Launch Support for the Skipper Satellite

Peter Erdman

University of Pittsburgh; Pittsburgh, PA 15260

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Support was provided for a person to be at the Utah State Joint Operations Control Center (JOCC) during the flight of the Skipper satellite, and to develop software needed to display the spectrometers' data while the satellite is in orbit.

A large amount of engineering and scientific data was to be collected during the flight of the Skipper satellite. These data needed to be reviewed in real time in order to evaluate the health of the satellite's subsystems and then to determine the next most reasonable step in the adaptive orbit strategy that was at the heart of the mission's design. In order to accomplish these ends, the scientific data needed to be disseminated to the members of the science team in absolute units for evaluation and interpretation. These tasks will required the development of specialized software for the conversion of the raw telemetry bit stream into calibrated data for graphic display in engineering units.
Synopsis of Work:

The University of Pittsburgh, as a member of the science team, and as the designer and fabricator of the two scanning spectrometers aboard the Skipper satellite, received support for a person to be at the Utah State JOCC during the flight of Skipper, and to develop software needed to display the spectrometers’ data while the satellite is in orbit.

A large amount of engineering and scientific data was to be collected during the flight of the Skipper satellite. These data needed to be reviewed in real time in order to evaluate the health of the satellite’s subsystems and then to determine the next most reasonable step in the adaptive orbit strategy that was at the heart of the mission’s design. In order to accomplish these ends, the scientific data needed to be disseminated to the members of the science team in absolute units for evaluation and interpretation. These tasks required the full time attention of a person expert with each instrument to insure both the proper functioning of the experiments and to apply the correct calibration factors to the raw telemetry bit stream so that selected data may be viewed in engineering units.

The understanding with the Russian science team members was to furnish them with the raw data and the instrument calibration data. However, without expert knowledge of the instrumentation itself, these data are nearly useless and perhaps even misleading. The proper application of the calibration data and interpretation of the results is critical for the retrieval of any science—and possibly even critical to convincing the Russian team members that they have received the complete and proper data sets.

Even the simplest of data is not easily interpreted without rather expert knowledge of the instrumentation that acquired it. In the case of the scanning spectrometers, there are a total of 25 different intensity calibrations that must be applied during the course of the flight due to the different operating modes. These intensity calibrations are in addition to the five different wavelength calibrations. All of this calibration data would be in a preliminary state at the time of the launch since it must be constructed from many dozens of laboratory data runs, some of which may not be so simply interpreted due to various problems which were not recognized at the time the data was taken.

The amount of data that must be handled is considerable—each pass, in fact, will have as much data as the entire Bowshock II flight. From this mass of data, selected regions must be extracted and viewed in detail, nearly in real time if the adaptive orbit strategy is to be useful. The software to accomplish this must be completed before the flight.

A widget-driven graphical interface was designed to accomplish these tasks using the high-level language "IDL" from Research Support Instruments. Over 1500 lines of code divided into 22 subroutines was written. This allowed the display and rapid manipulation of three data channels at a time from either of the Skipper spectrometers. The software project was a complete success. Simulations were run at the JOCC during payload integration that demonstrated the ability to rapidly extract the spectrometer data from the raw telemetry bit stream, review the spectrometer data, apply calibration factors, display the data in engineering units, subtract backgrounds, and determine the next course of action. The software was generic enough that it was extended past the requirements for the spectrometer alone, and had the additional ability to display the Utah State photometer data at the same time.

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited
The following is included merely as a sample of the main widget-handler interface that was written for the project. The full code with all the subroutines is many times this length.

; BEGIN MAIN1 Skipper data, quick-look, widget interface event handler

PRO MAIN1 Event, Event
common sharewignames, buttons, dependent1, fields, selmenuid, ptmenuid, zmmenuid,
 pmenuid ;, FieldVal362, field46
 common fileparameters, filename1, column, row, type
 common variables, data, numwindows, yranges, titles, posx, posy, selymax, calibstart,
 calibend, dataid, metadatx, metadatay, plothalf, semilog

