Award Number: DAMD17-98-1-8229

TITLE: Nuclear Patch Clamping for Determining Ion Channel Activities of Bcl Apoptosis Proteins in Endoplasmic Reticulum and Nuclear Envelope Intracellular Membrane

PRINCIPAL INVESTIGATOR: James K. Foskett, Ph.D.

CONTRACTING ORGANIZATION: University of Pennsylvania
Philadelphia, Pennsylvania 19104-3246

REPORT DATE: July 2000

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Nuclear Patch Clamping for Determining Ion Channel Activities of Bcl Apoptosis Proteins in Endoplasmic Reticulum and Nuclear Envelope Intracellular Membrane

6. AUTHOR(S)
James K. Foskett, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Pennsylvania
Philadelphia, Pennsylvania 19104-3246

E-MAIL:
foskett@mail.med.upenn.edu

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

13. ABSTRACT (Maximum 200 Words)
Apoptosis plays a critical role in growth and development of the mammary gland in normal and pathologic states. An important regulator of apoptosis is the bcl-2 oncogene, whose expression prevents apoptosis and is associated with poor responses to cancer therapies. Other bcl-2-related genes have been identified, defining a gene family with anti- and pro-apoptotic members. The molecular mechanisms which link bcl proteins to apoptosis are unclear. bcl-XL forms ion channels in artificial membranes. To determine whether these proteins form or regulate ion channels in the endoplasmic reticulum in vivo, we have employed a novel Xenopus oocyte nuclear envelope patch-clamp technique. During the second funding period, we have developed a novel mammalian expression system for patch clamp electrophysiology of recombinant endoplasmic reticulum localized membrane proteins. The system has been validated, and it will now be possible to use it for expression of bcl-related proteins. We discovered that caspase 3, a key intermediate in apoptosis pathways, cleaves the inositol triphosphate receptor calcium channel in the endoplasmic reticulum, and causes it to become spontaneously activated, leaking calcium into the cytoplasm. This observation may provide a molecular insight into disruption of calcium homeostasis observed in apoptosis. We will determine whether other caspases have similar effects. In addition, we will examine the cellular consequences of this effect, and whether its modulation affects the time-course or extent of apoptosis.

14. SUBJECT TERMS
Breast Cancer apoptosis ion channels
FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

X In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and use of Laboratory Animals of the Institute of Laboratory Resources, national Research Council (NIH Publication No. 86-23, Revised 1985).

N/A For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

N/A In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

N/A In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

N/A In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Cover</td>
<td>1</td>
</tr>
<tr>
<td>SF 298</td>
<td>2</td>
</tr>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>8</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
</tr>
</tbody>
</table>
INTRODUCTION

