows that peptide drugs are difficult to administer. Thus, we are preparing more lipid-like, peptidomimetic derivatives that function similarly but may be easier to use in the clinic.

13. Abstract (Maximum 200 Words) (abstract should contain no proprietary or confidential information)
Breast Cancer, Estrogen Receptors, Antiestrogens, Peptide

NSN 7540-01-280-5500
Table of Contents

Cover .. 1
SF 298 .. 2
Table of Contents ... 3
Introduction ... 4
Body .. 5–9
Key Research Accomplishments .. 10
Reportable Outcomes ... 11
Conclusions ... 12
References ... 13–14
Appendices .. 417–427
INTRODUCTION

The estrogen receptor (ER) is a phosphoprotein found in 60-70% of human breast tumors at diagnosis (1-3). Antiestrogen therapy with tamoxifen, a partial agonist to ER, has had a significant impact on survival in patients with breast cancer, but tamoxifen also has several undesirable side-effects. The antitumor effect of antiestrogen therapy is due to close regulation of breast cell growth by estrogens. However, as breast cancer progresses, it becomes resistant to estrogens, and most patients no longer respond to current antiestrogens (1-3). The continued expression of estrogen and/or progesterone receptors in most patients with tumor progression on tamoxifen indicates that mechanisms for resistance other than receptor loss are common in breast cancer and are responsible for treatment failure (4,5).

This proposal is based on new understanding of the biology of ER, a phosphoprotein that forms a dimer required for binding to specific estrogen response elements in the nucleus, leading to promotion of breast cancer cell growth (6-8). Transcriptional activity of ER is now known to be related to the conformational state of the receptor, especially with respect to the molecular orientation of helix-12 in the ligand-binding domain of ER (8). Helix-12 contains leucine-rich regions that interact with steroid receptor coactivator proteins that, in turn, regulate transcription (9,10) (see Table 1).

TABLE 1. a) Amino acid sequence comparison of AF2 α-helix region in ER from several species, with helix-12 starting at residue 538. Conserved region is in boldface. b) Sequence comparison with ER-β. c) Sequence alignment of nuclear receptor proteins, including progesterone and androgen receptors (9,11).

<table>
<thead>
<tr>
<th></th>
<th>Sequence</th>
<th>Coordinates</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>PL-YDLLLLLEML-DA</td>
<td>535-546</td>
<td>human ER</td>
</tr>
<tr>
<td></td>
<td>PL-YDLLLLLEML-DA</td>
<td>539-550</td>
<td>mouse ER</td>
</tr>
<tr>
<td></td>
<td>PL-YDLLLLLEML-DA</td>
<td>527-538</td>
<td>xenopus ER</td>
</tr>
<tr>
<td>b</td>
<td>PV-YDLLLLLEML-NA</td>
<td>433-444</td>
<td>human ER-β</td>
</tr>
<tr>
<td>c</td>
<td>EF-PEMMSEVI-AA</td>
<td>904-915</td>
<td>progesterone receptor</td>
</tr>
<tr>
<td></td>
<td>DF-PEMMAEI-I-SV</td>
<td>889-900</td>
<td>androgen receptor</td>
</tr>
</tbody>
</table>

Manipulation of helix-12 interactions with coactivator proteins may provide alternate approaches to anti-hormone therapy. We have synthesized peptides designed to disrupt binding of estrogen receptor with coactivator proteins. Our specific aims for this project include the following experimental objectives:

1) Synthesis of small phosphotyrosyl-peptides targeted to a highly conserved sequence in estrogen receptor including tyrosine-537 and surrounding leucine residues. Experiments are planned to evaluate the efficacy of these peptide antiestrogens in antagonizing estrogen receptor activity in breast cancer cells, including blockade of estrogen receptor dimerization, reduction of estrogen receptor association with steroid receptor coactivator protein and suppression of estrogen receptor binding to specific estrogen-response elements in DNA.

2) Evaluation of the antitumor efficacy in vitro and in vivo of small phosphotyrosyl- and malonyltyrosyl-peptides that suppress dimerization and DNA binding of estrogen receptor in human breast cancer cells. Alternative modes for the efficient delivery of low concentrations of peptides in vivo will be considered, and effects of peptide antiestrogens on bone, serum cholesterol, uterus and body composition will be evaluated in rodent models.

It is important to develop new antiestrogens which work through different mechanisms of interaction with ER, since these would likely prove useful in treatment of breast cancers that become resistant to conventional antiestrogens. This project offers an innovative approach to antitumor therapy with the potential for developing novel antiestrogens with minimal toxicity to noncancerous tissues, and it may advance our understanding of the role of estrogen receptor in hormone action (12).
AIM 1) Synthesis of small phosphotyrosyl-peptides targeted to tyrosine-537 and the neighboring leucine-rich region in ER and evaluation of their efficacy in the blockade of ER dimerization and ER binding to steroid receptor coactivator and DNA in human breast cancer.

1.a. Peptides disrupt binding of ER with DNA

In order to evaluate potential antiestrogen effects of peptides that mimic the initial sequence in helix-12 in ER, peptides were synthesized by established methods with N-terminal acetylation and a C-terminal amide in the UCLA/Jonsson Cancer Center Peptide Synthesis Facility (12,13). Peptide constructs were characterized by HPLC and mass spectral analysis and found to be > 95% pure. The octapeptide, pY8, contains the sequence: N-Pro-Leu-*pTyr-Asp-Leu-Leu-Leu-Glu-C (PLpYDLLLLE)

and its nonphosphorylated analog, conY8, has the sequence:

N-Pro-Leu-Tyr-Asp-Leu-Leu-Glu-C (PLYDLLLL).

An additional control peptide with a scrambled sequence, con8, is shown below:

N-Val-Pro-Leu-Asp-Leu-Leu-Glu-C (VPLDLLLL).

Other peptides of varying size (5-mer and 12-mer) to ascertain the optimal preparation for use in cellular studies have also been prepared (refer to Table 2 in original proposal) (12).

Interaction of ER with nuclear ERE is prerequisite for activation of transcription. To assess specific binding of ER with ERE, we used purified recombinant human ER from MCF-7 breast cancer cells (13). A double-stranded 27-bp probe [5'-GATCCCTAGAGGTACAGTGCNTACGA-3'] encoding the Xenopus vitellogenin A2 ERE was 32P-end-labeled with polynucleotide kinase. Gel mobility shift assays for the human ER were performed as described (13). The ER in 20 mM reaction buffer (HEPES, pH 7.5, 1 mM EDTA, 100 mM KCl, 1 mg/ml BSA, 100 nM estradiol, 15% glycerol, and proteinase inhibitors) was incubated with 500 ng of poly (dI-dC) for 15 min at 4°C, and then 20 fmol of the 32P-labeled ERE probe was added for 15 min at 4°C in a total volume of 20 μl. Samples were loaded onto a pre-electrophoresed 5% polyacrylamide gel followed by electrophoresis with cooling at 175 V for 3 h in 25 mM TRIS, pH 8.0 with 152 mM glycine and 1 mM EDTA. Under these conditions, the human ER reacts specifically with synthetic ERE in the gel mobility shift assay, allowing formation of an ER-ERE complex (13) (FIG. 1).

![FIG. 1. Gel mobility shift assays of human ER and estrogen-responsive element (ERE). Purified human ER (60 nM) incubated with control solution (Cn), 100-fold molar excess of unlabelled ERE (100x ERE) or with peptides at 2.5 μM. ER was incubated with peptides for 15 min at 4°C, then with 100 nM estradiol-17β and 32P-ERE. Peptides included peptide pY8, control Y8 peptide (CnY), and a decapetide, N-Val-Pro-Leu-*pTyr-Asp-Leu-Leu-Leu-Glu-Met-C (pY10). This ER-ERE interaction is blocked by competition with 2.5 μM pY8-peptide but not by competition with 5 μM conY8-peptide (43) or con8-peptide (data not shown). Thus, peptide antiestrogens disrupt ER binding to a specific ERE in vitro. However, the IC50 for this effect may exceed by 100-fold that required for other cellular actions of the peptides (see ER/SRC-1 interaction below).]
1.b. Peptides interfere with ER dimerization

Experiments to assess effects of peptides on ER dimerization, using molecular sizing chromatography with Sephadex G-200 (13,14), are underway. Using this approach, we find that 25 µM pY8 inhibits dimerization of ER (12,13). As with peptide inhibition of ER binding to DNA, peptide interference with ER dimerization appears to occur at a higher IC₅₀ than other cellular actions of the peptide (see ER/SRC-1 interaction below). We have confirmed these findings in the past grant year.