 WIDGET_CONTROL, Event.Id, GET_UVALUE=Ev
 CASE EV OF
 'PDMENU17': PDMENU17_Event, Event
 ; Event for select file menu
 'PDMENU21': PDMENU21_Event, Event
 ; Event for lin/log display menu
 ;
 'PDMENU32': PDMENU32_Event, Event
 ; Event for PDMENU32 (plot menu)
 'PDMENU34': PDMENU34_Event, Event
 ; Event for pdmenu34 (zoom menu)
 'PDMENU40': PDMENU40_Event, Event
 ; Event for pdmenu40 (print menu)
 ;
 ; 'BUTTON1': BEGIN
 button, now part of select file
 ; readjocc ;, column, row, type
 ; print, 'Events for read file button'
 ; END
 'BUTTON2': BEGIN
 Print, 'Event for wshow'
 for i=1, numwindows do wshow, i
 ; show the number of windows indicated by the variable determined in the file selection
 END
 'BUTTON3': BEGIN
 Print, 'Event for quit'
 ; print, 'active window just before quit = ', 'd.window
 for i=1, numwindows+1 do wdeleten, i
 ; close all windows
 widget_control, /reset
 ; kill all widgets
 END
 'BUTTON4': BEGIN
 rezoom
 Print, 'Event for rezoom'
 END
 'BUTTON5': BEGIN
 coheresum
 Print, 'Event for co-sum'
 END
 'BUTTON6': BEGIN
 see=widget_message('ENTER ENCRYPTION KEYWORD', title='Calibration Privileges', /error)
 ; /error type message gives "stop" sign
 PRINT, 'Event for calib'
 END
 'BUTTON7': BEGIN
 ; plotter button replaced by printer pdmenu
 ; plothp
 ; PRINT, 'Event for plotting'
 ; END
 ENDCASE
 END
; END MAIN1

PRO PDMENU17_Event, Event
common sharewidgetnames, buttons, dependent1, fields, selmenuid, ptnmenuid, zmmenuid, ptnmenuid
common fileparameters, filenamel, column, row, type
common variables, data, numwindows, yranges, titles, posx, posy, selymax, calibstart,
calibend, dataid, metadata, metatdata, plothalf, semilog
; yranges=Ionarr(10) doesn't work to set data type to long integer!

CASE Event.Value OF
'select file.vuv spect.spectra': BEGIN
whichfil=*'+vuv'
whichit='Select Pdat Generated VUV spectral data file'
column=6
row= 50000
;type=1 for spectrometer data with fiducials, 0 without (i.e.
diagnostic data)
; type 2 is "other" data (e.g. photometers)
numwindows=2
yranges=[65000, 5000, 10000, 1000, 1000, 10]
 titles= ['0', 'VUV Detector #1 Digital', 'VUV Detector #2 Digital', 'VUV Detector #1
 Analog', 'VUV Detector #2 Analog', '0']
 widget control, ptnmenuid(1), sensitive=1 , set_value='digital data'
 ; set names
of "plot" buttons
 widget control, ptnmenuid(2), sensitive=1 , set_value='analog data'
 findfile, whichfil, whichit
END

'select file.vuv spect.diagnost1': BEGIN
whichfil='*.vdl'
whichit='Select Pdat Generated VUV diagnostic1 data file'
column=8
row= 10000
;type=0 for data with fiducials, 0 without (i.e. diagnostic data)
; type 2 is "other" data (e.g. photometers)
numwindows=3
yranges=[5, 5, 5, 5, 5, 5]
titles=['0', 'VUV -28', 'VUV +40', 'VUV +15', 'VUV -15', 'VUV +5', 'VUV PS Temp']
 widget control, ptnmenuid(1), sensitive=1 , set_value='vuv pwr sup a'
 ; set names
of "plot" buttons
 widget control, ptnmenuid(2), sensitive=1 , set_value='vuv pwr sup b'
 findfile, whichfil, whichit
PRINT, 'Event for select file.vuv spect.diagnost1'
END

'select file.vuv spect.diagnost2': BEGIN
whichfil='*.vdl'
whichit='Select Pdat Generated VUV diagnostic2 data file'
column=8
row= 10000
;type=0 for data with fiducials, 0 without (i.e. diagnostic data)
numwindows=3
yranges=[5, 5, 5, 5, 5, 5]
titles=['0', 'VUV -28', 'vuv motor enab', 'VUV spec Temp', 'VUV HVI1', 'VUV HVI2', 'VUV
 +38']
 widget control, ptnmenuid(1), sensitive=1 , set_value='vuv det diag a'
 ; set names
of "plot" buttons
 widget control, ptnmenuid(2), sensitive=1 , set_value='vuv det diag b'
 findfile, whichfil, whichit
PRINT, 'Event for select file.vuv spect.diagnost2'
END