Apoptosis, the morphological and biochemical manifestation of programmed cell death, plays a critical role in maintaining homeostasis of tissue and organ cell number, and is involved in differentiation, growth and development (1-4). Mammary gland physiology is strongly influenced by apoptosis in both normal and pathologic states. Involution of the lactating gland is due to apoptosis of differentiated epithelial cells, and an emerging hypothesis is that dysfunction of the apoptotic pathways in mammary gland is significantly involved in the causes and progression of breast cancer (5-9). Thus, definition of the biochemical pathways involved in mammary gland apoptosis is an important goal in breast cancer research. An important regulator of apoptosis is the bcl-2 oncogene (2,5). Bcl-2 expression prevents apoptosis in several cell types and is associated with a poor prognosis in response to various cancer therapies in patients. Bcl-2 is normally expressed at high levels in some tissues, including mammary gland. More recently, other bcl-2-related genes have been identified, defining a gene family. Like bcl-2, some are anti-apoptotic, whereas others promote apoptosis. It is likely that the pro:anti-apoptotic expression level ratio regulates sensitivity to apoptosis. Breast cancer is associated with an altered ratio, which correlates with failure to respond to therapy and poor survival (7-9). Thus, many breast cancers may be diseases of apoptosis. The molecular mechanisms which link bcl proteins to apoptosis are undefined, although bcl proteins act at a critical juncture which integrates different death signals and activates a single death pathway. Intracellular [Ca\(^{2+}\)] and intracellular Ca\(^{2+}\) stores may be involved in regulating apoptosis, and expression of bcl-2 has been linked to alterations in Ca\(^{2+}\) signaling in the handling of Ca\(^{2+}\) by intracellular stores, including the endoplasmic reticulum (ER) and mitochondria (4,10-13). The bcl proteins are localized to the outer mitochondrial membrane, ER membrane and outer membrane of the nuclear envelope. Recent studies suggest that bcl-related proteins are closely associated with permeability pathways in membranes. Cytochrome c (CytC) release from mitochondria in vitro could be blocked by bcl-2. In addition, bcl-xL was demonstrated to form ion channels in artificial membranes. These data suggest that bcl proteins can form and/or regulate channels, perhaps for organic (e.g. CytC) and well as for inorganic (e.g. Ca\(^{2+}\)) molecules. Nevertheless, the physiological relevance of these data are questionable without measurements of channel activity in the membranes in which these proteins normally reside in cells. This has not been possible because the intracellular location of the membranes has prevented use of rigorous electrophysiological approaches, in particular the single-channel patch clamp technique. My laboratory recently developed novel technology for measuring ER- and nuclear envelope-localized ion channel activities (14,15). We proposed to employ this approach, together with recombinant bcl proteins, stably-expressing cell lines and expression systems, in a novel series of experiments designed to determine whether bcl-related proteins form ion channels in the ER and nuclear envelope, and whether these proteins regulate the activities and regulation of other permeability pathways which exist in these membranes. The specific aims are to: 1. Determine whether recombinant bcl-related proteins can form functional ion channels in the outer membrane of the nuclear envelope; 2. Determine whether expression of bcl-related proteins confers novel ion channel activities in the outer nuclear membrane; 3. Determine the role of bcl-like proteins in influencing the activities of resident ion channels in the nuclear envelope and the permeability of the nuclear pore. These studies may provide direct evidence for a biochemical function of proteins critically involved in apoptosis, mammary gland biology and breast cancer.

BODY

Accomplishments during the second year

We proposed to undertake 3 specific aims during the 3 year granting period:

1. Determine whether recombinant bcl-related proteins can form functional ion channels in the outer membrane of the nuclear envelope.
2. Determine whether expression of bcl-related proteins confers novel ion channel activities in the outer nuclear membrane.

3. Determine the role of bcl-like proteins in influencing the activities of resident ion channels in the nuclear envelope and the permeability of the nuclear pore.

Our efforts during the first year had as their focus specific aim 2, with some attention also directed to specific aim 3. As proposed, we initiated experiments to determine whether heterologous expression of bcl-related proteins would result in novel ion channel activities in the outer membrane of the nuclear envelope. Our focus thus far has been on the *Xenopus* oocyte system, because of our familiarity with the procedures involved in the isolation of intact nuclei, patch clamp electrophysiology of the outer membrane, and expression of recombinant ion channels in this system. Because the *Xenopus* oocyte can express recombinant proteins, we reasoned that bcl-related proteins could be expressed and localized to the nuclear envelope, as in mammalian cells, and that patch clamp of the isolated nucleus could provide an opportunity to record ion channel activities which they might possess. Nevertheless, we did not detect novel channel activities, as we reported in our previous progress statement. We therefore refined our focus in two areas.

a. **Development of a mammalian system for nuclear patch clamping.** First, we have considered that the oocyte expression system may not be optimal for the expression of recombinant mammalian proteins. We have therefore spent a considerable amount of effort developing a comparable mammalian expression system that would enable patch clamp electrophysiology to be performed on isolated nuclei. To develop this system, we used Cos7 cells that had been transiently transfected with the rat type 1 inositol trisphosphate receptor. The rationale here is that we study the ion channel properties of the InsP$_3$R by patch clamp electrophysiology of the *Xenopus* nucleus, so we are familiar with its properties, and are able to evaluate the development of the mammalian system. We established protocols for isolating nuclei from transfected cells. Western blot analysis indicated that the Cos cells expressed only low levels of the endogenous InsP$_3$R, whereas very high levels of expression were observed following transfection. The nuclear preparation was plated onto a glass coverslip on the stage of an inverted microscope. Selected nuclei, from extraneous membranes with an intact nuclear envelope could be identified by video microscopy. We have been able to routinely attain giga-ohm electrical seals on the nuclear membrane, validating the technical approach. Using transfected cells, we have been able to detect the activities of recombinant InsP$_3$R channels, including wild-type and mutant constructs. Therefore, we have now established a mammalian cell system for proceeding with our work with the Bcl proteins. Two publications have resulted from this effort.

