CONSTITUTIVE & FAILURE BEHAVIOR OF GRANULAR MATERIALS

Dr. M. Zhou

Georgia Institute Of Technology
School Of Mechanical Engineering
Atlanta, GA 30332-0405

AFOSR/NA
801 N. Randolph St.
Arlington VA 22203

Approved for public release: Distribution is unlimited

This project provides support for graduate and undergraduate students to conduct research on the dynamic behavior of concrete and mortar over a range of loading rates and under multiaxial states of stress. The objective of this research is to obtain material response data and constitutive characterization for these materials at strain rates of up to 105 S-1, to analyze the evolution of load-carrying and energy absorption capacities, and to understand deformation and failure mechanisms under high pressures and high strain rates, such as fragmentation, comminution and granular flow. The students' investigations have focused on (1) the dynamic response of the "G"-mix concrete under impact conditions, (2) the effect of composite microstructure and aggregate reinforcement on the material stress-carrying capacity, and (3) the failure behavior of mortar under conditions of normal plate impact. Academic achievements for this project have been described in the final report for the parent grant dated December 31, 1999. The activities under the ASSERT grant are summarized here.

Constitutive & Failure Behavior of Granular Materials
Capt. Michael T. Chipley
AFOSR/NA
110 Duncan Avenue
Suite B115
Bolling AFB, DC 20332-8080

Subject: AASERT Reporting Form & Final Technical Report
Project Director(s): Dr. M. Zhou
Telephone No.: (404)894-3294
Contract No.: F49620-97-1-0415
Prime No.: N/A
"ASSERT: CONSTITUTIVE & FAILURE BEHAVIOR OF GRANULAR MATERIALS"
Period Covered: 7/1/97 - 6/30/00

The subject report is forwarded in conformance with the contract/grar. specifications.

Should you have any questions or comments regarding this report(s), please contact the Project Director or the undersigned at 404-894-4763.

/fw

Sincerely,

Thelma Woods
Customer Service Representative

Distribution:
Addressee: 3 copies
cc: Ms. Jennifer Bell, AFOSR/PKA
:ONR-RR
Final Report for the Project

"ASSERT: CONSTITUTIVE AND FAILURE BEHAVIOR OF GRANULAR MATERIALS"

Grant Number: F49620-97-1-0415
Period Covered: July 1, 1997 – June 30, 2000

Min Zhou
Georgia Institute of Technology
School of Mechanical Engineering
Atlanta, GA 30332-0405

Summary:

This project provides support for graduate and undergraduate students to conduct research on the dynamic behavior of concrete and mortar over a range of loading rates and under multiaxial states of stress. The objective of this research is to obtain material response data and constitutive characterization for these materials at strain rates of up to 10^4 s\(^{-1}\), to analyze the evolution of load-carrying and energy absorption capacities, and to understand deformation and failure mechanisms under high pressures and high strain rates, such as fragmentation, comminution and granular flow. The students’ investigations have focused on (1) the dynamic response of the “G”-mix concrete under impact conditions, (2) the effect of composite microstructure and aggregate reinforcement on the material stress-carrying capacity, and (3) the failure behavior of mortar under conditions of normal plate impact. Academic achievements for this project have been described in the final report for the parent grant dated December 31, 1999. The activities under the ASSERT grant are summarized here.

Students Supported:

<table>
<thead>
<tr>
<th>Graduate Students</th>
<th>Research topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Lucas Grote:</td>
<td>Time-resolved analysis of dynamic response using plate impact Experiments</td>
</tr>
</tbody>
</table>

Mr. Grote received his MS degree in March 1999. Mr. Grote conducted pioneering experiments on the dynamic impact response and failure-wave phenomenon of concrete. He used laser interferometer diagnostics and PVDF internal stress gauge technique to ascertain the existence of the failure waves.