'select file.uv spect.spectra': BEGIN
whichfil='*.uv'
whichit='Select Pdat Generated UV spectral data file'
column=8
row= 60000
;type=1 for spectrometer data with fiducials, 0 without (i.e.
diagnostic data)
; type 2 is "other" data (e.g. photometers)
numwindows=3
yranges=[65000, 20000, 20000, 10000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000]
titles=['0', 'UV Detector #1 Digital', 'UV Detector #2 Digital', 'UV Detector #3 Digital',
 'UV Detector #1 Analog', 'UV Detector #2 Analog', 'UV Detector #3 Analog', '0']
 widget control, ptnmenuid(1), sensitive=1 , set_value='digital data'
widget_control, ptnumid(2), sensitive=1, set_value='analog data'
findfile, whichfil, whichtit
END

'select file.uv spect.diagnost1': BEGIN
whichfil='*.ud1'
whichtit='Select Pdat Generated UV diagnostic1 data file'
column=8
row= 10000
type=0
numwindows=3
yranges=[5, 5, 5, 5, 5, 5]
titles=['0', 'UV +28', 'UV +40', 'UV +15', 'UV -15', 'UV +5', 'UV PS Temp']
widget_control, ptnumid(1), sensitive=1, set_value='uv power sup a'
widget_control, ptnumid(2), sensitive=1, set_value='uv power sup b'
findfile, whichfil, whichtit
PRINT, 'Event for select file.uv spect.diagnost1'
END

'select file.uv spect.diagnost2': BEGIN
whichfil='*.ud2'
whichtit='Select Pdat Generated UV diagnostic2 data file'
column=8
row= 10000
type=0
numwindows=3
yranges=[5, 5, 5, 5, 5, 5]
titles=['0', 'UV +28', 'UV motor enab', 'UV spec Temp', 'UV HV1', 'UV HV2', 'UV HV3']
widget_control, ptnumid(1), sensitive=1, set_value='uv det diag a'
widget_control, ptnumid(2), sensitive=1, set_value='uv det diag b'
findfile, whichfil, whichtit
PRINT, 'Event for select file.uv spect.diagnost2'
END

'select file.photometers.group1': BEGIN
whichfil='*.pg1'
whichtit='Select Pdat Generated Photometer Group #1 data file'
column=8
row= 30000
type=2
yranges=[65000, 200, 200, 200, 200, 100, 500]
titles=['0', 'photometer #1, 230nm, 51.1nm bandwidth, low sensitivity, radial looking', $"photometer #2, 230nm, 51.1nm bandwidth, high sensitivity, radial looking', $"photometer #3, 230nm, 51.1nm bandwidth, aft looking', $"photometer #4, 215nm, 6.4nm bandwidth, high sensitivity', $"photometer #5, 215nm, 6.4nm bandwidth, low sensitivity', $"photometer #6, 309nm, 11.3nm bandwidth, low sensitivity']
widget_control, ptnumid(1), sensitive=1, set_value='Group 1a'
widget_control, ptnumid(2), sensitive=1, set_value='Group 1b'
findfile, whichfil, whichtit
PRINT, 'Event for select file.photometers.group1'
END

'select file.photometers.group2': BEGIN
whichfil='*.pg2'
whichtit='Select Pdat Generated Photometer Group #2 data file'
column=8
row= 30000
type=2
yranges=[65000, 200, 200, 200, 200, 100, 500]
titles=['0', 'photometer #1, 230nm, 51.1nm bandwidth, low sensitivity, radial looking', $"photometer #2, 230nm, 51.1nm bandwidth, high sensitivity, radial looking', $"photometer #3, 230nm, 51.1nm bandwidth, aft looking', $"photometer #4, 215nm, 6.4nm bandwidth, high sensitivity', $"photometer #5, 215nm, 6.4nm bandwidth, low sensitivity', $"photometer #6, 309nm, 11.3nm bandwidth, low sensitivity']
widget_control, ptnumid(1), sensitive=1, set_value='Group 2a'
widget_control, ptnumid(2), sensitive=1, set_value='Group 2b'
findfile, whichfil, whichtit
PRINT, 'Event for select file.photometers.group2'
END
; fiducials in type 1 for co-summations (spectrometer
detector data), and full scale of 5v for type 0 (spectrometer diagnostic data)
numwindows=3
yranges=[65000, 200, 200, 200, 300, 500, 3000]
titles=['0', 'photometer #7, 309nm, 11.3nm bandwidth, high sensitivity', $
 'photometer #8, 280nm, 4.7nm bandwidth, radial looking', $
 'photometer #9, 230nm, 51.1nm bandwidth, low
sensitivity', $
 'photometer #10, 230nm, 51.1nm bandwidth, high
sensitivity', $
 'photometer #11, 540nm, 4.6nm bandwidth, radial looking', $
 'photometer #12, 520nm, 29nm bandwidth']
widget_control, ptmenuid(1), sensitive=1, set_value='Group 2a' $
 ;set names of
"plot" buttons
widget_control, ptmenuid(2), sensitive=1, set_value='Group 2b'
findfile, whichfill, whichtit
 PRINT, 'Event for select file.photometers.group2'
END

