EXPLORING A THEORY DESCRIBING THE PHYSICS OF INFORMATION SYSTEMS, INFORMATION PHYSICS BIBLIOGRAPHY

Zetetix

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K177

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

20010713 055
This report has been reviewed by the Air Force Research Laboratory, Information Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

AFRL-IF-RS-TR-2001-76 Vol. II (of four) has been reviewed and is approved for publication.

APPROVED:

DEBORAH A. CERINO
Project Engineer

FOR THE DIRECTOR:

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned.
EXPLORING A THEORY DESCRIBING THE PHYSICS OF INFORMATION SYSTEMS, INFORMATION PHYSICS BIBLIOGRAPHY

Scott Young Harmon

Contractor: Zetetix
Contract Number: F30602-00-C-0104
Effective Date of Contract: 06 April 2000
Contract Expiration Date: 05 October 2000
Short Title of Work: Exploring a Theory Describing the Physics of Information Systems, Information Physics Bibliography
Period of Work Covered: Apr 00 - Oct 00
Principal Investigator: Scott Young Harmon
 Phone: (818) 991-0480
AFRL Project Engineer: Deborah A. Cerino
 Phone: (315) 330-1445

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research was supported by the Defense Advanced Research Projects Agency of the Department of Defense and was monitored by Deborah A. Cerino, AFRL/IFTD, 525 Brooks Road, Rome, NY.
Abstract

This project accomplished all of its objectives: document a theory of information physics, conduct a workshop on planning experiments to test this theory, and design experiments that validate this theory. Information physics proposes quantitative relationships between observable information flows and changes in the content information systems maintain. This theory explains all flows within information systems as either diffusive or force-driven. The forces driving information flows arise from the existence of goal content. The workshop participants discussed various theories and considered experiments that characterize the macroscopic phenomena underlying complex information system behavior. These participants identified experimental opportunities that exploit existing databases, execute simulations and conduct traditional controlled experiments. They recommended that focused experiments to test theories explaining information system phenomena were feasible today. The experiment plan builds upon the workshop's result and proposes experiments that measure information device energy dissipation, test the independence of symbol execution work from device efficiency, measure information diffusion rates in information systems, and measure force-driven information flows. These experiments are both technically and programmatically feasible. When validated, the proposed theory can guide designers to reliably build more effective, secure and predictable information systems.

Subject Terms

Information Physics, Physics of Computation, Information Theory, Thermodynamics

<table>
<thead>
<tr>
<th>13. Abstract (Maximum 200 words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This project accomplished all of its objectives: document a theory of information physics, conduct a workshop on planning experiments to test this theory, and design experiments that validate this theory. Information physics proposes quantitative relationships between observable information flows and changes in the content information systems maintain. This theory explains all flows within information systems as either diffusive or force-driven. The forces driving information flows arise from the existence of goal content. The workshop participants discussed various theories and considered experiments that characterize the macroscopic phenomena underlying complex information system behavior. These participants identified experimental opportunities that exploit existing databases, execute simulations and conduct traditional controlled experiments. They recommended that focused experiments to test theories explaining information system phenomena were feasible today. The experiment plan builds upon the workshop's result and proposes experiments that measure information device energy dissipation, test the independence of symbol execution work from device efficiency, measure information diffusion rates in information systems, and measure force-driven information flows. These experiments are both technically and programmatically feasible. When validated, the proposed theory can guide designers to reliably build more effective, secure and predictable information systems.</td>
</tr>
</tbody>
</table>
The bibliography presented below was collected to explore the prior work related to information physics. This bibliography includes references from the fields of complexity theory, the theory of computation, computational complexity, the physics of computation, thermodynamics, information theory, reversible computation, and quantum computation among others. Regrettably, the coverage of these fields is largely incomplete, especially in the areas of complexity theory, information theory and quantum computation, all of which contain vast bodies of knowledge in themselves. However, the purpose of this bibliography was not to provide complete coverage of all possible sources of information but more to collect possible pointers into the fields that contain knowledge relevant to information physics. Particular effort was spent in collecting the references related to the physics of computation so any bias resides in that direction.

As with all bibliographies of dynamic fields of study, this one represents a snapshot of the field as of October 2000. Many of the entries contained herein are incomplete, some more than others. The contents of this bibliography reside in a bibliographic database and will be updated as periodically as possible. The author invites comments, corrections and additions to this bibliography and may be contacted through the information presented on the cover page.

(142) A. Burks, Essays on Cellular Automata, University of Illinois Press, Urbana, IL, USA, 1970.

(188) C. Cooper, "Complexity in C3I Systems," Complexity International, 1, 1993, pp 7-.

(201) J.P. Crutchfield, Noisy Chaos, Ph.D. Dissertation, University of California, 1983.

(293) R.P. Feynman, Quantum Mechanical Computers," Foundations of Physics, 16 (6), 1986, pp 507-531.

(312) C.A. Fuchs, Distinguishability and Accessible Information in Quantum Theory, Ph.D., University of New Mexico, Albuquerque, NM, USA, 1996.

(398) J. JaJa & V.K.P. Kumar, "Information Transfer in Distributed Computing with Applications to VLSI," J. ACM, 1984, pp 150-162.

(429) S.C. Kak, "Can We Define Levels of Artificial Intelligence?," J. of Intelligent Systems, 6 (2), 1996, pp 133-144.

(430) S.C. Kak, "Quantum Information in a Distributed Apparatus," Foundations of Physics, 28 (6), 1998, pp 1005-1012.

29

(573) E. Lubkin, "Keeping the Entropy of Measurement: Szilard Revisited," Int. J. of Theoretical Physics, 26, 1987, pp 523-.

(575) J. Machta, "The Computational Complexity of Pattern Formation," J. of Statistical Physics, 70, 1993, pp 949-.

(616) R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman & L. Troyansky, "Phase Transition and Search Cost in the (2 + p) - SAT Problem," Proc. 4th Workshop on

(652) P. Patra, Approaches to Design of Circuits for Low-Power Computation, Ph.D., University of Texas at Austin, Austin, TX, USA, 1995.

(710) A. Schenkel, J. Zhang & Y.-C. Zhang, "Long-Range Correlations in Human Writings," Fractals, 1, 1993, pp 47-57.

45

(826) P.M.B. Vitanyi, "A Modest Proposal for Communication Costs in Multicomputers," *Concurrent Computations, Algorithms, Architecture, and*

(841) A. Wehrl, "General Properties of Entropy," Reviews of Modern Physics, 50, 1978, pp 221-.

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science and Technology to meet Air Force unique requirements for Information Dominance and its transition to aerospace systems to meet Air Force needs.