The Design and Development of an Internet-Based Graphical User Interface Using a Commercial Design Tool and Java

Title and Subtitle
The design and development of an Internet-based graphical user interface using a commercial design tool and Java.

Authors
Stephanie A. Myrick, Marlin L. Gendron, Maura C. Lohrenz, and Stephanie S. Edwards.

Performing Organization
Naval Research Laboratory
Marine Geosciences Division
Stennis Space Center, MS 39529

Sponsoring/monitoring Agency
NAVAIR

Performing Organization Report Number
NRL/PP/7440-00-1010

Subject Terms
Graphic user interface, moving-map displays, aircraft optical disks, X-designer and X-library.

Abstract
This paper describes the design and development of an Internet-hosted Graphical User Interface (GUI) to plan digital aeronautical chart coverages for cockpit moving-map displays by U.S. military aircraft mission planners, requirements officers, and aircrew. The GUI is a component of the Moving-Map Composer (MMC) software that has been developed by the Naval Research Laboratory at the Stennis Space Center (NRLSSC). MMC performs a wide variety of naval mission planning systems and in-flight moving-map displays.
THE DESIGN AND DEVELOPMENT OF AN INTERNET-BASED GRAPHICAL USER INTERFACE USING A COMMERCIAL DESIGN TOOL AND JAVA

Stephanie A. Myrick, Marlin L. Gendron, Maura C. Lohrenz, and Stephanie S. Edwards

Abstract. This paper describes the design and development of an Internet-hosted Graphical User Interface (GUI) to plan digital aeronautical chart coverages for cockpit moving-map displays by U.S. military aircraft mission planners, requirements officers, and aircrew. The GUI is a component of the Moving-Map Composer (MMC) software that has been developed by the Naval Research Laboratory at the Stennis Space Center (NRLSSC). MMC performs a wide variety of aeronautical chart planning functions, including the design and construction of chart images from user-specified data for use in naval mission planning systems and in-flight moving-map displays.

1. Introduction. X-Designer is a commercial GUI design tool (offered by Imperial Software Technology) that produces source code for the GUI designs created. X-Designer originally was used to produce an X Windows-based version of MMC and has proven to be an excellent tool for generating X Library (Xlib) and OSF/Motif source code. MMC is comprised of C functions and X-Designer generated code and is implemented as a standalone system on a Compaq Alpha workstation running OpenVMS. The main MMC GUI is shown in figure 1. A new version of MMC (due to be released in early 2001) will also run on a PC platform running Linux. Peripheral devices for performing optical disk operations are included as part of the system hardware configuration.

Since its inception, MMC has undergone numerous software revisions to provide increased support to the fleet and, as a result, now is in greater demand. However, MMC is only available to those who have access to an Alpha workstation and the requisite peripheral devices, which are expensive to maintain and nearly obsolete in terms of CPU speed, memory, disk storage, etc. While the Linux

1 Naval Research Laboratory, Code 7440.1, Stennis Space Center, MS 39529

DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited
PC version of MMC will help to alleviate obsolescence problems, many pilots and mission planners do not have access to these platforms, either. Therefore, NRLSSC scientists are starting to redesign MMC into a web-based system that would provide structural and platform independence. There are two principle benefits of this redesign: (1) As a web-based system, MMC will be accessible to a substantially greater number of users, primarily pilots and mission planners; (2) As a portable system, MMC no longer will be tied to any one hardware platform and will benefit from newer, faster hardware and peripherals as they become available.

2. Discussion. Software implementations using X-Windows, Java and C programming languages will meet these needs. NRLSSC scientists are utilizing the most recent version of X-Designer (v5.5) which generates Java code - to generate the GUI portion of MMC in Java and OSF/Motif. Two companion papers being presented at this symposium address (1) the design and implementation of the Java Server portion of this MMC redesign, and (2) the design of Java-based moving-map simulations, on-line surveys and databases to solicit evaluations of future moving-map displays from pilots and mission planners stationed around the world.

The decision to continue utilizing X-Designer for software development was primarily based on product licensing and extensive familiarity with its use. Production costs were reduced since the license was current and scientists had previous experience with its use as a development tool. X-Designer also enabled GUI design and implementation to progress in a consistent manner by maintaining the design's "look and feel", maintaining the independence of lower level code, and streamlining individual programming styles. With personnel changes that are inherent in multi-year programs, it is essential to maintain control and consistency with programming techniques.