1.c. Peptides block molecular association between ER and steroid receptor coactivator proteins

As noted above, upon activation in vivo, ER bind to DNA response elements and recruit co-activator proteins and general transcription factors to form an active complex for stimulation of gene expression. Steroid receptor coactivator-1 (SRC-1) is a well-characterized coactivator protein (165 kd) that mediates steroid hormone responses by promoting receptor-dependent transactivation of genes (15,16), and disruption of the SRC-1 gene results in partial resistance to hormone (16). Short sequence motifs in SRC-1 and other coactivators are necessary to mediate the binding of these proteins to nuclear receptors (10). In order to assess the effect of peptide antiestrogens on the interaction between ER and SRC-1, T47D breast cancer cells were treated in vitro with or without 1nM estradiol-17ß, and cell lysates were prepared for immunoprecipitation with antibody to ER, followed by gel electrophoresis and immunoblotting with antibody to SRC-1 as before (17). In the absence of peptide antiestrogens, SRC-1 and ER form a binding complex beginning at 15 min after estrogen treatment, and the association is maximal by 30 min. Prior incubation of breast cells with pY8 interferes with this ER/SRC-1 binding (FIG. 2). In contrast, pre-treatment of T47D breast cancer cells with conY8 or con8 elicits no effect on ER/SRC-1 binding in vitro (FIG. 2) (12).

![SRC-1/ER-α](image)

FIG. 2. Effect of estradiol-17ß (E2) on association of ER and SRC-1 in T47D cells. T47D breast cancer cells were treated in vitro with 10nM E2 or control vehicle for 15-30 min. For more efficient delivery of peptide, pY8 was coupled with a short peptide from the homodomain of antennapedia, a vector that promotes internalization of peptides linked to its carboxy-terminus (int-pY8) (18). Int-pY8 or int-peptide control (int-cn) were added 30 min before E2 for an extra 30 min. Lysates were prepared and processed as before. Samples were immunoprecipitated with monoclonal anti-ER antibody-10 (Neomarker), followed by electrophoresis and immunoblot with monoclonal anti-SRC-1 antibody (Affinity Bioreagents).

Thus, tyrosine-537 and adjacent leucine residues in ER may be important in regulating ER/SRC-1 interaction in breast cancer. In contrast to peptide effects on ER dimerization and DNA binding in vitro, the peptide effect on ER/SRC-1 association can be elicited at nanomolar concentrations of active peptides. Thus, peptide blockade of the binding of receptor coactivator protein with ER may have more physiologic significance in vivo. These studies are now close to completion.

AIM 2) Evaluation of the antitumor efficacy in vitro and in vivo of phosphotyrosyl- and malonyltyrosyl-peptides that suppress biologic activity of ER in human breast cancers
2.a. Peptide antitumor effects *in vitro* and *in vivo*

One problem with use of phosphotyrosyl-peptides *in vitro* or *in vivo* is susceptibility of the constructs to degradation by cellular tyrosine phosphatase enzymes. To address this difficulty, we prepared phosphotyrosyl-mimic peptides that use malonic acid rather than phosphate residues at tyrosine sites. Malonyl-tyrosine residues appear to mimic the phosphotyrosine conformation in proteins and evade the action of cellular enzymes targeted to phosphotyrosine (19,20). The malonyltyrosyl-peptides contain the sequence surrounding tyrosine-537 in ER (12,13) (see Table 1). Malonyltyrosyl-octapeptide, mY8, was synthesized by established methods and contains the sequence:

N-Pro-Leu-mTyr-Asp-Leu-Leu-Leu-Glu-C (PLmYDLLE).

We find that malonyltyrosyl-peptide constructs, as phosphotyrosyl-peptides, suppress binding of ER to specific ERE in human breast cancer cells. This ER-ERE interaction is blocked by competition with 2.5 μM mY8-peptide but not by 5 μM conY8-peptide (12,13). Our ongoing studies indicate that 8-12-mer malonyltyrosyl-peptides are the optimal peptide sequence for use in *in vivo* studies.

Using the pY8-internalization vector (int-pY8), we find that nanomolar concentrations of the peptide have good efficacy in disruption of estrogen-induced growth of human breast cancer cells (12). The anticipated growth stimulation by estrogen is found after treatment of MCF-7 cells with control internalization peptide alone, exceeding growth of control cells in the absence of estrogen by 3-fold. Similarly, a low concentration of free pY8-peptide alone in solution (25 μM) does not alter the growth response to estrogen. However, peptide antiestrogen coupled with internalization peptide suppresses the expected growth effect of estrogen (P<0.001). A dose-response study using concentrations of drug ranging from 0.02 to 500 nM shows that the pY8-internalization peptide is effective in growth inhibition of MCF-7 cells at concentrations <25 nM (12). Studies of breast tumor xenografts *in vivo* are also underway using methods as before (17) with peptide delivery by IP injection (13,17). However, in these experiments, we have encountered difficulty in obtaining uniform antitumor efficacy, a result that may be due to biologic variabilities in peptide administration and bioavailability.

2.b. Peptidomimetic derivatives to disrupt biologic activity of estrogen receptor

We plan to study the biologic activity of other peptide antiestrogens using identical assays for cell proliferation (12,13) (see original proposal). Depending on results of these studies, additional peptides may be designed and synthesized for testing. However, delivery of peptides in the clinic may be problematic (24). Therefore, we are also assessing the potential use of more lipophilic derivatives that mimic the activity of peptide antiestrogens but may be easier to administer.

In collaborative studies with Dr. Michael Jung in the Department of Chemistry at UCLA, we have synthesized small steroidal and non-steroidal compounds targeted to disrupt the biologic activity of the helix 12 region in ER. The choice of our target molecules is based on structural information given in the x-ray structures of the ligand-binding domain of the estrogen receptor with both estradiol and raloxifene. One requires two OH groups (hydroxyl or phenol) placed at the right distance in order to bind to the receptor but, in addition, to cause the helix 12 to assume a different conformation, one requires also an additional binding element, namely a correctly disposed tertiary amine, to bind to Asp 351. We have prepared several steroidal and non-steroidal compounds all of which have both the required diol unit properly spaced along with a variable length alkyl chain containing a terminal tertiary amine (or guanidine unit) to bind to Asp 351 and thereby induce the conformation change in order to shift helix 12.

Candidate antiestrogens prepared in the Chemistry Laboratory are under evaluation for estrogen binding activity by use of established [3H]-estradiol-17β competition binding assays. Results of experiments showing specific binding of [3H]-estradiol-17β with human MCF-7 breast cancer cells are shown in FIG. 3. The first set of screening experiments to assess competition for [3H]-estradiol-17β binding was completed recently, with data presented in FIG. 4. Of four novel compounds tested, at least one, test compound 1, shows evidence of significant competition for specific [3H]-estradiol-17β binding with intact MCF-7 cells *in vitro*. Experiments to
measure competition of the test compounds for specific $[^3\text{H}]$-estradiol-17β binding with particle-free cytosol fractions from MCF-7 cells are in progress.

Compounds with significant biologic activity in these screening assays will be selected for further study of antitumor activity using MCF-7, ZR75 and T47D human breast cancer cells in vitro. The results of initial studies on proliferation of MCF-7 cells are shown in FIG. 5. At least one compound, test compound 1, again appears to block growth of the breast cancer cells in this in vitro assay, and the extent of growth inhibition exceeds that found with tamoxifen at equivalent doses.

