4. TITLE AND SUBTITLE
SPACE-TIME IMAGING OF SHOALING WAVES AND SURF

6. AUTHOR(S)
John Dugan, Cindy Piotrowski, Zandy Williams and K. T. Holland

14. ABSTRACT
A fundamental barrier to consequential evaluation of modern, very capable shoaling wave and surf models has been the inability to provide high-quality ocean data with which to test model results. This paper describes a development intended to satisfy this need by providing space-time visible images of the nearshore from which three parameters crucial to such evaluations are simultaneously retrieved. These fields are the wave spectrum, bathymetry and currents. A panchromatic digital framing camera has been mounted on a small aircraft and used to collect time series of images of waves as they shoal and break. The camera system is controlled by a computer-driven turret which provides accurate location and pointing angles so that the images can be mapped to the mean water level on a common geodetic reference surface. This effectively separates space and time variations associated with the waves. The resulting time series imagery can be mapped and displayed much like a movie taken from a sky hook. These data are used with algorithms to retrieve the ocean parameters of interest, specifically the wave spectrum, water depth and currents. The 3-D frequency-wavenumber spectrum is calculated in sub-regions of the nominal 2 km scene, and the theoretical dispersion relation for linear gravity waves is fit to the spectrum, with the local water depth and current as free parameters.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT Unclassified
 b. ABSTRACT Unclassified
 c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES 2

19a. NAME OF RESPONSIBLE PERSON
 K. T. Holland

19b. TELEPHONE NUMBER (include area code)
 228-688-5320
Publication or Presentation Release Request

1. References and Enclosures

- Ref: (a) NRL Instruction 5600.2
 - () Abstract only, published
 - () Book
 - () Conference Proceedings (referred)
 - () Book Chapter
 - () Conference Proceedings (not referred)
 - () Invited speaker
 - () Journal article (referred)
 - () Oral Presentation, published
 - () Other, explain

- Encl: (1) Two copies of subject paper (or abstract)

3. Administrative Information

- STRN: NRL/PP/7440--00-1006
- Route Sheet No.
- Job Order No.
- Classification: X U C
- Sponsor: ONR
- Approval obtained: X yes no

4. Author

Title of Paper or Presentation

SPACE-TIME IMAGING OF SHOALING WAVES AND SURF

Author(s) Name(s) *(First, Mi., Last)*, Code, Affiliation if not NRL

John Dugan (Arete Associates), Cindy Piotrowski (Arete Associates), Zandy Williams (Arete Associates) and K. T. Holland (NRL Code 7440.3)

It is intended to offer this paper to the 4th International Symposium on Ocean Wave Measurement and Analysis

(Name of Conference)

September 3-5, 2001, San Francisco, CA.

(Date, Place and Classification of Conference)

After presentation or publication, pertinent publication/presentation data will be entered in the publications data base, in accordance with reference (a).

It is the opinion of the author that the subject paper is not classified, in accordance with reference (b).

This paper does not contain any disclosing or suggestive material that has been communicated to the Laboratory in confidence. This paper (does not) contain any militarily critical technology.

K. T. Holland, NRL Code 7440.3

Name and Code (Principal Author)

(Signature)

5. Routing/Approval

<table>
<thead>
<tr>
<th>CODE</th>
<th>SIGNATURE</th>
<th>DATE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Holland</td>
<td>10/16/00</td>
<td>1. Release of this paper is approved. 2. To the best knowledge of this Division, the subject matter of this paper (has never) been classified.</td>
</tr>
<tr>
<td>Section Head</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branch Head</td>
<td>Acting</td>
<td>10/16/00</td>
<td>1. Paper or abstract was released. 2. A copy is filed in this office.</td>
</tr>
<tr>
<td>Division Head</td>
<td>After Head</td>
<td>10/16/00</td>
<td></td>
</tr>
<tr>
<td>Security, Code 122</td>
<td>DOD</td>
<td>10/19/00</td>
<td></td>
</tr>
<tr>
<td>Office of Counsel, Code 8008.2</td>
<td></td>
<td>12/23/00</td>
<td></td>
</tr>
<tr>
<td>ADOR/Director NCST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Affairs (Unclassified/Unlimited Only), Code 1290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division, Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Code 7440.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This form cancels and supercedes all previous versions.
6. DISTRIBUTION STATEMENTS (Author to check appropriate statement and fill in reason as required)

☐ A - Approved for public release, distribution is unlimited.

☐ B - Distribution authorized to U.S. Government agencies only (check reason below):

☐ Foreign Government Information ☐ Contractor Performance Evaluation ☐ Critical Technology

☐ Proprietary Information ☐ Administrative/Operational Use ☐ Premature Dissemination

☐ Test and Evaluation ☐ Software Documentation ☐ Cite "Specific Authority"* (Identification of valid)

Date statement applied ____________________

Other requests for this document shall be referred to ________________

(Insert Controlling DOD)

☐ C - Distribution authorized to U.S. Government agencies and their contractors (check reason below):

☐ Foreign Government Information ☐ Software Documentation

☐ Administrative/Operational Use ☐ Critical Technology ☐ Cite "Specific Authority"* (Identification of valid)

Date statement applied ____________________

Other requests for this document shall be referred to ________________

(Insert Controlling DOD)

