JAMI
Flight Termination System
A Cooperative Development Between
NAWC/CL and KAMAN

Dale Spencer, Presenter
Andy Yuenger, Co-Author

45th Annual Fuze Conference
Long Beach, California
April 18th, 2001
JAMI Flight Termination System: A Cooperative Development Between NAWC/CL and KAMAN

Report Details

<table>
<thead>
<tr>
<th>Report Date</th>
<th>Report Type</th>
<th>Dates Covered (from... to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Apr 2001</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

Title and Subtitle
JAMI Flight Termination System: A Cooperative Development Between NAWC/CL and KAMAN

Authors
Spencer, Dale; Yuenger, Andy

Performing Organization Name(s) and Address(es)
Kaman

Sponsoring/Monitoring Agency Name(s) and Address(es)
NDIA (National Defense Industrial Association) 211 Wilson BLvd., Ste. 400 Arlington, VA 22201-3061

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Report Classification
Unclassified

Subject Terms

Abstract

Number of Pages
25
Overview

- **Joint Advanced Missile Instrumentation**
 - Roles
 - System

- **FTSA**
 - Requirements
 - Features
 - Block Diagram
 - Design/Implementation
 - Test Results
 - Status
 - Plans
DEVELOPMENT UNDER CRADA

• Cooperative Research and Development Agreement
 – Raymond Engineering Operations (REO)
 – Signed 12 April 1999
 – Division of Responsibilities
 • China Lake
 – Electrical/Explosive Design and Development
 – Environmental Testing
 • REO
 – Packaging
 – Hardware Manufacturing
JAMI FTS TEAM

- Program Dir: Mr. Don Scofield, NAWCWD, China Lake
- Navy Deputy: Mr. Dave Powell, NAWCWD, Pt Mugu
- Project Engr: Mr. Andy Yuenger, NAWCWD, China Lake
- EE Design (Past): Mr. Mike Haddon, NAWCWD, China Lake
- EE Design (Present): Mr. Gabe Soto, NAWCWD, China Lake
- Analyst: Mr. Jim McVay, NAWCWD, China Lake
- Industry Partner: Kaman Aerospace Corporation/ Raymond Engineering
 - ME Design: Mr. Robert Spooner
 - FCDC Interface: Mr. Ted Horbacewicz
 - Test Engineer: Mr. Mario Fasulo
 - Reliability & Safety: Mr. Pete Rohner
 - Firmware: Mr. Pete Solari
 - Project Engineer: Mr. Dale Spencer
FTSA VS S&A

• FTSA
 – Overriding Concern is to Not Allow the Weapon to Go Outside the Range Footprint
 – Defining Specification is RCC 319-99

• S&A
 – Overriding Concern is to Not Allow Unintended Initiations
 – Defining Specification is Mil-Std-1316
JAMI FTSA BENEFITS

- Standardization
- Off-the-shelf availability
- Low Unit Cost
- Small Size & Weight
JAMI FTSA Requirements

- Compliant With RCC 319-99
- Programmable For Multiple Applications (at test facility)
- Small Size (< 9 in³/unit)
- Low Cost (~$2000/unit)
- Qualified To “Worst Case” Environmental Levels
 - Based on Environments of Potential Users
- Removable Explosives (LEEFI, Etc.)
- Fully Testable (Including HV Output)
Block Diagram of JAMI FTSA

- Programming Computer
- LPT1 Communication Bus
- Programmable Inputs
- Command Destruct Receiver 1
 - Terminate
 - Monitor 1
 - Arm Enable
- Command Destruct Receiver 2
 - Monitor 2
- Simulated Accel Input
- Umbilical Disconnect
- Secondary FTSA Battery Monitor
- Battery
- Gate Array A
- Gate Array B
- A/D Converter
- A/D Converter
- Accelerometer
- Fireset
- Regulation
- EEPROM
- High Voltage Converter
- System Operational
- First Motion
- Safe Sep. Status
- Fire Status
- FailSafe Status
- HV Status
- TERMINATE
INPUTS & OUTPUTS

Programmable Inputs
- Failsafe Enable
 - Loss of Monitor (tone)
 - Loss of Power
- First Motion Enable
 - First Motion Valid Time
- Acceleration Enable
 - Axis of Acceleration
 - Acceleration Level
- Umbilical Disconnect Enable
- Safe Separation Time
- Arm Enable

Non-Programmable
- Terminate Command

OUTPUTS
- Flight Destruct (Explosive)
- Safe/Arm Status
- Fire Status
- Safe Separation Status
- First Motion Status
- System Operational
- Failsafe Status
Logic Circuits

HV Components on Backside
FCDC Components
JAMI FTSA FIRESET

- Novel Design
- Small In Size
- Low In Cost (<$20)
- High Reliability
 - 3200 shots @ 1500A
- No Unique Parts
 - All COTS
TEST ENVIRONMENTS

• Range Safety Document RCC 319-99
 – May be First FTSA Fully Qualified to New Document