We will further assess the most promising antiestrogens for biologic efficacy using assay methods outlined above. One primary test will be assessment of the molecular association between ER and the steroid receptor coactivator protein, SRC-1, as above. Additional screening assays will include tests for suppression of ER-induced transcriptional activity using an ERE-CAT reporter gene approach. Compounds with significant biologic activity in screening assays will be selected for further studies of antitumor activity using MCF-7 cells in vivo. These results will be compared with those from experiments with corresponding peptide antiestrogens.

FIG. 3. Binding of $[^3\text{H}]$estradiol-17β by MCF-7 human breast cancer cells. Specific binding of $[^3\text{H}]$estradiol-17β by MCF-7 cells was determined by methods described elsewhere (14,17). A 100-fold molar excess of unlabeled estradiol-17β was present with $[^3\text{H}]$estradiol-17β in paired samples for determination of displaceable binding. Specific binding of estradiol by intact cells is shown. Scatchard analyses of the binding data to determine estrogen-binding capacity (B_{\max}) and the affinity of hormone binding (K_d) are shown in the inset. The K_d of estradiol binding to MCF-7 cells was 2.5×10^{-10} M, and the estradiol binding capacity in MCF-7 cells was 270 fmol/mg protein. These values are based on results from three experiments.
FIG. 5. Effects of test compounds 1-4, estradiol-17β, ICI 182,780 and tamoxifen on growth of MCF-7 cells in vitro. Growth assays were done as before (17). Test compounds were administered at 1 μM, without (Panel A) or with (panel B) estradiol-17β (E) at 10 nM. As additional controls, we also used ICI 182,780 (ICI) at 10 nM and tamoxifen (Tam) at 1μM. The results are from one set of duplicate experimental determinations. Further experiments will be required.

2.c. Tissue selectivity of synthetic antiestrogens

Estrogen is a key regulatory hormone which, in addition to its role in reproductive tissues, affects a number of physiological systems, including the skeleton and cardiovascular system. In order to evaluate tissue selectivity of the final peptide and peptidomimetic steroidal formulations, these agents will be given to immature female mice for 3 days, and effects on uterine wet and dry weight will be assessed (23). In addition, uterine hypertrophy will be evaluated in older (up to 15-mo-old) female mice treated with peptides for 28-90 days. Effects of peptides on total serum cholesterol, fat body mass and lean body mass in these aged female rodents will be tested. In ovariectomized female mice, we plan to assess effects of peptides on ovariectomy-induced increments in body weight gain, total serum cholesterol, and bone loss. Following ovariectomy, rodents will be assigned to control groups including both placebo and positive control with estrogen replacement using established methods (23). Our goal is to develop novel antitumor agents with minimal toxicity to noncancerous tissues, and these experiments will help to establish the response profile and tissue selectivity of peptide antiestrogens.
KEY RESEARCH ACCOMPLISHMENTS

- Small leucine-rich peptides that mimic ER sequence at the start of helix-12 reduce the formation of ER homodimers and reduce binding of ER to ERE.

- Small leucine-rich peptides that mimic ER sequence at the start of helix-12 suppress association of ER with SRC-1.

- Estrogen-dependent growth of human breast cancer cells is blocked by pre-treatment with small leucine-rich peptides that mimic ER sequence at the start of helix-12.
REPORTABLE OUTCOMES

Presentations

1. "Small Molecule Inhibitors of Estrogen Receptor Function". Presented at Molecular Oncology Seminar, Genentech, South San Francisco (1999).

Abstracts

Publications

No patents, degrees, development of cell lines, informatics or additional funding or research opportunities to be reported at this time.
CONCLUSIONS

This project is a new approach to antitumor therapy with the potential for developing antiestrogen treatments with minimal toxicity to noncancerous tissues. Small leucine-rich peptides that mimic ER sequence at the start of helix-12 in the receptor molecule are especially effective in suppressing the association of ER with SRC-1. This molecular action appears to elicit blockade of breast cancer cell proliferation. The results of our preliminary studies suggest that treatment with small peptide antiestrogens may prove more effective than drugs currently available in blocking the growth-promoting signals of estrogen receptors. Further studies to assess the optimal constructs and the safety of these peptide compounds are planned. This work provides good evidence of target validation for helix-12 in estrogen receptor and may allow preparation of other derivatives with biologic activity at this site.
REFERENCES

Steroid Hormone Receptors in Target Cell Membranes

Richard J. Pietras, Ilka Nemere, and Clara M. Szego

Department of Medicine/Hematology-Oncology and Jonsson Comprehensive Cancer Center, University of California School of Medicine, Los Angeles, CA; Department of Nutrition & Food Science and the Biotechnology Center, Utah State University, Logan, UT; and Department of Molecular, Cell & Developmental Biology, the Molecular Biology Institute and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA

Numerous reports of rapid steroid hormone effects in diverse cell types cannot be explained by the generally prevailing theory that centers on the activity of hormone receptors located exclusively in the nucleus. Cell membrane forms of steroid hormone receptors coupled to intracellular signaling pathways may also play an important role in hormone action. Membrane-initiated signals appear to be the primary response of the target cell to steroid hormones and may be prerequisite to subsequent genomic activation. Recent dramatic advances in this area have intensified efforts to delineate the nature and biologic roles of all receptor molecules that function in steroid hormone-signaling pathways. This work has profound implications for our understanding of the physiology and pathophysiology of hormone actions in responsive cells and may lead to development of novel approaches for the treatment of many cell proliferative, metabolic, inflammatory, reproductive, cardiovascular, and neurologic defects.

Key Words: Steroid hormone action; plasma membrane; receptor.

Introduction

The broad physiologic effects of steroid hormones in the regulation of growth, development, and homeostasis have been known for decades. Often, these hormone actions culminate in altered gene expression (1), which is preceded by nutrient uptake and other preparatory changes in the synthetic machinery of the cell (2). Owing to certain homologies of molecular structure, specific receptors for steroid hormones, vitamin D, retinoids, and thyroid hormone are often considered a receptor superfamily. The actions of ligands in this steroid receptor superfamily are commonly postulated to be mediated by receptors in the cell nucleus. On binding ligand, nuclear receptors associate with target genes and permit selective transcription. This genomic mechanism is generally slow, often requiring hours or days before the consequences of hormone exposure are evident. However, steroids also elicit rapid cell responses, often within seconds. The time course of these acute events parallels that evoked by peptide agonists, lending support to the conclusion that they do not require precedent gene activation (2–5). Rather, many rapid effects of steroids, which have been termed nongenomic, appear to be owing to specific recognition of hormone at the cell membrane. Although the molecular identity of binding sites remains elusive and the signal transduction pathways require fuller delineation, there is mounting evidence that steroid action is initiated by plasma membrane receptors.

A current challenge is to determine the relation of rapid responses to steroid hormones to intermediate and long-term effects. Some questions that arise in this context include the following: Is specific membrane binding responsible merely for cellular entry of the hormone? Do plasmalemmal receptors escort ligand to the nucleus? Are the membrane binding sites coupled to rapid signal transduction systems that also act in concert with nuclear transcription factors? Are the membrane receptors identical to nuclear receptors, modified forms, or entirely different entities? This review explores these important issues. In preparing this work, more than 1200 references providing significant evidence for rapid steroid actions and for membrane forms of steroid receptors were identified. Only a fraction of these citations can be presented here, and the reader is referred to several recent reviews in this area (3–7).