The following sections address the primary issues that are being during this transition to a web-based system: Section 2.1 covers design modification issues associated with using X-Designer for Java source code generation, and Section 2.2 covers MMC enhancements for web use.

2.1 Design Modifications. Modifications (e.g., additional buttons or windows) are quickly and easily made. Once a design is created or modified, the Generation feature of X-Designer is used to generate Java source code (including individual files for callback routines). These files are compiled, along with other existing low-level C functions, to create an executable application that is MMC (figure 2).

![Diagram](image)

Figure 2. The transformation steps of a GUI design from its creation to its final form as an executable Java application.

To date, the only significant problem encountered generating Java source code (instead of X-windows) has been associated with the X-Designer Layout Manager and attachments. Specifically, some of the GUI component (i.e., widget) placement and size specifications have been set erroneously in the Java source code and required manual correction (figure 3). All manual corrections are documented within the source code. This problem appears to be limited to Java source code generation since the same design appears correct when implemented in X-Window source code. This may be one disadvantage of using X-Designer instead of other development tools that have been designed exclusively for generating Java source code.
However, these errors are easily corrected through modifications to the `FormLayoutConstraint` definitions and do not appear to be substantial impediments to the completion of this project.

(a) Before correction, both widgets are misaligned within the display area with Widget 2 drawn too small.

(b) After correction

Figure 3. Widget placement and size attachments.

2.2 Development for Web use. MMC has been enhanced to serve in a client/server architecture on the Internet. The existing low-level C language code is robust and well tested. Therefore, in order to minimize software modifications and avoid introducing new bugs, only a few key changes are being made. These modifications primarily include file naming conventions, and file location operations. As an application, MMC now generates individual queries that belong to a set of ASCII-based query language commands that are being developed as part of this project. These commands are understood by both client and server and serve as their logical link (figure 4).

Figure 4. The Internet-based MMC GUI client application and its Java server.

For example, using the File Menu option to open a final composition (figure 5), generates the following query which is subsequently interpreted by the Java server:

\[
\text{build file[type=ascii] template[location=hd, name=all]}
\]

Queries are incorporated as part of the individual callback routines used within MMC. The appropriate C functions are then invoked to complete the tasks identified in the query. In the above example, a file selection menu is provided to obtain the name of a final composition and once opened, is available for use. With MMC available on the Internet, pilots and mission planners can design map
mission-specific compositions from their respective workplaces and maintain a library of chart coverages that are available for future use or may be modified as needed for other missions. With system hardware upgrades being transparent, these users will be able to rely on MMC, as a state of the art resource for their map display needs.

![MMC File menu option](image)

Figure 5. MMC File menu option

3. **Summary.** NRLSSC scientists have begun to redesign MMC into a web-based system that will provide structural and platform independence. As a web-based system, MMC will be accessible to a substantially greater number of users, primarily pilots and mission planners. As a portable system, MMC no longer will be tied to any one hardware platform and will benefit from newer, faster hardware and peripherals as they become available. X-Designer is being used in this effort since production costs can be reduced (due to the existence of current license agreements and in-house experience with its use as a development tool). X-Designer also offers the advantages of enabling GUI design and implementation to progress in a consistent manner by maintaining the design's "look and feel", maintaining the independence of lower level code, and streamlining individual programming styles. Primary issues that are being addressed during this transition to a web-based system include design modifications associated with using X-Designer for Java source code generation, and MMC enhancements for web use.

4. **Acknowledgements.** The Naval Air Systems Command funds this work in support of their AV-8B and F/A-18 aircraft programs.

REFERENCES

THE DESIGN AN DEVELOPMENT OF AN INTERNET-BASED GRAPHICAL USER INTERFACE USING A COMMERCIAL DESIGN TOOL AND JAVA

Author(s) Name(s) (First, Mi, Last), Code, Affiliation if not NRL

STEVEN D. MYRICK, (Code 7440.1), MARLON L. GENDRON (Code 7440.1), MAURA C. LOHRENZ (Code 7440.1) and STEPHANIE S. EDWARDS (Code 7440.1)

It is intended to offer this paper to the **SOUTHERN CONFERENCE ON COMPUTING**

(Name of Conference)

and/or for publication in

THE UNIVERSITY OF SOUTHERN MISSISSIPPI, OCTOBER 26-28, 2000, HATTIESBURG, MISSISSIPPI

(Date, Place and Classification of Conference)

After presentation or publication, pertinent publication/presentation data will be entered in the publications data base, in accordance with reference (a).