Andrew Keller Dynamic Failure behavior under uniaxial compression

Mr. Keller received his MS degree in August 2000. He conducted experimental research on the failure behavior of brittle materials under uniaxial compression conditions. He also analyzed the microscopic failure behavior of materials using scanning electron microscopy.
<table>
<thead>
<tr>
<th>Undergraduate Students</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akwate Watkins</td>
<td>Specimen preparation, machining</td>
</tr>
<tr>
<td>Patrick Lesher</td>
<td>Digitization of concrete microstructure</td>
</tr>
<tr>
<td></td>
<td>ABAQUS installation</td>
</tr>
<tr>
<td>Dawn Amos</td>
<td>Specimen preparation, conduction of experiment</td>
</tr>
<tr>
<td>Kevin Starks</td>
<td>Design and manufacturing of pressure-shear impact target</td>
</tr>
<tr>
<td></td>
<td>holder</td>
</tr>
</tbody>
</table>

Mr. Watkins is an African American. Miss Amos participated in the 1997 Georgia Tech SURF (Summer Undergraduate Research Fellowship program) while working on this project. The Georgia Tech Material Research Council provided partial support for her work on this project. Mr. Starks designed and manufactured the target holder assembly for pressure-shear impact experiments.
THE DEPARTMENT OF DEFENSE (DoD) REQUIRES CERTAIN INFORMATION TO EVALUATE THE EFFECTIVENESS OF THE AASERT PROGRAM. BY ACCEPTING THIS GRANT WHICH BESTOWS THE AASERT FUNDS, THE GRANTEE AGREES TO PROVIDE 1) A BRIEF (NOT TO EXCEED ONE PAGE) NARRATIVE TECHNICAL REPORT OF THE RESEARCH TRAINING ACTIVITIES OF THE AASERT-FUNDED STUDENT(S) AND 2) THE INFORMATION SHOULD BE PROVIDED TO THE GOVERNMENT'S TECHNICAL POINT OF CONTRACT BY EACH ANNUAL ANNIVERSARY OF THE AASERT AWARD DATE.

1. GRANTEE IDENTIFICATION DATA: (R&T AND GRANT NUMBERS FOUND ON PAGE 1 OF GRANT)

 A. UNIVERSITY NAME: Georgia Institute of Technology/Georgia Tech Research Corp.

 B. GRANT NUMBER: F49620-97-1-0415

 C. R&T NUMBER: F08671-9701485

 D. P.I. NAME: Min Zhou

 E. AASERT REPORTING PERIOD: FROM 7/1/97 TO 6/30/00

 NOTE: GRANT TO WHICH AASERT AWARD IS ATTACHED IS REFERRED TO HEREAFTER AS "PARENT AGREEMENT".

2. TOTAL FUNDING OF THE PARENT AGREEMENT AND THE NUMBER OF FULL-TIME EQUIVALENT GRADUATE STUDENTS (FTEGS) SUPPORTED BY THE PARENT AGREEMENT DURING THE 12-MONTH PERIOD PRIOR TO THE AASERT AWARD DATE.

 A. FUNDING: $302,000

 B. NUMBER FTEGS: 2

3. TOTAL FUNDING OF THE PARENT AGREEMENT AND THE NUMBER OF FTEGS SUPPORTED BY THE PARENT AGREEMENT DURING THE CURRENT 12-MONTH PERIOD.

 A. FUNDING: $302,000

 B. NUMBER FTEGS: 2

4. TOTAL AASERT FUNDING AND THE NUMBER OF FTEGS AND UNDERGRADUATE STUDENTS (UGS) SUPPORTED BY AASERT FUNDS DURING THE CURRENT 12-MONTH REPORTING PERIOD.

 A. FUNDING: $110,000

 B. NUMBER FTEGS: 2

 C. NUMBER UGS: 4

VERIFICATION STATEMENT: I HEREBY VERIFY THAT ALL STUDENTS SUPPORTED BY THE AASERT AWARD ARE U.S. CITIZENS.

Principal Investigator: [Signature]

Date: 8/1/00

Georgia Tech Research Corporation
F49620-97-1-0415, Def

Attachment 1
Page 1 of 2