Estrogens

As with other steroid hormones, biologic activities of estrogen in breast, uterus, and other tissues are considered to be fully mediated by a specific high-affinity receptor in cell nuclei. Estrogens are accumulated and retained in responsive cells, and it has been commonly assumed that the steroid diffuses passively to intracellular receptors. However, estradiol is a lipophilic molecule that partitions deep within the hydrocarbon core of lipid bilayer membranes, even those devoid of relevant receptors (3). Several investigations now demonstrate that steroid hormones enter target cells by a membrane-mediated process that is saturable.
Table 1

<table>
<thead>
<tr>
<th>Steroid</th>
<th>Year</th>
<th>Observation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estradiol</td>
<td>1967</td>
<td>Elevation of uterine cAMP by estrogen within seconds</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>Rapid endometrial cell calcium mobilization by estrogen</td>
<td>9</td>
</tr>
<tr>
<td>Corticosterone</td>
<td></td>
<td>Binding to plasma membranes of rat liver</td>
<td>108</td>
</tr>
<tr>
<td>Estradiol</td>
<td>1976</td>
<td>Effects on electrical activity of neurons</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1977</td>
<td>Specific plasma membrane binding sites for estrogen</td>
<td>16</td>
</tr>
<tr>
<td>Cortisol</td>
<td></td>
<td>Electrophysiologic effects on neurons</td>
<td>21</td>
</tr>
<tr>
<td>Progesterone</td>
<td>1978</td>
<td>Induction of oocyte maturation by steroid linked to a polymer</td>
<td>29</td>
</tr>
<tr>
<td>Estradiol</td>
<td>1979</td>
<td>Increased proliferation of cells with membrane ER</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Molecular properties of ERs in liver plasma membrane</td>
<td>13</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>1981</td>
<td>Rapid intestinal cell calcium uptake</td>
<td>109</td>
</tr>
<tr>
<td>Progestin</td>
<td>1982</td>
<td>Specific binding to oocyte surface and role in meiotic maturation</td>
<td>30</td>
</tr>
<tr>
<td>Corticosterone</td>
<td>1983</td>
<td>Binding to synaptic plasma membranes</td>
<td>50</td>
</tr>
<tr>
<td>Estradiol</td>
<td>1983</td>
<td>Increase in density of microvilli at endometrial cell surface within seconds</td>
<td>112</td>
</tr>
<tr>
<td>Thyroid hormone</td>
<td>1984</td>
<td>Primary internalization of ER in endometrial plasma membrane</td>
<td>104</td>
</tr>
<tr>
<td>Estradiol</td>
<td>1985</td>
<td>Characterization of plasma membrane binding sites</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>1986</td>
<td>High-affinity binding sites in breast cancer cell plasma membranes</td>
<td>26</td>
</tr>
<tr>
<td>Glucocorticoid</td>
<td>1987</td>
<td>Correlation between membrane receptor and apoptosis in lymphoma cells</td>
<td>110</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>1989</td>
<td>Rapid activation of phospholipase C (PLC) in rat intestine</td>
<td>5.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activation of calcium channels in osteoblasts</td>
<td>63</td>
</tr>
<tr>
<td>Thyroid hormone</td>
<td></td>
<td>Rapid induction of glucose uptake</td>
<td>42</td>
</tr>
<tr>
<td>Progesterone</td>
<td>1990</td>
<td>Stimulation of calcium influx in human sperm</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td>Calcium uptake mediated by sperm cell surface-binding sites</td>
<td>34</td>
</tr>
<tr>
<td>Corticosterone</td>
<td></td>
<td>Action at plasma membrane of human sperm</td>
<td></td>
</tr>
<tr>
<td>Aldosterone</td>
<td></td>
<td>Correlation of neuron membrane receptors with behavior in newts</td>
<td>51</td>
</tr>
<tr>
<td>Glucocorticoid</td>
<td>1993</td>
<td>Rapid effects on Na⁺/H⁺ exchange</td>
<td>111</td>
</tr>
<tr>
<td>Estradiol</td>
<td>1994</td>
<td>Antigenic similarity between membrane and intracellular receptors</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binding and stimulation of ER-2 membrane receptor</td>
<td>90</td>
</tr>
<tr>
<td>Vitamin D</td>
<td></td>
<td>Activation of adenylate cyclase signaling pathways</td>
<td>12</td>
</tr>
<tr>
<td>Aldosterone</td>
<td></td>
<td>Isolation of a plasma membrane receptor from chick intestine</td>
<td>88</td>
</tr>
<tr>
<td>Estradiol</td>
<td>1995</td>
<td>Identification of membrane receptor in human lymphocytes</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Membrane receptor with antigenic identity to nuclear receptor</td>
<td>7.78</td>
</tr>
<tr>
<td>Androgen</td>
<td></td>
<td>Greater nongenomic responses of membrane receptor–enriched neural cells</td>
<td></td>
</tr>
<tr>
<td>Estradiol</td>
<td>1997</td>
<td>Rapid increase in cytosolic Ca²⁺ in Sertoli cells</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Membrane action and PLC regulation</td>
<td>14</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>1998</td>
<td>Isolation of membrane binding-proteins from rat brain</td>
<td>81</td>
</tr>
<tr>
<td>Estradiol</td>
<td>1999</td>
<td>Blocking of hormone activation of PKC by antibody to membrane receptor</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rapid Ca²⁺ mobilization required for activation of MAPK</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rapid actions in neurons from ERα knockout mice</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction of membrane ER expression by antisense to nuclear ER</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Membrane and nuclear ERα, and ERβ, each expressed from single transcript</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activation of G-proteins, IP₃, adenylate cyclase, and MAPK by membrane ER</td>
<td></td>
</tr>
<tr>
<td>Androgen</td>
<td></td>
<td>Rapid activation of MAPK pathway in prostate</td>
<td>37</td>
</tr>
<tr>
<td>Progesterone</td>
<td></td>
<td>Cloning and expression of binding protein from liver microsomal membrane</td>
<td>85</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>2000</td>
<td>Ligand-induced nuclear translocation of plasma membrane receptor</td>
<td>89</td>
</tr>
<tr>
<td>Estradiol</td>
<td></td>
<td>Surface receptor in endothelial cells recognized by monoclonal ERα antibody</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interaction of ERα with regulatory subunit of phosphatidylinositol-3-OH kinase</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rapid tyrosine phosphorylation of Raf-1 and activation of MAPK</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resulting in prolactin gene expression in pituitary cells</td>
<td></td>
</tr>
</tbody>
</table>

*More than 1200 publications on membrane steroid receptors have appeared in the past 30 yr. Of these, only representative examples are listed here. The potential roles of alternate (25) or variant (56) forms of steroid hormone receptors and other membrane-signaling molecules (90,94) remain to be clarified.

and temperature dependent (3,8). Moreover, it is well established that estrogen can trigger in target cells rapid surges in levels of intracellular messengers, including calcium (9, 10) and cyclic adenosine monophosphate (cAMP) (11,12), as well as activation of mitogen-activated protein kinase (MAPK) (13) and phospholipase (14) (Table 1). These data have led to a growing consensus that the traditional genomic model of estrogen action does not explain the rapid effects of estrogens and must be expanded to include membrane receptors as a component of cell signaling (2–7,15).
The first unequivocal evidence for specific membrane-binding sites for estradiol-17β (E2) was reported in 1977 (16). Intact uterine endometrial cells equipped with estrogen receptor (ER), but not ER-deficient control cells, bound to an inert support with covalently linked E2. In addition, target cells that bound could be eluted selectively with free hormone, and cells so selected exhibited a greater proliferative response to estrogens than cells that did not bind (17,18). Further investigations have continued to provide compelling evidence for the occurrence of a plasma membrane form of ER and support for its role in mediating hormone actions (3) (Table 1).