☐ D - Distribution authorized to DOD and DOD contractors only (check reason below):

☐ Foreign Government Information ☐ Critical Technology

☐ Software Documentation ☐ Cite "Specific Authority"* (Identification of valid)

☐ Administrative/Operational Use

Date statement applied ____________________

Other requests for this document shall be referred to ________________

(Insert Controlling DOD)

☐ E - Distribution authorized to DOD components only (check reason below):

☐ Proprietary Information ☐ Premature Dissemination ☐ Critical Technology

☐ Foreign Government Information ☐ Software Documentation ☐ Direct Military Support

☐ Administrative/Operational Use ☐ Contractor Performance Evaluation ☐ Test and Evaluation

☐ Cite "Specific Authority"* (Identification of valid)

Date statement applied ____________________

Other requests for this document shall be referred to ________________

(Insert Controlling DOD)

☐ F - Further dissemination only as directed by ________________

Date statement applied ____________________ or higher DOD authority

(Insert Controlling DOD)

☐ X - Distribution authorized to U.S. Government agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance with regulations implementing 10 U.S.C. 140c.

Date statement applied ____________________

Other requests for this document shall be referred to ________________

(Insert Controlling DOD)

*For NRL publications, this is usually the Commanding Officer, Naval Research Laboratory, Washington, DC 20375-5320

7. OTHER LIMITATION

☐ Classification only ☐ NOFORD ☐ DTIC exempt (explain)

Classification Review
(Initial/Date)

Substantive changes made in this document after approval by Classification Review and Public Release invalidate these reviews. Therefore, if any substantive changes are made by the author, Technical Information, or anyone else, the document must be returned for another Classification Review and Public Release.

8. INSTRUCTIONS

Author completes and submits this form with the manuscript via line channels to the division head for review and approval according to the routing in section 4.

1. NRL Reports..........................Submit the diskette (if available), manuscript, typed double-spaced, complete with tables, illustrations, references, draft SF 298, and proposed distribution list.

2. NRL Memorandum Reports..........................Submit a copy of the original, typed manuscript complete with tables, illustrations, references, draft SF 298, and proposed distribution list.

3. NRL Publications or other books, brochures, pamphlets..........................Handed on a per case basis by Site Technical Information Office, proceedings, or any other printed publications.

HQ NRL 5219/1 (Rev. 5-97) (e) (Back)
Space-Time Imaging of Shoaling Waves and Surf

John Dugan, Cindy Piotrowski, and Zandy Williams
Areté Associates, 1725 Jeff Davis Hwy, Crystal City, VA, 22202, 703 413 0290
last name@areté-dc.com
and
Todd Holland
Naval Research Laboratory, Code 7442, Stennis Space Center, MS, 39729, 228 688 5320,
tholland@nrlssc.navy.mil

Abstract

A fundamental barrier to consequential evaluation of modern, very capable shoaling wave
and surf models has been the inability to provide high-quality ocean data with which to test
model results. This paper describes a development intended to satisfy this need by providing
space-time visible images of the nearshore from which three parameters crucial to such
evaluations are simultaneously retrieved. These fields are the wave spectrum, bathymetry and
currents. A panchromatic digital framing camera has been mounted on a small aircraft and used
to collect time series of images of waves as they shoal and break. The camera system is
controlled by a computer-driven turret which provides accurate location and pointing angles so
that the images can be mapped to the mean water level on a common geodetic reference surface.
This effectively separates space and time variations associated with the waves. The resulting
time series imagery can be mapped and displayed much like a movie taken from a sky hook (see
the single frame of mapped data attached below). These data are used with algorithms to retrieve
the ocean parameters of interest, specifically the wave spectrum, water depth and currents. The
3-D frequency-wavenumber spectrum is calculated in sub-regions of the nominal 2 km scene,
and the theoretical dispersion relation for linear gravity waves is fit to the spectrum, with the
local water depth and current as free parameters. Also, the frequency-direction (f-d) spectrum is
computed by integrating the 3-D spectrum. Comparisons of these results are made with a
bathymetry survey, ADCPs, and the spectrum from the pressure array at the USACE FRF as part of the SHOaling Wave EXperiment (SHOWEX). The retrieved f-d spectrum is essentially identical to the FRF spectrum, except in instances when alongshore currents Doppler shift the higher frequency waves. Also, the retrieved water depths and currents generally are accurate to ~5% relative values. In addition, the patterns of wave breaking also are analyzed to infer the patterns of wave stress and the morphology in the surf zone, much as has been done with visible image data from the ARGUS tower-mounted video cameras in recent years.

Finally, these parameters can be retrieved across much of the 2 km imagery, so that these product fields can be compared directly with the output fields of 2-D shoaling wave and surf models. Since these are the same parameters that are essential elements of various nearshore models, we suggest that a unique use of these data sets is providing test cases for evaluating shoaling wave and surf models. Data sets were collected both at FRF and nearby Oregon Inlet during SHOWEX, so test cases could be assembled for both simple and complex morphology.

To be presented by: Dr. John Dugan

Suggested topical sessions: **remote sensing** or **wave measurement and analysis**

Requires computer display for showing the very impressive movie loops