• Database of Environmental Profiles of Numerous Weapons Systems
STATUS

• Specification Completed
• Housing Design Complete
• FCDC Interface Complete
• Electrical Design Complete
• Prototype Board built and tested
• Fireset Studies Complete

• Pre-production
 – Design Update in final stage
 – Boards planned
 – Pre-Qualification tests to be run to find “weak points”
 – Expect Qualification Completion Second Qtr 2002
Developmental Testing Summary

• Fireset
• Logic Circuits
 – Functional Test of Disable Parameters
 – Programmable Time and Thresholds Verification
• Temperature Range Tests
Developmental Test
Errata

• Electrical Corrections
 – Q1 pins 3 & 4 Reversed
 – R19 & R25 Resistance Value Change for Specified Threshold
 • 47.5k to 68k
 – Missing Run from R21 Node 6 to node 5
 – Missing Pad R17
 – Maxim A/D MAX154 no longer std. production item
 – 2SK2663 (HV Transistor) no longer in production.

• Mechanical Corrections
 – Component interference with Tactical Connector
 – Q7 on wrong side of board, through hole reverse placement
 – Component Height
Design Analysis
Summary

• Tolerance
 – Preliminary circuit tolerance analysis performed with pre-production design

• Stress
 – Design performed with TE000-AB-GTB-010 as a guideline

• Fault Tree
 – Design performed to preclude single point failure and implement desired modes of operation.

• Final Analysis, including FMECA, to be completed in conjunction with pre-production evaluation testing.
Fire Circuit Tests

- Established All-Fire Voltage
 - Explosive Tests forthcoming
- Temperature Cycled -30°C to +92°C
 - Output Current degraded 5% maximum
- Range Safety Requirement for 50% Energy Margin Exceeded by 105 milli-joules threshold (predicted), 203 milli-joules available. Based on nominal capacitor value.
Functional Verification Tests

First Motion Valid

<table>
<thead>
<tr>
<th>Programmed Time</th>
<th>Measured Time</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Seconds</td>
<td>5.017</td>
<td>0.3</td>
</tr>
<tr>
<td>10 Seconds</td>
<td>10.017</td>
<td>0.2</td>
</tr>
<tr>
<td>155 Seconds</td>
<td>154.90</td>
<td>0.06</td>
</tr>
<tr>
<td>160 Seconds</td>
<td>160.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Safe Separation

<table>
<thead>
<tr>
<th>Programmed Time</th>
<th>Measured Time</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 Seconds</td>
<td>0.10000</td>
<td>0</td>
</tr>
<tr>
<td>10 Seconds</td>
<td>10.2</td>
<td>0.19</td>
</tr>
<tr>
<td>25 Seconds</td>
<td>25.6</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Functional Verification Tests

Loss of Power Threshold

<table>
<thead>
<tr>
<th>Programmed Time</th>
<th>Measured Voltage</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Volts</td>
<td>20.74</td>
<td>1.2</td>
</tr>
<tr>
<td>22 Volts</td>
<td>21.22</td>
<td>3.7</td>
</tr>
<tr>
<td>23 Volts</td>
<td>22.27</td>
<td>3.3</td>
</tr>
<tr>
<td>24 Volts</td>
<td>23.6</td>
<td>1.7</td>
</tr>
<tr>
<td>25 Volts</td>
<td>24.9</td>
<td>0.4</td>
</tr>
<tr>
<td>26 Volts</td>
<td>25.7</td>
<td>1.1</td>
</tr>
<tr>
<td>27 Volts</td>
<td>27.2</td>
<td>0.7</td>
</tr>
<tr>
<td>28 Volts</td>
<td>28.5</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Loss of Tone

<table>
<thead>
<tr>
<th>Programmed Time</th>
<th>Measured Time</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Second</td>
<td>1.02</td>
<td>2.0</td>
</tr>
<tr>
<td>2 Seconds</td>
<td>2.04</td>
<td>2.0</td>
</tr>
<tr>
<td>31 Seconds</td>
<td>31.7</td>
<td>2.2</td>
</tr>
<tr>
<td>32 Seconds</td>
<td>32.79</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Plans

- **Qualification Plan in Process**
- **Number of units under CRADA is 12**
 - 2 Pre-qualification Engineering
 - 10 Range Qualification Units

Milestone Table

<table>
<thead>
<tr>
<th>MILESTONE</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype built & tested...</td>
<td></td>
<td></td>
<td>Δ</td>
<td></td>
</tr>
<tr>
<td>Pre-production boards built and tested</td>
<td></td>
<td>Δ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDR</td>
<td></td>
<td></td>
<td>Δ</td>
<td></td>
</tr>
<tr>
<td>Qualification Hardware built...</td>
<td></td>
<td></td>
<td>Δ</td>
<td></td>
</tr>
<tr>
<td>Qualification</td>
<td></td>
<td></td>
<td>Δ</td>
<td></td>
</tr>
</tbody>
</table>
FTSA Feedback

- Your Comments, Questions or Concerns