Vetronics Technology Demonstrator
Display Technology

Greg Downs
Product Manager
Computing Device Canada
phone (613) 596-7255
fax (613) 596-7697
e-mail: greg.downs@cdott.com
<table>
<thead>
<tr>
<th>Report Date</th>
<th>Report Type</th>
<th>Dates Covered (from... to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29May2001</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

Title and Subtitle
Vetronics Technology Demonstrator Display Technology

Author(s)
Downs, Greg

Performing Organization Name(s) and Address(es)
Computing Device Canada

Sponsoring/Monitoring Agency Name(s) and Address(es)
NDIA (National Defense Industrial Association) 211 Wilson BLvd., Ste. 400 Arlington, VA 22201-3061

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
18
Overview

- Computing Devices Flat Panel Displays
- Vetronics Technology Demonstrator
 - Program Requirements
 - Crew Station
 - Display Content Requirements
- Display & Touch Panel Technology Review
- Display Architecture
- Display Characteristics
Computing Devices Flat Panel Displays

- Proven Military Flat Panel Display Expertise
 - Thousands of FPD’s sold into land, naval and airborne applications
 - >15 years of FPD production experience
 - Participation in DARPA Technical Re-Investment Program (TRP)
 - Participation in United Stated Display Consortium (USDC) Military and Aerospace User Group (MAUG)
 - Member of the Society for Information Display (SID)
Vetronics Technology Demonstrator

- US Army TACOM Sponsored Program
 - Develop and demonstrate next generation crewstation
 - Crew stations evaluated in both lab and vehicle environments
 - Vehicle trial scheduled for summer 2001
Vetronics Technology Demonstrator

Requirements

- Rugged
- High performance
- Low cost (both NRE & recurring)
- State of the art (latest fieldable technology)
- Flexible - must enable system functionality to be changed with a minimum of impact on the crewstation design
Crew Station Concept

Indirect Vision Displays (IVD’s)

Multi-Function Displays (MFD’s)
Display Content Requirements
Display Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Pro's</th>
<th>Con's</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD</td>
<td>Mature & low cost</td>
<td>Requires heaters, Warm-up time</td>
</tr>
<tr>
<td></td>
<td>Good optical performance & contrast ratio</td>
<td>Poorer off-axis viewing performance, Moderate video response, delicate polarisers</td>
</tr>
<tr>
<td></td>
<td>Good MTBF</td>
<td></td>
</tr>
<tr>
<td>EL</td>
<td>Mature, very rugged, available in custom size/formats, fast video response, high-resolution, Excellent MTBF.</td>
<td>Moderate brightness and poor colour availability, moderate voltage matrix drive electronics.</td>
</tr>
<tr>
<td>PDP</td>
<td>Mature, Rugged, Good colour gamut.</td>
<td>Poor resolution , marginal brightness, heavy, high power consumption. Limited sizes</td>
</tr>
<tr>
<td>FED</td>
<td>"Flat CRT" Good color gamut, fast video response, good uniformity, low power for luminance, wide operating temperature, Low voltage matrix drive.</td>
<td>Emerging technology, poor lifetime, moderate brightness, high anode voltage (~8KV), has to overcome the economics of AMLCD to succeed.</td>
</tr>
<tr>
<td>LED</td>
<td>Mature, simple, rugged, low-voltage, limited colour gamut, very long life.</td>
<td>Power-hungry, very poor Resolution.</td>
</tr>
<tr>
<td>OLED</td>
<td>Printable, flexible, very fast video response, low power consumption, wide colour gamut, potentially for very bright, high resolution, wide temperature, active matrix.</td>
<td>Unproven (unobtainable). Probably UV-degradable, moisture sensitive and short life span.</td>
</tr>
<tr>
<td>LEP</td>
<td>Printable, embedded drive circuits, compatible with low cost flexible substrate, low power, potential for good color, temperature & video response.</td>
<td>Unproven, UV-degradable, cannot obtain. Short life expectancy at this time.</td>
</tr>
<tr>
<td>DMD</td>
<td>Wide operating temperature range. Available.</td>
<td>Bulky (projection), optical cross talk, poor contrast (requires reflecting surface to project images).</td>
</tr>
<tr>
<td>VFD</td>
<td>Mature, Simple, Cheap, and rugged.</td>
<td>Very low resolution, moderate luminance, high reflectivity, poor brightness, large IR signature.</td>
</tr>
</tbody>
</table>
Touch Panel Technologies

<table>
<thead>
<tr>
<th>Touch-input Technology</th>
<th>Positive Attribute</th>
<th>Negative Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infra red</td>
<td>No luminance loss.</td>
<td>IR emission.</td>
</tr>
<tr>
<td></td>
<td>No additional reflection.</td>
<td>Low resolution.</td>
</tr>
<tr>
<td></td>
<td>No environmental limitations.</td>
<td></td>
</tr>
</tbody>
</table>
Display Architecture