'select file.photometers.group3': BEGIN
whichfill='*.pg3'
whichtit='Select Pdat Generated Photometer Group #3 data file'
column=8
row=30000
type=2 $;just means it isn't a type 0 or 1 which each have special treatments
 ; present only spectrometer data of those types
; fiducials in type 1 for co-summations (spectrometer
detector data), and full scale of 5v for type 0 (spectrometer diagnostic data)
numwindows=3
yranges=[65000, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200]
titles=['0', 'photometer #13, 391nm, 5.1nm bandwidth', $
 'photometer #14, 385nm, 5.2nm bandwidth', $
 'photometer #15, 309nm, 11.3nm bandwidth, radial looking', $
 'photometer #16, 778nm, 6.0nm bandwidth, low sensitivity', $
 'photometer #17, 778nm, 6.0nm bandwidth, high
sensitivity', $
 'photometer #18, 709nm, 5.9nm bandwidth, radial looking']
widget_control, ptmenuid(1), sensitive=1, set_value='Group 3a' $;set names of
"plot" buttons
widget_control, ptmenuid(2), sensitive=1, set_value='Group 3b'
findfile, whichfill, whichtit
 PRINT, 'Event for select file.photometers.group3'
END

'select file.photometers.group4': BEGIN
whichfill='*.pg4'
whichtit='Select Pdat Generated Photometer Group #4 data file'
column=4
row=30000
type=2 $;just means it isn't a type 0 or 1 which each have special treatments
 ; present only spectrometer data of those types
; fiducials in type 1 for co-summations (spectrometer
detector data), and full scale of 5v for type 0 (spectrometer diagnostic data)
numwindows=1
yranges=[65000, 2000, 2000, 2000, 200, 100, 100, 100, 50]
titles=['0', 'photometer #19, 610nm, 5.5nm bandwidth', $
 'photometer #20, 540nm, 4.6nm bandwidth', $
 'photometer #21', 'photometer #22', 'photometer #23', 'photometer #24']$;"plot" buttons
widget_control, ptmenuid(1), sensitive=1, set_value='Group 4a' $;set names of
"plot" buttons
widget_control, ptmenuid(2), sensitive=1, set_value='Group 4b'
findfile, whichfill, whichtit
 PRINT, 'Event for select file.photometers.group4'
END
ENDCASE
END
END PDMENU17

; BEGIN PDMENU32
PRO PDMENU32_Event, Event
common sharewidgetnames, buttons, dependent1, fields, selmenuid, ptmenuid, zmmenuid, prmenuid
common fileparameters, filename1, column, row, type
common variables, data, numwindows, yranges, titles, posx, posy, selymax, calibstart, calibend, dataid, metadatax, metadatay, plothalf, semilog

CASE Event.Value OF
'plot.data a': BEGIN
plothalf=0
plotbut
PRINT, 'Event for plot.data a'
END

'plot.data b': BEGIN
plothalf=1
plotbut
END
ENDCASE
END
;
END PDMENU32
;
BEGIN PDMENU34
PRO PDMENU34_Event, Event
common sharewidgetnames, buttons, dependent1, fields, selmenuid, ptmenuid, zmmenuid, prmenuid
common fileparameters, filename1, column, row, type
common variables, data, numwindows, yranges, titles, posx, posy, selymax, calibstart, calibend, dataid, metadatax, metadatay, plothalf, semilog

CASE Event.Value OF
'zoom.window 1': BEGIN
zwin=1
datazoom, zwin
print, 'event for zoom.window1'
end

'zoom.window 2': BEGIN
zwin=2
datazoom, zwin
print, 'event for zoom.window2'
end

'zoom.window 3': BEGIN
zwin=3
datazoom, zwin
print, 'event for zoom.window3'
end
ENDCASE
END