b. Second, we have also begun to now consider other molecular components of apoptosis pathways. Specifically, because intracellular [Ca$^{2+}$] and intracellular Ca$^{2+}$ stores may be involved in regulating apoptosis, and the InsP$_3$R has been recently shown to be a substrate of caspase 3 (16), we have examined the effects of caspase 3 on InsP$_3$R channel activity. Caspase 3 is a key executioner caspase involved in apoptosis pathways (17). The type 1 InsP$_3$ receptor contains one consensus site for cleavage by caspase 3, and it was recently shown to be a substrate for caspase 3 (16). We have hypothesized that cleavage by caspase 3 of the InsP$_3$R may link the apoptosis pathway to Ca$^{2+}$ signalling. Therefore, we have examined the effects of purified recombinant caspase 3 on the ion channel properties of the *Xenopus* type 1 InsP$_3$R. Caspase 3 was included in the pipette solution. Control patches were performed with the pipette solution lacking the enzyme, or containing a specific caspase 3 inhibitor peptide. We have found that caspase 3 activates the InsP$_3$R channel (Fig. 1,2). This effect does not require InsP$_3$, because inclusion of the InsP$_3$ competitive inhibitor heparin had no effect. The channels in the presence of heparin were not observed in control patches, or in patches with pipettes containing the caspase 3 inhibitor. This result represents the first observation of channel activity of the InsP$_3$R that does not require InsP$_3$.
ligand. It suggests that activation of caspase 3 during apoptosis could induce a spontaneous Ca^{2+}
leak into the cytoplasm from the endoplasmic reticulum.

Fig. 1. Single channel current traces of *Xenopus* InP_{3}R type 1 activated by recombinant
caspase 3 in the absence (top trace) or presence (bottom trace) of the InsP_{3} competitive
inhibitor heparin, or by InsP_{3} (third trace). Inactive caspase is without effect (last trace)

(The number of experiments used to calculate P_{o} is tabulated next to the bars)

low [Ca^{2+}]_{i} (66 nM)

optimal [Ca^{2+}]_{i} (5 μM)

high [Ca^{2+}]_{i} (0.3 mM)

(Tabulated next to the bars are: [number of experiments with InsP_{3}R channel activity] / [total number of experiments performed])

Fig. 2. Summary of the channel open probability (P_{o}) or probability of detecting active
channels in patches of membrane (P_{d}) under various conditions of cytoplasmic free
Ca^{2+} concentration [Ca^{2+}]_{i} in the presence or absence of active or inactivated caspase 3 with or
without InsP_{3} or heparin.
Proposed studies during the third year

We are encouraged that we have been able to develop a mammalian system for the expression of recombinant endoplasmic reticulum-associated membrane proteins and subsequently isolate their nuclei and achieve giga-ohm seals. We will now utilize this system, employing transient transfection of Bcl-related cDNAs as we originally proposed in our application. We will also begin to undertake experiments outlined in Aim 3, again utilizing the new mammalian cell system with co-transfection of InsP₃R cDNAs.

We will continue to pursue our observations related to the activation of Ca²⁺ release by caspase 3 to ensure productivity in this funding cycle while the bcl work progresses and develops into a productive approach. Specifically, we will utilize recombinant mammalian InsP₃R to ask whether a similar effect occurs with the mammalian channels. This is particularly important, because only the type 1 isoform has the consensus caspase site, yet mammary epithelial cells may express other isoforms as well. Identification of isoform specificity will enable determination of important sequences in the InsP₃R responsible for the caspase-induced leak. This knowledge may provide insights into potential therapeutic targets. We will also examine the effects of other caspases to identify the specificity from the protease perspective.

KEY RESEARCH ACCOMPLISHMENTS during the second granting period.

- Development of a mammalian cell system for expression of ER-localized recombinant proteins and patch clamp electrophysiology of their isolated nuclei.
- Identification of an effect of caspase-3 mediated cleavage of the InsP₃R on its ion channel activity, inducing spontaneous Ca²⁺ channel activity.

REPORTABLE OUTCOMES

REFERENCES