Standard Display Heads

<table>
<thead>
<tr>
<th>Display Head</th>
<th>LCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Backlight</td>
<td></td>
</tr>
<tr>
<td>• Microcontroller</td>
<td></td>
</tr>
<tr>
<td>• Video I/F (LVDS)</td>
<td></td>
</tr>
<tr>
<td>• Adapted for each specific LCD</td>
<td></td>
</tr>
<tr>
<td>• 8.4” VGA</td>
<td></td>
</tr>
<tr>
<td>• 10.4” SVGA</td>
<td></td>
</tr>
<tr>
<td>• 13.0” SXGA</td>
<td></td>
</tr>
</tbody>
</table>

Common Hardware Modules

<table>
<thead>
<tr>
<th>Video Module</th>
<th>Keypad/Touchscreen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• General Purpose Video I/F</td>
<td></td>
</tr>
<tr>
<td>• LVDS</td>
<td></td>
</tr>
<tr>
<td>• RGB Analog</td>
<td></td>
</tr>
<tr>
<td>• Separate Hsync & Vsync</td>
<td></td>
</tr>
<tr>
<td>• Composite TTL Sync</td>
<td></td>
</tr>
<tr>
<td>• Sync on Green (RS-170)</td>
<td></td>
</tr>
<tr>
<td>• NTSC/PAL/SECAM</td>
<td></td>
</tr>
<tr>
<td>• Frame rate/Scan converter/Scale</td>
<td></td>
</tr>
<tr>
<td>• Standard LVDS output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Supply Module</th>
<th>Video Multiplexor</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mil-Std-1275 compliant input</td>
<td></td>
</tr>
<tr>
<td>• Heater Power @ 150W</td>
<td></td>
</tr>
</tbody>
</table>

Optional Modules

<table>
<thead>
<tr>
<th>AC-DC Power</th>
<th>Single Board Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cPCI+PMC</td>
</tr>
</tbody>
</table>
Display Architecture - Exploded View

- Display Head
- Video Module
- Power Module
Display Head - Exploded View

- Touchscreen
- AMLCD
- Backlight
Common Display Characteristics

♦ Optical Characteristics
 • Brightness \(>250 \text{ fL (856 cd/m}^2\)\)
 • Brightness control \(<0.5\) to \(>250 \text{ fL (1.7 to 856 cd/m}^2\)\)
 • Contrast Ratio \(>10:1 \) @1000 fc (10,764 lux)

♦ Environmental Specifications
 • Operating Temperature -40°C to +60°C
 • Storage Temperature -55°C to +85°C
 • Relative Humidity up to 100%
 • Shock MIL-STD-810E, Method 516.4, Procedure 1, Functional Shock
 • Vibration MIL-STD-810E, Method 514.4, Category 8, Ground Mobile
 • EMI/EMC MIL-STD-461D
 • Nuclear hardened design utilising a Nuclear Event Detector

♦ MTBF \(>7500\) hours at 60 °C MIL-STD-217(AIC)
8.4” IVD Characteristics

Optical Characteristics
- Display Area 6.73” (170.9 mm) x 5.10” (129.6 mm)
- Matrix 640 x 480 (VGA)
- Pixel Size 0.267 mm x 0.27 mm (94dpi)
- 18 bit color (262144 colors)
- Viewing Angles:
 - Horizontal >50°
 - Vertical >45° up, 35° down

Physical Characteristics
- Height 7.62” (193.0 mm)
- Width 8.82” (223.5 mm)
- Depth 2.79” (70.9 mm)
- Weight 6.0 lbs max (2.73 kg)
13.0” IVD Characteristics

Optical Characteristics
- Display Area 10.13” (257.3 mm) x 8.14” (206.8 mm)
- Matrix 1280 x 1024 (SXGA)
- Pixel Size 0.20 mm x 0.20 mm (127 dpi)
- 24 bit color (16.8 million colors)
- Viewing Angles:
 - Horizontal >100°
 - Vertical > 20° up, 25° down

Physical Characteristics
- Height 11.11” (282.2 mm)
- Width 13.83” (351.3 mm)
- Depth 3.00 (76.2 mm)
- Weight 15 lbs max (6.8 kg)
10.4” MFD (Landscape) Characteristics

Optical Characteristics

- Display Area 8.31” (211.2 mm) x 6.24” (158.4 mm)
- Matrix 800 x 600 (SVGA)
- Pixel Size 0.26 mm x 0.26 mm (98dpi)
- 18 bit colour (262144 colours)
- Viewing Angles:
 - Horizontal >100°
 - Vertical > 45° up, 20° down

Physical Characteristics

- Height 9.00” (228.6 mm)
- Width 11.50” (292.1 mm)
- Depth 3.00” (76.2 mm)
- Weight 11 lbs max (5.0 kg)
10.4” MFD (Portrait) Characteristics

Optical Characteristics

- Display Area 6.24”(158.4 mm) x 8.31” (211.2 mm)
- Matrix 600 x 800 (SVGA)
- Pixel Size 0.26 mm x 0.26 mm (98dpi)
- 18 bit colour (262144 colours)
- Viewing Angles:
 - Horizontal > 45° left, 20° right
 - Vertical >100°
Conclusions

- AMLCD remains the technology of choice for AFV Applications (for now ...)
- Modular architecture successfully met the TACOM requirement
 - Minimized development & lifecycle cost
 - Minimized obsolescence risk
 - Maximized flexibility

Greg Downs
phone (613) 596-7256
fax (613) 596-7697
e-mail: greg.downs@cdott.com