; BEGIN PDMENU40
PRO PDMENU40_Event, Event
common sharewidgetnames, buttons, dependent1, fields, selmenuid, ptmenuid, zmmenuid
common fileparameters, filename1, column, row, type
common variables, data, numwindows, yranges, titles, posx, posy, selymax, calibstart, calibend, dataid, metadatax, metadatay, plothalf, semilog

CASE Event.Value OF
'print.plotter': BEGIN
plothp
PRINT, 'Event for print.plotter'
END

'print.file': BEGIN
fileout
PRINT, 'Event for print.file'
END
ENDCASE
END
;
END PDMENU40
;
BEGIN DEP45
PRO DEP45_Event, Event
common sharewidgetnames, buttons, dependent1, fields, selmenuid, ptmenuid, zmmenuid, prmenuid
common variables, data, numwindows, yranges, titles, posx, posy, selymax, calibstart, calibend, dataid, metadatax, metadatay, plothalf, semilog
WIDGET_CONTROL,Event.Id,GET_UVALUE=Ev
CASE Ev OF
'FIELD46': BEGIN
 Print, 'Event for plot1 max'
END
'FIELD47': BEGIN
 Print, 'Event for plot2 max'
END
'FIELD48': BEGIN
 Print, 'Event for plot3 max'
END
'BUTTON50': BEGIN
 print, 'Event for display'
 semilog = NOT(semilog); originally set semilog to 0 (for linear display), so toggles between 0 and -1
 if semilog eq (-1) then widget_control, fields(3), set_value='semilog display' else widget_control, fields(3), set_value='linear display'
END
'BUTTON49': BEGIN
 widget_control, fields(0), get_value=yrangel
 yranges(1+numwindows*plothalf)=yrangel
 widget_control, fields(1), get_value=yrange2
 yranges(2+numwindows*plothalf)=yrange2
 widget_control, fields(2), get_value=yrange3
 yranges(3+numwindows*plothalf)=yrange3
 Widget_CONTROL, DEPendent1, map=0 ;causes dependent base (plot yranges) to disappear
 plotdata2 ;plot the data
 Print, 'Event for yranges done'
END
ENDCASE
END DEP45

PRO JOCCWID, GROUP=Group
 common share widgetnames, buttons, dependent1, fields, selmenuid, ptmenuid, zmzmenuid, pmenuid
 common variables, data, numwindows, yranges, titles, posx, posy, selymax, calibstart, calibend, dataid, metadata, metadatay, plothalf, semilog
 IF N_ELEMENTS(Group) EQ 0 THEN GROUP=0

 junk = { CW_PDMENU_S, flags:0, name:'' } ;just defines the structure?

 MAIN1 = WIDGET_BASE(GROUP_LEADER=Group, $ ROW=1, $ MAP=1, $ TITLE='Skipper data', $ UVALUE='MAIN1', $
 KOFFSET=1010)

 BASE13 = WIDGET_BASE(MAIN1, $ COLUMN=1, $ MAP=1, $ TITLE='selectfile', $
 UVALUE='BASE13')

 MenuDesc104 = [$
 { CW_PDMENU_S, 3, 'select file' }, $; 0
 { CW_PDMENU_S, 1, 'vuv spect' }, $; 1
 { CW_PDMENU_S, 0, 'spectra' }, $; 2
 { CW_PDMENU_S, 0, 'diagnost1' }, $; 3
 { CW_PDMENU_S, 2, 'diagnost2' }, $; 4
 { CW_PDMENU_S, 1, 'uv spect' }, $; 5
 { CW_PDMENU_S, 0, 'spectra' }, $; 6
 { CW_PDMENU_S, 0, 'diagnost1' }, $; 7
 { CW_PDMENU_S, 2, 'diagnost2' }, $; 8
 { CW_PDMENU_S, 3, 'photometers' }, $; 9
 { CW_PDMENU_S, 0, 'group1' }, $; 10
 { CW_PDMENU_S, 0, 'group2' }, $; 11
 { CW_PDMENU_S, 0, 'group3' }, $; 12
 { CW_PDMENU_S, 2, 'group4' }] ; 13
PDMENU17 = CW_PDMENU(BASE13, MenuDesc104, /RETURN_FULL_NAME, ids=selmenuid, $ UVALUE='PDMENU17')

; BUTTON1 = WIDGET_BUTTON(BASE13, $; UVALUE='BUTTON1', $; VALUE='read new file')

BUTTON2 = WIDGET_BUTTON(BASE13, $ UVALUE='BUTTON2', $ VALUE='wshow')