Selye (19) first demonstrated that steroids at pharmacologic concentrations elicit acute sedative and anesthetic actions in the brain. However, electrical responses to physiologic levels of E2 with rapid onset have since been reported in nerve cells from different brain regions (4,20,21). Similarly, certain vasoprotective effects of estrogen appear attributable to membrane receptors (15,22). Estrogen-induced release of uterine histamine in situ has long been associated with rapid enhancement of the microcirculation by a process that excludes gene activation (2). Reinforcing these observations are new data detailing the role of nitric oxide (NO) in vascular regulation by estrogen. Normal endothelium secretes nitric oxide, which relaxes vascular smooth muscle and inhibits platelet aggregation. Estrogens elicit abrupt liberation of NO by acute activation of endothelial NO synthase without altering gene expression, a response that is fully inhibited by concomitant treatment with specific ER antagonists (23). This estrogenic effect may be mediated by a receptor localized in caveolae of endothelial cell membranes (24). Such observations require extension, because several independent cell-signaling complexes that appear to participate in signal transduction to the nucleus also associate with caveolar structures (2,3,22).

Estrogen deficiency is associated with significant bone loss, and research on the potential role of membrane ERs in regulating bone mass has increased. Evidence for membrane-binding sites and acute effects of estrogen with an onset within 5 s has been reported in both osteoblasts and osteoclasts (5,13). The effects of estrogens on bone homeostasis also appear to involve rapid activation of MAPK (13), as has also been demonstrated in certain other target cells (10,15,25).

When exposed to E2 conjugated to fluorescein-labeled bovine serum albumin (BSA), human breast cancer cells exhibit specific surface staining (7,26). Since E2-BSA is considered membrane impermeant, these conjugates, developed primarily for use as immunogens and for affinity purification of nuclear ERs, have also been used to assess the membrane effects of estrogen. However, in light of the fact that E2-BSA is unstable in solution, especially in the presence of cells and their enzymic products, and releases measurable amounts of free steroid (27), data relying only on the use of estradiol conjugates to test for membrane effects of steroids need especially careful scrutiny. It is clear that more stable, cell-impermeant derivatives of estradiol should be developed for evaluating membrane receptors.

Progestogens and Androgens

As documented for estrogens, several physiologic effects of progestogens and androgens appear to be regulated, in part, by membrane receptors. Progesterone controls components of reproductive function and behavior. Some of these activities are mediated by interaction with neurons in specific brain regions, and membrane effects appear to be important in this process (4,28). Meiosis in amphibian oocytes is initiated by gonadotropins, which stimulate follicle cells to secrete progesterone. The progesterone-induced G2/M transition in oocytes was among the first convincing examples of a steroid effect at plasma membrane, since it could be shown that exogenous, but not intracellularly injected, progesterone elicited meiosis and that many progesterone-stimulated changes occurred even in enucleated oocytes (29–32). Moreover, this process may be related to progesterone-induced increments in intracellular Ca++ and release of diacylglycerol species that elicit a cascade of further lipid messengers (32).

Progesterone elicits rapid effects on membrane receptors, second messengers, and the acrosome reaction in human sperm (33–35). Assay of acute sperm responses to progesterone in subfertile patients is highly predictive of fertilizing capacity (35). Effects of the steroid, present in the cumulus matrix surrounding the oocyte, appear to be mediated by elevated intracellular Ca++, tyrosine phosphorylation, chloride efflux, and stimulation of phospholipases, effects attributed to activation of a membrane-initiated path-way. Indeed, two different receptors for progesterone, apparently distinct from genomic ones, have been identified at the surface of human spermatozoa (35); nevertheless, a monoclonal antibody (MAB) against the steroid-binding domain of human intracellular progesterone receptor (PR) inhibits progesterone-induced calcium influx and the acrosome reaction in sperm (35).

As with estrogens and progestogens, androgens promote a rapid increase in cytosolic Ca++ in their cellular targets (36). Other effects of androgens that are not attributable to genomic activation include acute stimulation of MAPK in prostate cancer cells (37). The androgen, 5α-dihydrotestosterone, induces vasodilation of aorta, which may be owing to direct action of the steroid on membranes of smooth muscle cells leading to modulation of calcium channels (38). In osteoblasts, membrane receptors for androgen appear to be coupled to phospholipase C (PLC) via a pertussis toxin-sensitive G-protein that, after binding testosterone, mediates rapid increments in intracellular calcium and inositol trisphosphate (IP3) (39). Of note, Benten et al. (40) report that testosterone elicits Ca++ mobilization in macrophages that lack intracellular androgen receptor (AR). These cells...
express an apparent G-protein-coupled AR at the cell surface that undergoes agonist-induced internalization.

Thyroid Hormones

Thyroid hormones are well known to regulate energy expenditure and development, and membrane-initiated effects may contribute to these responses. Triiodothyronine (T3) rapidly stimulates oxygen consumption and gluconeogenesis in liver (41). T3 also promotes an abrupt increase in uptake of the glucose analog, 2-deoxyglucose, in responsive tissues by augmenting activity of the plasma membrane transport system for glucose (42). In rat heart, T3 elicits a positive inotropic effect, increasing left ventricular peak systolic pressure, as early as 15 s after hormone (43). In each tissue investigated, alterations in intracellular Ca++ induced by thyroid hormone appear to modulate signal transduction to the cell interior (41-44).

Membrane-initiated effects of T3 have been documented in bone cells by means of inositol phosphate signaling (45), and in brain through calcium channel activation (46). T3 can also influence other cell processes, including the exocytosis of hormones and neurotransmitters (46), rapid effects that may be attributable to mediation by membrane receptors (44). Although uptake of T3 can occur concomitantly with receptor-mediated endocytosis of low-density lipoprotein, and likely accompanied by carrier proteins, uptake of T3 itself has also been reported to occur in numerous tissues by means of a high-affinity, stereospecific, and saturable process (45,47,48), as found for steroid hormones (3,8).

Glucocorticoids

In addition to their long-established effects on mobilization of energy sources by promoting catabolism and the induction of enzymes involved in gluconeogenesis, glucocorticoids have profound effects on neuron signaling and on induction of apoptosis in lymphocytes, phenomena that appear to be membrane-initiated events. Kelly et al. (21) found that glucocorticoids rapidly altered neuron-firing patterns, and many studies have verified these effects (4,6,28). These molecular events lead to glucocorticoid modulation of specific brain functions, such as the rapid response of hypothalamic somatostatin neurons to stress (49). Such abrupt changes in neuron polarization are reinforced by findings of specific, saturable binding of corticosterone to neuron membranes (50,51). Specific, high-affinity corticosterone binding to calf adrenal cortex plasma membrane is also identified by use of the biologically active radioligand [3H]corticosterone (52).

Glucocorticoids also play an important role in the regulation of immune function and inflammation. In lymphoproliferative diseases, glucocorticoids are in wide use as therapeutic agents, but the cellular mechanism leading to the therapeutic effect remains unclear. In several studies using both cell lines and freshly prepared leukemia or lymphoma cells, the presence of a membrane receptor for glucocorticoids has been implicated in modulating apoptosis and cell lysis (7,53-55). Moreover, in lymphocytes, the membrane-binding site is antigenically related to the intracellular glucocorticoid receptor (iGR) and may be a natural splice variant form of the intracellular receptor (7,55,56). A potential parallel to the ER transfected in Chinese hamster ovary (CHO) cells (25) is evident.

Aldosterone and Digitalis-Like Steroids

Beyond its classic functions of promoting renal reabsorption of sodium and excretion of excess potassium, aldosterone enhances sodium absorption from colon and urinary bladder. In each tissue, the mineralocorticoid effect is owing to enhanced activity of amiloride-sensitive sodium channels. Aldosterone rapidly augments Na+K+ exchange (6,57). This function is Ca++ and protein kinase C (PKC)-dependent but independent of nuclear receptor activation, transcription, and protein synthesis (6,58). Similarly, "nongenomic" action of aldosterone has also been reported to underlie its acute effects on cardiac function and on sodium transport in vascular smooth muscle cells (6,58).

