This report summarizes the final progress on an investigation into an engineering-oriented approach for design of distributed-object software. The key results of the research are highlighted, including works published and personnel supported.
MEMORANDUM OF TRANSMITTAL

U.S. Army Research Office
ATTN: AMSRL-RO-RI (Hall)
P.O. Box 12211
Research Triangle Park, NC 27709-2211

☐ Reprint (Orig + 2 copies) ☐ Technical Report (Orig + 2 copies)
☐ Manuscript (1 copy) ☐ Final Progress Report (Orig + 2 copies)
☐ Related Materials, Abstracts, Theses (1 copy)

CONTRACT/GRANT NUMBER: DAAD19-99-1-0350

REPORT TITLE: Final Progress Report

is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript):

DO NOT REMOVE LABEL BELOW
FOR IDENTIFICATION PURPOSES

Sincerely,

Dr. Sol M. Shatz
Dept. of Electrical Engineering & Computer Science
University of Illinois at Chicago
851 S. Morgan Street, M/C 154
Chicago, IL 60607-7053

40172-MA
Final Progress Report
Author/PI: S. Shatz

Statement of Problem Studied:
This research investigated an engineering-oriented approach for design of distributed-object software.

Summary of the most important results:

We developed a couple of results related to the use of Petri net-oriented models for design specification. For our State-Based Object Petri Net model (SBOPN), we demonstrated how to create models that support class-level models with instantiation rules to generate object-instance models, and how to synthesize models for objects with restricted behavior from more general ("superclass") models. We also proposed a framework for using the SBOPN notation as a basis for formal modeling of Aspect Oriented systems. We also expanded the SBOPN notation and developed templates of basic object components, defining a set of modules for plug-and-play modeling of a distributed software architecture. Finally, we formulated a scheme for translation of UML diagrams (Statecharts and Collaboration Diagrams) to an object-based Petri net format that can support design simulation and analysis. We are currently developing a prototype tool to demonstrate this capability.

We also developed a new line of research into modeling of agent-oriented software systems. To this end, we defined extensions to the G-net model (an existing object-based Petri net model) and developed a special-purpose agent-based G-net model. We used existing net theory to prove some properties of our agent-based model. In addition, we extended our agent-based model to include inheritance features, creating an agent-oriented model, and used some existing net tool to analyze the model.

Publications:

(a) Journals:

(b) Peer-reviewed Conference Proceedings

(c) Manuscripts submitted, but not yet published

H. Xu and S. M. Shatz, "An Approach to Using Formal Methods in Agent-Oriented Design and Analysis" (to be submitted to the IEEE Transactions on Knowledge and Data Engineering).

Scientific Personnel:

X. Xie completed his PhD degree in 2000.

H. Xu is a continuing PhD student, expected to complete in Fall 2001.

4 other students participated on the project (non-pay) and completed MS degrees.

Report of inventions: None to report