; MenuDesc21 = [$; { CW_PDMENU_S, 3, 'lin/log'}, $; 0 ; { CW_PDMENU_S, 0, 'linear'}, $; 1 ; { CW_PDMENU_S, 2, 'semilog'}] ; 2

;PDMENU21 = CW_PDMENU(BASE13, MenuDesc21, /RETURN_FULL_NAME, $; pdmenu IDs are stored in the variable "prMENUID" ;UVALUE='PDMENU21')

BUTTON3 = WIDGET_BUTTON(BASE13, $ UVALUE='BUTTON3', $ VALUE='quit')

BASE25 = WIDGET_BASE(MAIN1, $ COLUMN=1, $ MAP=1, $ TITLE='plotdata', $ UVALUE='BASE25')

MenuDesc112 = [$; { CW_PDMENU_S, 3, 'plot' }, $; 0 ; { CW_PDMENU_S, 0, 'data a' }, $; 1 ; { CW_PDMENU_S, 2, 'data b' }] ; 2

PDMENU32 = CW_PDMENU(BASE25, MenuDesc112, /RETURN_FULL_NAME, ids=ptMENUID, $; pdmenu IDs are stored in the variable "ptMENUID" UVALUE='PDMENU32')

MenuDesc114 = [$; { CW_PDMENU_S, 3, 'zoom' }, $; 0 ; { CW_PDMENU_S, 0, 'window 1' }, $; 1 ; { CW_PDMENU_S, 2, 'window 2' }] ; 2

PDMENU34 = CW_PDMENU(BASE25, MenuDesc114, /RETURN_FULL_NAME, ids=zmMENUID, $; pdmenu IDs are stored in the variable "zmMENUID" UVALUE='PDMENU34')

BUTTON4 = WIDGET_BUTTON(BASE25, $ UVALUE='BUTTON4', $ VALUE='rezoom')

BUTTON5 = WIDGET_BUTTON(BASE25, $ UVALUE='BUTTON5', $ VALUE='co-sum')

BUTTON6 = WIDGET_BUTTON(BASE25, $ UVALUE='BUTTON6', $ VALUE='calib')

MenuDesc116 = [$; { CW_PDMENU_S, 3, 'print' }, $; 0 ; { CW_PDMENU_S, 0, 'plotter' }, $; 1 ; { CW_PDMENU_S, 2, 'file' }] ; 2

PDMENU40 = CW_PDMENU(BASE25, MenuDesc116, /RETURN_FULL_NAME, ids=prMENUID, $; pdmenu IDs are stored in the variable "prMENUID" UVALUE='PDMENU40')

; BUTTON7 = WIDGET_BUTTON(BASE25, $; UVALUE='BUTTON7', $
; VALUE='print')

WIDGET_CONTROL, MAIN1, /REALIZE

DEPendent1 = WIDGET_BASE(GROUP_LEADER=Group, $
COLUMN=1, $
MAP=0, $
; set default for this dependent base to be invisible. do it here to prevent screen flicker which occurs if realized with map=0
title='plot maxima', $
UVALUE='DEP45')

FIELD46 = CW_FIELD(DEPendent1, VALUE=yrangel1, $
ROW=1, $
INTEGER=1, $
long=1, $
TITLE='plot1 max', $
UVALUE='FIELD46')

FIELD47 = CW_FIELD(DEPendent1, VALUE=yrangef2, $
ROW=1, $
INTEGER=1, $
long=1, $
TITLE='plot2 max', $
UVALUE='FIELD47')

FIELD48 = CW_FIELD(DEPendent1, value=yrangef3, $
ROW=1, $
INTEGER=1, $
long=1, $
TITLE='plot3 max', $
UVALUE='FIELD48')

BUTTON50 = WIDGET_BUTTON(DEPendent1, $
UVALUE='BUTTON50', $
VALUE='linear display')

BUTTON49 = WIDGET_BUTTON(DEPendent1, $
UVALUE='BUTTON49', $
VALUE='done')

numwindows=1 ; just give a default value so the variable is defined if try
to quit before selecting a file
semilog=0 ; give the default value for linear plots

WIDGET_CONTROL, DEPendent1, /REALIZE ; which occurs if it is done in a single statement -- better to have map=0 above in creation statement

buttons=[0, 0, button2, button3, button4, button5, button6] ; button1, button7 make common statements simpler by having button names in an array

fields=[field46, field47, field48, button50]

button1: ; call button disable procedure to disable all but file
find and quit buttons

XMANAGER, 'DEP45', DEPendent1, /JUST_REG
XMANAGER, 'MAIN1', MAIN1

END