Digitalis-like compounds are often forgotten members of the steroid superfamily. These plant-derived agents elicit inotropic and chronotropic effects on the heart but also affect many other tissues. Endogenous steroidal ligands, termed digitalis-like or ouabain-like factors, have been found in sera of humans and other animals with blood volume expansion and hypertension (59,60) and may be released from adrenal cortex (60). These ligands elicit inhibition of membrane-associated Na+,K+-ATPase, likely the principal receptor for these agonists. It is notable that the steroid-binding domain of Na+,K+-ATPase and that of nuclear hormone receptors share significant amino acid sequence homology (61). In addition to membrane actions of these compounds on Na+,K+-ATPase, ouabain-induced hypertrophy in myocytes is accompanied by promotion of Ca++ flux and initiation of protein kinase--dependent pathways leading, in turn, to specific changes in transcription and altered expression of early response- and late-response genes (62). Thus, the biologic effects of digitalis-like compounds, long considered the exception to the concept of exclusive genomic influence, may render them more closely integrated with the steroid hormone superfamily than was previously recognized.

Vitamin D Metabolites

Membrane-initiated effects of the seco-steroid hormone, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), are well documented in bone and cartilage. In osteoblasts, Caffrey and Farach-Carson (63) elucidated possible connections between rapid effects of 1,25(OH)2D3, requiring milliseconds to minutes, and longer-term effects owing to gene expression. Their laboratory was the first to show activa-
tion of calcium channels by 1,25(OH)₂D₃ (63). Calcium, which can signal gene expression through multiple pathways, promotes key phosphorylation events in certain bone proteins (5). Osteoblasts exhibit rapid changes in IP₃ and diacylglycerol in response to vitamin D metabolites via activation of PLC (5,14). Other bone cells with rapid responses to vitamin D metabolites include osteosarcoma cells and chondrocytes (5,64). The latter system is particularly intriguing because chondrocytes elaborate matrix vesicles that appear critical in bone mineralization. The matrix vesicles, which lack nuclei, exhibit specific, saturable binding of 1,25(OH)₂D₃, especially when derived from growth zone chondrocytes (65).

Other rapid effects of vitamin D occur in a variety of cell types. Muscle cells respond within seconds to 1,25(OH)₂D₃ via several mediators that alter cardiac output in some instances, while acute activation of calcium channels in skeletal muscle promotes contraction (5,66). Of note, in lymphoproliferative disease, 1,25(OH)₂D₃ appears to prime monocytic leukemia cells for differentiation through acute activation or redistribution of PKC, Ca²⁺, and MAPK (5,67). In pancreas and intestine, activation of membrane-associated signaling pathways results in vesicular exocytosis. Pancreatic β-cells respond to 1,25(OH)₂D₃ with enhanced intracellular Ca²⁺ coupled to increased insulin release (68).

In intestine, 1,25(OH)₂D₃ stimulates exocytosis of transported vesicular calcium and phosphate. These cellular effects may be related to vitamin D–promoted alterations in the levels of α-tubulin (5), thereby influencing assembly of microtubules and possibly providing a means for vectorial transport of absorbed ions. Several signal transduction pathways have been found to respond rapidly to exogenous 1,25(OH)₂D₃, including activation of protein kinases and promotion of abrupt increments in Ca²⁺, but integration of these signaling cascades with the physiologic response of enhanced ion absorption remains to be established (5,68,69).

Investigations with vitamin D congeners have recently indicated the potential hormonal nature of 24,25(OH)₂D₃, once thought to represent merely the inactivation product of precursor 25(OH)D₃. Acute effects of 24,25(OH)₂D₃ have been observed in bone cells and in intestine; 24,25(OH)₂D₃ also inhibits rapid actions of 1,25(OH)₂D₃ (5). This may explain why abrupt effects of 1,25(OH)₂D₃ often fail to be observed in vivo (70): normal, vitamin D–replete subjects have endogenous levels of 24,25(OH)₂D₃ sufficient to inhibit acute stimulation of calcium transport by 1,25(OH)₂D₃, thus providing a feedback regulation system (69).

Retinoids

Retinoic acid exerts diverse effects in the control of cell growth during embryonic development and in oncogenesis. It is widely considered that effects of retinoids are mediated through nuclear receptors, including those for retinoic acid as well as retinoid X receptors (1). However, other retinoid response pathways appear to exist, independent of nuclear receptors (71). Cellular uptake of retinol (vitamin A) may involve interaction of serum retinol-binding protein with specific surface membrane receptors followed by ligand transfer to cytoplasmic retinol-binding protein (72). In this regard, targeted disruption of the gene for the major endocytic receptor of renal proximal tubules, megalin, appears to block transepithelial transport of retinol (73). It is noteworthy that megalin may also be implicated in receptor-mediated endocytosis of 25(OH)D₃ in complex with its plasma carrier (74). In addition, retinoic acid binds mannos-6-phosphate (M6P)/insulin-like growth factor-2 (IGF-2) receptor with moderate affinity and appears to enhance its receptor activity (75). M6P/IGF-2 receptor is a membrane glycoprotein that functions in binding and trafficking of lysosomal enzymes, in activation of transforming growth factor-β, and in degradation of IGF-2, leading to suppression of cell proliferation. The concept of multiple ligands binding to and regulating the function of a single receptor is relatively novel but has important implications for modulating and integrating the activity of seemingly independent biologic pathways.

Properties of Membrane Receptors for the Steroid Superfamily

Despite renewed interest in membrane steroid receptors, the physical identity of receptors with high binding affinity for ligand remains elusive. Isolation and structural characterization of these molecules remains to be accomplished. They may be known membrane components (e.g., enzymes, ion channel subunits, receptors for nonsteroid ligands), with previously unrecognized binding sites for steroids, new forms of steroid hormone receptors, "classic" receptors complexed with other membrane-associated proteins, or truly novel membrane proteins.

Estrogens and Progestogens

Efforts to isolate and purify membrane receptors that mediate rapid effects of steroids are under way in several laboratories (Table 2). Early work on purification of ER from uterus and liver plasma membranes suggested that it was a protein species with high-affinity, saturable binding specific for estradiol-17β (16,18). The molecular size of solubilized receptor was in the range of intracellular ER (18,76). Other work to isolate plasma membrane estrogen-binding proteins identified the 67-kDa species characteristic of nuclear receptor, but additional proteins of variant size ranging from 28 to 200 kDa were also revealed (77). To determine whether membrane ER had antigenic homology with nuclear ER, Pappas et al. (78) used antibodies prepared to different functional epitopes of intracellular receptor and demonstrated surface labeling in nonpermeabilized rat pituitary cells by confocal scanning laser microscopy. Recent work by Russell et al. (79) has demonstrated, by means
Table 2

Representative Examples of Physical Properties of Membrane-Associated Receptors for Ligands of Steroid Hormone Superfamily

<table>
<thead>
<tr>
<th>Ligand</th>
<th>MW (kDa)</th>
<th>K_d (M)</th>
<th>Binding capacity (fmol/mg protein)</th>
<th>Homology with nR</th>
<th>Tissue</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estradiol</td>
<td>51–78b</td>
<td>2.8×10^{-10}</td>
<td>526</td>
<td>ND</td>
<td>Rat hepatocytes</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>105–148c</td>
<td>3.6×10^{-10}</td>
<td>370</td>
<td>ND</td>
<td>Rabbit uterus</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>11–67</td>
<td>5×10^{-7}</td>
<td>67</td>
<td>ND</td>
<td>CHO cell (ER transfected)</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>1×10^{-6}</td>
<td>ND</td>
<td>Yes</td>
<td>Amphibian oocyte</td>
<td>30</td>
</tr>
<tr>
<td>Progestin</td>
<td>110</td>
<td>5×10^{-11}</td>
<td>Variable</td>
<td>ND</td>
<td>Porcine liver</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>28,56</td>
<td>6.9×10^{-8}</td>
<td>280</td>
<td>No</td>
<td>Chick intestine</td>
<td>88</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>65</td>
<td>7×10^{-10}</td>
<td>ND</td>
<td>No</td>
<td>Rat growth chondrocytes</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>1×10^{-11}</td>
<td>124</td>
<td>No</td>
<td>Rat resting chondrocytes</td>
<td>87</td>
</tr>
<tr>
<td>Aldosterone</td>
<td>50</td>
<td>1.1×10^{-9}</td>
<td>350</td>
<td>ND</td>
<td>Rat osteoblast-like cells</td>
<td>86</td>
</tr>
<tr>
<td>Glucocorticoids</td>
<td>97–150</td>
<td>2.4×10^{-7}</td>
<td>384</td>
<td>Yes</td>
<td>S-49 lymphoma cells</td>
<td>55</td>
</tr>
<tr>
<td>Thyroid hormone</td>
<td>145</td>
<td>2×10^{-9}</td>
<td>320</td>
<td>ND</td>
<td>Amphibian synapases</td>
<td>47</td>
</tr>
</tbody>
</table>

aOnly representative examples of steroid-binding membrane macromolecules are presented here. Please refer to text for additional references. Homology of membrane macromolecules to nuclear receptor forms (nR) is noted; MW, apparent molecular weight; ND, not determined.