It is the opinion of the author that the subject paper is **** classified, in accordance with reference (b).

This paper does not violate any disclosure of trade secrets or suggestions of outside individuals or concerns which have been communicated to the Laboratory in confidence. This paper does **** contain any militarily critical technology. This subject paper has no *Never been incorporated in an official NRL Report.*

STEPHANIE A. MYRICK, NRL Code 7440.1

Signature

5. ROUTING/APPROVAL

<table>
<thead>
<tr>
<th>CODE</th>
<th>SIGNATURE</th>
<th>DATE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Myrick</td>
<td>10-26-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lohrenz</td>
<td>10-26-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harris</td>
<td>10-26-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eppert</td>
<td>10-26-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eppert</td>
<td>10-26-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colson</td>
<td>11-12-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kohler</td>
<td>11-02-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kohler</td>
<td>11-02-00</td>
<td>Add # to add #</td>
</tr>
</tbody>
</table>

THIS FORM CANCELS AND SUPERSEDES ALL PREVIOUS VERSIONS
6. DISTRIBUTION STATEMENTS (Author to check appropriate statement and fill in reason as required)

☐ A - Approved for public release, distribution is unlimited.

☐ B - Distribution authorized to U.S. Government agencies only (check reason below):
 ☐ Foreign Government Information ☐ Contractor Performance Evaluation ☐ Critical Technology
 ☐ Proprietary Information ☐ Administrative/Operational Use ☐ Premature Dissemination
 ☐ Test and Evaluation ☐ Software Documentation ☐ Cite "Specific Authority

Date statement applied ____________________________
Other requests for this document shall be referred to

(Insert Controlling DOD)

☐ C - Distribution authorized to U.S. Government agencies and their contractors (check reason below):
 ☐ Foreign Government Information ☐ Software Documentation ☐ Cite "Specific Authority
 ☐ Administrative/Operational Use ☐ Critical Technology

Date statement applied ____________________________
Other requests for this document shall be referred to

(Insert Controlling DOD)

☐ D - Distribution authorized to DOD and DOD contractors only (check reason below):
 ☐ Foreign Government Information ☐ Critical Technology
 ☐ Software Documentation ☐ Cite "Specific Authority
 ☐ Administrative/Operational Use

Date statement applied ____________________________
Other requests for this document shall be referred to

(Insert Controlling DOD)

☐ E - Distribution authorized to DOD components only (check reason below):
 ☐ Proprietary Information ☐ Premature Dissemination ☐ Critical Technology
 ☐ Foreign Government Information ☐ Software Documentation ☐ Direct Military Support
 ☐ Administrative/Operational Use ☐ Contractor Performance Evaluation ☐ Test and Evaluation
 ☐ Cite "Specific Authority

Date statement applied ____________________________
Other requests for this document shall be referred to

(Insert Controlling DOD)

☐ F - Further dissemination only as directed by _______________________________
 (Insert Controlling DOD

Date statement applied ____________________________ or higher DOD authority
Other requests for this document shall be referred to

(Insert Controlling DOD)

☐ X - Distribution authorized to U.S. Government agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance with regulations implementing 10 U.S.C. 140c.

Date statement applied ____________________________
Other requests for this document shall be referred to

(Insert Controlling DOD)

*For NRL publications, this is usually the Commanding Officer, Naval Research Laboratory, Washington, DC 20375-5320

7. OTHER LIMITATION

☐ Classification only ☐ NOFORN ☐ DTIC exempt (explain)

Classification Review
(Initial/Date)

Substantive changes made in this document after approval by Classification Review and Public Release invalidate these reviews. Therefore, if any substantive changes are made by the author, Technical Information, or anyone else, the document must be returned for another Classification Review and Public Release.

8. INSTRUCTIONS

Author completes and submits this form with the manuscript via line channels to the division head for review and approval according to the routing in section 4.

1. NRL Reports...Submit the diskette (if available), manuscript, typed double-spaced, complete with tables, illustrations, references, draft SF 298, and proposed distribution list.

2. NRL Memorandum Reports..Submit a copy of the original, typed manuscript complete with tables, illustrations, references, draft SF 298, and proposed distribution list.

3. NRL Publications or other books, brochures, pamphlets..........................Handed on a per case basis by Site Technical Information Office. proceedings, or any other printed publications.