Crewman’s Associate Advanced Technology Demonstrator Briefing

Melissa Karjala

Vetronics Technology Area

U.S. Army Tank-Automotive RD&E Center (TARDEC)
Vetronics Technology Area
(AMSTA-TR-R, Mailstop 264)
Warren, MI 48397-5000

30-31 May 2001

UNCLASSIFIED

Tank-automotive & Armaments COMmand
<table>
<thead>
<tr>
<th>Title and Subtitle</th>
<th>Crewmans Associate Advanced Technology Demonstrator Briefing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Karjala, Melissa</td>
</tr>
<tr>
<td>Performing Organization Name(s) and Address(es)</td>
<td>U.S. Army Tank-Automotive RD&E Center (TARDEC) Vetronics Technology Area (AMSTA-TR-R, Mailstop 264) Warren, MI 48397-5000</td>
</tr>
<tr>
<td>Sponsoring/Monitoring Agency Name(s) and Address(es)</td>
<td>NDIA (National Defense Industrial Association) 211 Wilson BLvd., Ste. 400 Arlington, VA 22201-3061</td>
</tr>
<tr>
<td>Distribution/Availability Statement</td>
<td>Approved for public release, distribution unlimited</td>
</tr>
<tr>
<td>Supplementary Notes</td>
<td>Proceedings from 2001 Vehicle Technologies Symposium - Intelligent Systems for the Objective Force 29-31 May 2001 Sponsored by NDIA</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>Subject Terms</td>
<td></td>
</tr>
<tr>
<td>Report Classification</td>
<td>unclassified</td>
</tr>
<tr>
<td>Classification of Abstract</td>
<td>unclassified</td>
</tr>
<tr>
<td>Number of Pages</td>
<td>18</td>
</tr>
</tbody>
</table>
TARDEC Crew Reduction Efforts

Evolving Knowledge and Technology “Baseline”

FY93
- Crewman’s Associate Simulation
- System Integration (Lab)
- Baseline Developed

FY96
- Vehicle Tech Demo #1 (VTT)

FY98
- Vehicle Tech Demo #2 (CAT ATD)

FY00
- Two Man Transition
 Future Combat System

FY04
FY06
Crewman’s Associate ATD

- The development of a crew station soldier-machine interface

- The integration of advanced technologies, such as aided target acquisition, integrated defense, combat ID, digital messaging, driver’s aids, etc.

- Two platforms (time frames) addressed:
 - Potential M1A2 (SEP) + (1998 technology)
 - Future MBT (2005 technology)
Motivation

- Weapon Status
- Intra-Vehicle Communication
- Map Information
- Battlefield Digitization
- Battlefield Communications
- Target Acquisition
- Monitor Instruments
- Crew Reduction
- Target Tracking
- Obstacle Avoidance
- Weapon Control
- Rough Terrain Maneuvering
- Advanced Sensors
- Day/Night & All Weather Operation

Motivation for crew reduction
Objectives

Increase Main Battle Tank operational effectiveness by:

- Decreasing engagement timelines
- Decreasing time required to create and send digital C2 reports
- Improving operations on the move
- Improving situational awareness
- Improving night operations
- Providing a User-friendly interface to the digital battlefield of Force XXI
- Improving CONOPs
- Reducing maneuver damage
CTT Design Methodology

Individual Steps or Complete Design Process Performed to Meet Project Goals
Crewstation Design Principles (Primary)

- Hands on primary controller
- All critical information in the primary vision zone
- One step functions
- Consistent Mental Model
2005 Crewstation

- 3-D auditory alerts
- Panoramic Display (PD) with side window displays (not shown)

- 3 identical Multi-Function Displays (MFDs)
- Programmable Display Pushbuttons (PDPs) access menus without consuming display space

- Voice recognition for limited C2 tasks
- Radio and HA switches

- Shared center console
- Yoke-type driving controller with targeting switches

- Traditional pedals for acceleration, braking
- Alphanumeric keypad

- Shared center console
- 3-D auditory alerts
- Panoramic Display (PD) with side window displays (not shown)

- 3 identical Multi-Function Displays (MFDs)
- Programmable Display Pushbuttons (PDPs) access menus without consuming display space

- Voice recognition for limited C2 tasks
- Radio and HA switches

- Shared center console
- Yoke-type driving controller with targeting switches

- Traditional pedals for acceleration, braking
- Alphanumeric keypad
1998 Crewstation

3-D auditory alerts

Communications Panel

Warning Screen

3 identical Multi-Function Displays (MFDs)

Programmable Display Pushbuttons (PDPs) access menus without consuming display space

Removeable keyboard

Center-munted multi-function controller

HA Panel

Autoloader
1998 Driving Station

- Driver’s Navigational Display (DND)
- WACA
- Keyboard
- Gear Select
- Driver’s Vision Enhancer (DVE)
- Training Mode Select
- Master Power
- Personal Data Cartridge Reader
Crewstation Displays

Panoramic Display

- 180 degree indirect vision to the crew
- Inherent protection from directed energy weapons
- Seamless, closed hatch vision
- Common visual environment
- Located within the Primary Vision Zone.
Crewstation Displays

Multifunction Displays

- Display information from different subsystems: targeting, driving, command and control, tactical map, etc.

- Buttons on the top of the MFD select the displays functionality.

- Located within the Primary Vision Zone.

- Provide consistent mental model.
3D Audio Display
• A User-friendly interface to the digital battlefield of Force XXI
• A 65% decrease in the workload required to send C2 messages
• Improved situational awareness
• Improved operations on the move
• Improved night operations
• Reduced maneuver damage
• Improved CONOPs
Test Results
(Non-experimental analysis)

- Operations on the move have been improved due to:
 1) decreased steps required to execute tasks
 2) elimination of dragging the cursor
 3) all critical task on yoke

- The crewmen now have a simplified, User-friendly interface to the digitized battlefield of Force XXI.

- The ability to effectively perform continuous operations has been improved due to the decreased fatigue associated with operating this crew station.
Test Results
(Subjective Comments)

- The electronic map provided the most significant performance enhancement.

- The ability for each crewman to tailor his individual displays to suit his preferences was helpful.

- Digital C2 interface had a positive impact on performance, being easier and faster than M1A2.

- Aided target acquisition had a positive impact on performance.

- Combined interfaces and technologies provided the ability to rapidly convey the information required to control forces at the platoon and company level.
• Update Crewman’s Associate
 Crew Station Design
 - Lessons Learned
 - Technology Advances
 - Test Bed Costs
 - Test Bed Space
• Integrate into Bradley A0 Hull
 - Two Crew Stations
 - Supporting Technology
 - Supporting Subsystems

• Conduct Test Bed Workload
 Experiments and Technology
 Demonstrations in the Field
 - Side-By-Side
 - In-Line