bHigh salt (0.4 M KCl).

cLow salt (0.01 M KCl).

of monoclonal anti–ERα, that human endothelial cells possess surface-binding sites for estrogen (see Table 1). In evaluating the source and distribution of membrane ER, target cells with expression of ERα were treated with antisense oligonucleotide to nuclear ERα to suppress expression of receptor protein (80). This approach significantly reduced expression of membrane as well as nuclear forms of ER. Using an alternate method to assess receptor origin, Razandi et al. (25) transfected cDNA for ERα and ERβ into CHO cells, which do not normally express ER. The transfections resulted in ER expression in both nuclear and membrane fractions, suggesting that membrane and nuclear ER are derived from a single transcript. In addition, both ERα and ERβ were expressed in membranes, and both receptors were capable of activating G-proteins, MAPK, as well as DNA synthesis (25). In related studies, the acute stimulation of endothelial nitric oxide synthase (eNOS) by estrogen was reconstituted in COS-7 monkey kidney cells cotransfected with ERα and eNOS, but not by transfection with eNOS alone (23).

Binding molecules for estrogen and progesterone, comprising several molecular species, were isolated from brain synaptosomes by affinity chromatography and characterized by electrophoresis and Western blot (15,81). Microsequencing of one E_2-binding protein indicated that the high-affinity site corresponds to the subunit of an ATPase/ATP synthase. In addition, some studies suggest that estrogen bound to sex hormone–binding globulin, a plasma protein, also binds with specificity to membrane sites recognizing the liganded transport protein (82). These transport-protein interactions promote cAMP generation via the intermediary of G-proteins. However, further characterization of receptors for such steroid:protein complexes is not available, and it must be recalled that estrogen is in noncovalent association with its plasma protein carrier and dissociates readily therefrom (83).

Binding of progesterone to plasma membrane of amphibian oocytes is specific, saturable, and temperature dependent (31,32). Photoaffinity labeling with the synthetic progesterin [³H]-R5020, followed by gel electrophoresis, revealed progesterin binding to both 80- and 110-kDa proteins in oocyte cytosol, whereas only the 110-kDa R5020-binding protein was present in oocyte plasma membrane. A progesterone-binding protein (msPR) was identified in crude microsomal, rather than purified plasmaemmal, membranes from porcine liver (84,85). On solubilization, a moderate-affinity site with a dissociation constant (K_d) of 69 nM was found, but, after further purification, affinity decreased to K_d of 228 nM. The final fraction contained two novel peptides of 28 and 56 kDa. Expression of msPR-cDNA in CHO cells led to slightly increased progesterone binding in microsomes, and administration of an antibody against msPR reduced rapid progesterone-initiated Ca++ increases in sperm (85). Whether this work represents the first successful cloning
and expression of a steroid receptor associated with cell mem-

branes will have to await confirmation. However, Falkensteins et al. (85) suggest that the native plasma mem-

brane PR may actually be an oligomeric protein complex of about 200 kDa, composed only in part by 28- and 56-

kDa peptides.

Glucocorticoids, Aldosterone, and Vitamin D

Progress has been made in the isolation and characterization of plasma membrane receptors for glucocorticoids, aldosterone, and 1,25(OH)₂D₃, although at this writing, evidence of cloning of the cDNA for any of these proteins is lacking. The membrane glucocorticoid receptor (mGR) was purified from lymphoma cells by immunoaffinity bind-

ing with a MAb coupled to Sepharose-4B; the protein displayed properties similar to iGR (55). Scatchard analysis of mGR yielded a K_d of 239 nM and B_max of 384 fmol/ mg of protein, representing a somewhat higher number of binding sites but a lower affinity than that of the iGR. Peptide maps revealed some sequences that were unique to the membrane form (55,56). Further data suggest that the mGR in lymphoma cells is a transcript variant of the iGR (56) (Table 2). Properties of the aldosterone membrane receptor have been analyzed by means of [³²P]-aldosterone photoaffinity labeling. The protein has an apparent molecular mass of 50 kDa and appears to be distinct from intracellular receptor (86).

The pursuit of membrane receptor for 1,25(OH)₂D₃ (pmVDR) by affinity isolation has been hampered by the fact that most ligand derivates lack sufficient binding activity. Nevertheless, work by Baran et al. (87) indicates that the vitamin D analog, [¹⁴C]-1α,25-dihydroxyvitamin D₃ bromoacetate, does exhibit a moderate degree of specific binding to a 36-kDa protein in plasma membranes of rat osteoblast-like cells. Using sequence determination and Western blot, the labeled membrane protein was identified as annexin II, part of a family of membrane-binding pro-

teins previously implicated in the regulation of Ca⁺⁺ sig-

naling, tyrosine phosphorylation, and apoptosis. Partially purified plasma membrane proteins and purified annexin II exhibited specific and saturable binding for [³H]-1α,25(OH)₂ D₃, and antibodies to annexin II inhibited [¹⁴C]-1α,25(OH)₂ D₃ bromoacetate binding to plasma membranes and also inhibited hormone-induced increases in intracellular calcium in osteoblast-like cells. Hence, these initial results (87) suggest that annexin II may serve as a receptor for rapid actions of 1,25(OH)₂D₃ in rat osteoblast-like cells, but it is not known if this receptor system functions in other cell types. In independent studies, classic biochemical strate-

gies, coupled with analyses of specific binding, were used to isolate the vitamin D membrane receptor (pmVDR) from intestinal epithelium of chicks (88). Basal-lateral mem-

branes were solubilized with detergent and subjected to ion-exchange and gel filtration chromatography. Binding activity eluted with a protein of 65 kDa, with a K_d of 0.7 nM (88). A highly specific antibody toward plasma membrane VDR failed to recognize the nuclear receptor in Western analyses. On the other hand, a commercially available MAb generated against the "classic" nuclear receptor reacted with many proteins in nuclear fractions of chick intestine, including a band that comigrated with authentic recombinant protein, but did not detect VDR in basolateral mem-

branes (89). Antibody to the plasma membrane receptor, not to the nuclear receptor, blocked hormonal activation of PKC. The 65-kDa protein was also observed to bind the affinity ligand, [¹⁴C]-1α,25-dihydroxyvitamin D₃ bromoacetate, and labeling was diminished in the presence of excess nonradioactive ligand (89). Electron microscopic studies of duodena vascularly perfused with control media, 1,25(OH)₂D₃, or 24,25(OH)₂D₃ followed by immunochemical staining revealed that 1,25(OH)₂D₃, but not control media or 24,25(OH)₂D₃, resulted in dramatically enhanced nuclear localization of the putative membrane receptor (89).

Varied Forms of Steroid Hormone Receptors in Plasma Membranes

Collectively, current findings suggest that membrane receptors for steroid hormones are, in certain instances, transcriptional copies (estrogen) or variants (glucocorticoids) of nuclear receptors and, in other instances, products apparently unrelated to intracellular receptors (aldosterone and vitamin D). There is evidence for alternatively spliced transcripts of several steroid receptors, and these variant receptors give rise to proteins of different molecular size and, possibly, modified properties (56). Membrane inser-

tion of receptors in primary transcript form would likely require one or more hydrophobic regions, and post-transla-
tional modification of receptor protein leading to cell mem-

brane targeting may also occur, including phosphorylation, glycosylation, and addition of lipid anchors or other modifications, such as palmitoylation or myristoylation. Sur-

face steroid hormone receptors may also be part of a mul-

timeric complex including a "classic" nuclear receptor but bound to as-yet-unidentified transmembrane proteins and coupled to membrane-associated signaling molecules (3, 7, 15,79). Alternatively, plasma membrane receptors for ste-

roids may have several common structural features with, but may be distinct from, the intracellular steroid hormone receptors (88,89). In the case of retinoic acid and estradiol, binding to known membrane proteins, such as M6P/IGF-2 receptor (73) or HER-2 receptor (90), respectively, may modulate some ligand effects. Progesterone appears to in-

teract directly with oxytocin receptor, a G-linked protein at the cell surface, and inhibits some functional effects of oxytocin signaling, thus suppressing uterotropic activity of oxytocin (91). Progesterone congeners also bind with mod-

erate affinity to γ-aminobutyrate type A (GABAₐ) recep-

tors that comprise ligand-gated ion channel complexes (4, 28). Absence of the γ-subunit of GABAₐ receptor in appro-

priate knockout mice results in a significant decrease in
sensitivity to neuroactive steroids such as pregnanolone (92). Similarly, acute vascular relaxation induced by pharmacologic levels of E₂ may be mediated by its binding to the regulatory subunit of Maxi-K channels in membranes (93), thus supporting the view that some effects of steroids, at least at high micromolar concentration, may be mediated by known membrane receptors with previously unrecognized steroid-binding sites.

Using ERα gene knockout (ERKO) mice, Gu et al. (94) showed that rapid actions of estradiol at 50 nM on kainate-induced currents in hippocampal neurons still occur, and the effect is not inhibited by ICI 182,780, a pure antagonist of hormone binding to both ERα and ERβ. These investigators suggest that a distinct estrogen-binding site exists in neurons and appears to be coupled to kainate receptors by a cAMP-dependent process. However, it is important to note that alternatively spliced forms of ERα (95), as well as ERβ (96), can occur in ERKO mice, thus complicating the interpretation of these results. Moreover, uterine tissues of ovariectomized ERKO mice exhibit 5–10% of the estradiol binding present in wild-type uteri (95,97), and the significance of these residual estrogen-binding sites in ERKO target cells is unclear. Nonetheless, further development of double ERα and ERβ gene knockouts and perfection of this new technology should prove important in deciphering the contribution of "classic" and novel receptor forms in hormone action.

In future work, it will be important to pursue isolation and characterization of constituent proteins from homogeneous plasma membranes prepared in the presence of proteinase inhibitors (18,76,98). Verification of their purity should be confirmed by use of a balance sheet for enzyme or other membrane markers (18,76). Screening for activity of receptor would benefit from the use of independent approaches, such as ligand binding with radio- or photoaffinity-labeled steroids and immunoassay directed toward known intracellular receptors (15,31,55,78,86). These several approaches may detect membrane receptors originating from a transcript other than that of intracellular receptor. As with the mixed steroid hormone–binding protein systems known to occur within cells and in their extracellular fluids, it may well be that multiple forms of receptor proteins for steroids coexist in plasma membranes, thus complicating efforts to isolate and characterize the individual binding species in this cell compartment. Our efforts to understand ligand–receptor interactions are often limited by simplistic “lock-and-key” models that may not accurately reflect the true state of complex molecular signaling cascades. Study of the molecular organization of several neurotransmitter receptor families has already shown that extraordinary biologic variability occurs, with multiple “keys” and multiple “locks” sometimes involved in ligand-receptor recognition (99). We must consider the existence of similar high-affinity, but possibly multivalent and multifunctional, receptors in the steroid hormone superfamily (75,91–93).

Perspectives

Ever since the discovery of chromosomal puff induction by ecdysone, cell regulation by steroid hormones has focused primarily on a nuclear mechanism of action. However, even the venerable steroid hormone ecdysone elicits rapid membrane effects that may facilitate later nuclear alterations (100). Indeed, membrane-initiated responses appear to be the cell’s earliest response to steroids and may be prerequisite to subsequent genomic responses (2,3,7,10; see also Fig. 1). Coupling of surface membrane, cytoplasmic, and nuclear responses may offer a progressive, ordered expansion of initial signal. Accordingly, the terms genomic and nongenomic may not accurately define such a response continuum (101). Future investigations should focus on potential interactions of membrane and nuclear steroid receptors that may promote activation of transcription and other specific hormonal responses. Molecular details of cross-communication between steroid and peptide receptors are also beginning to emerge (3,98), and membrane steroid receptors may be in a pivotal location to promote convergence among diverse signaling pathways (Fig. 1). Indeed, the consequences of steroid hormone recognition at the outer cell membrane of target, but not nontarget, cells are shared by numerous other classes of regulatory molecules (cf. ref. 102), including peptide hormones, neurotransmitters, drugs, plant lectins, mitogens, and antibodies (3). Although the agonists are manifold, the signaling mechanisms are few. Primary signal recognition at the surface would be fleeting, but the mutual specificities and affinities are high, and thus sufficient for setting the appropriate signal transduction chain in motion. However, until the current surge of renewed focus on this problem, identification of these instantaneous triggering interactions for steroid hormones has accumulated relatively slowly, having been limited by technical and microanalytic barriers that are now being surmounted.

Ligand–receptor interactions depend on an extensive array of extracellular and intracellular partners to localize to membrane microdomains, recruit signaling molecules, and trigger intracellular signaling pathways. As the consequences of surface interactions are analyzed in greater depth, it will be important to evaluate further the biologic role of rapid internalization of steroid-binding sites from plasma membranes via endocytotic-lysosomal pathways (2,3,88,101,103–105). These membrane-initiated events may involve cytostructural elements or scaffold proteins that contribute to signal propagation to the nucleus and the nuclear-protein matrix (2,101,104–107; Fig. 1). Thus, antibodies specific to intestinal membrane VDR reveal a vitamin D–induced redistribution of membrane receptor, a protein that appears distinct from intracellular receptor, to the nucleus within 5 min of binding ligand (89). It is unknown whether the membrane receptor has inherent DNA- or coregulator-binding capacity to alter transcription; alter-
steroid hormone receptors. It is now abundantly clear that the nuclear receptor-mediated mechanism as the sole means by which steroid hormones act is incomplete (2,3,5,7,15, 107). It is likewise unmistakable that membrane effects of steroid hormones represent an established phenomenon that is by no means to be construed as alternative to the genomic pathway, and that demands continued investigation. Indeed, the chain of membrane-initiated events is helping to account for the relatively prolonged, apparent silence between the capture of the hormone at the surface of its preferential target and the eventual outcome in augmented genomic activities. In challenging the dogma that steroid hormones act exclusively via intracellular receptors, the membrane receptor experiments reviewed here provide a persuasive paradigm for a potentially new class of drugs for human therapy. The clinical use of steroid hormone agonists and antagonists has substantially changed the course of many hormone-related diseases, but side effects of many agents currently in use are also significant. In-depth analysis of the relative contributions of nuclear and membrane-initiated activities in steroid receptor biology may lead to the development of pharmaceutical agents that exert differential activities in the two pathways, thus favoring more selective drug delivery and promoting the emergence of novel approaches for treatment of many cell metabolic and proliferative defects.

Acknowledgments

This work was supported by grants from the National Institutes of Health (AG14785, CH4354), the US Department of Agriculture (98-35200-6466), the National Science Foundation (PCM21829), the US Army Breast Cancer Research Program (DAMD17-99-1-9099, DAMD17-00-1-0177), the California Breast Cancer Research Program (5JB-0105), the Susan G. Komen Breast Cancer Research Foundation (99-3305), and the Academic Senate of the University of California (1287).

References

