Homeostatic & Circadian Regulation of Wakefulness During Jet Lag and Sleep

Sleep Deprivation: Effect of Wake-Promoting Countermeasures

Dr. David F. Dinges

The Trustees of the University of Pennsylvania
133 South 36th St., Mezzanine
Philadelphia, PA 19104-3246

AFOSR/NL
801 N. Randolph St. Room 732
Arlington, VA 22203-1977

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

The overarching objective of the AFOSR PRET Center for Countermeasures to Jet Lag and Sleep Deprivation was the completion and integration of basic scientific research from three university laboratories for the goal of developing technologies that overcame the performance-impairing problems and risks posed by jet lag and sleep deprivation. Major human research projects on the effects of induced jet lag and sleep deprivation and their mitigation by sustained low-dose caffeine and naps were undertaken at the University of Pennsylvania and Harvard, where investigators also performed work on development of a biomathematical model of the combined circadian and homeostatic regulation of performance and the effects of countermeasures (light, naps, caffeine). A parallel set of major research projects undertaken by investigators at Stanford University studied the effects of a range of wake-promoting substances in animal models. Additional ancillary objectives were also addressed at all sites. Center investigators also trained students and professionals in fatigue-countermeasure research; disseminated discoveries through hundreds of presentations and publications; and transitioned knowledge gained through Center research on countermeasures to the Air Force and related DoD, Federal and private environments.

Jet Lag, Sleep Deprivation

Unclas

Unclas

Unclas

63

David F. Dinges

215-898-9949
Grant Number: F49620-95-1-0388

Final Report: August 31, 2000

Title: Homeostatic & Circadian Regulation of Wakefulness During Jet Lag and Sleep Deprivation: Effect of Wake-Promoting Countermeasures

Grant period: June 1, 1995 – May 31, 2000

Principal Investigator: David F. Dinges, Ph.D.
Professor of Psychology in Psychiatry
Chief, Division of Sleep and Chronobiology
Director, Unit for Experimental Psychiatry
University of Pennsylvania School of Medicine
1013 Blockley Hall
423 Guardian Drive
Philadelphia, PA 19104-6021
Phone: 215-898-9949
FAX: 215-573-6410
E-mail: dinges@mail.med.upenn.edu

Co-Principal Investigators: Charles A. Czeisler, Ph.D., M.D.
Professor of Medicine
Chief, Circadian, Neuroendocrine and Sleep Disorders Section
Division of Endocrinology
Department of Medicine
Brigham and Women's Hospital/Harvard Medical School
221 Longwood Avenue
Boston, MA 02115
Phone: 617-732-4013
FAX: 617-732-4015
E-mail: caczeisler@gcr.bwh.harvard.edu

Dale M. Edgar, Ph.D.
Associate Professor
Director, Sleep and Circadian Neurobiology Laboratory
Sleep Research Center
Department of Psychiatry and Behavioral Sciences
Stanford University School of Medicine
701 Welch Road, Suite 2226
Palo Alto, CA 94304
Phone: 650-723-5876
FAX: 650-725-7341
E-mail: dmedgar@leland.stanford.edu

NOTICE: The information contained in this proposal constitutes a trade secret and/or information that is commercial or financial and confidential or privileged. It is furnished to the Government in confidence with the understanding that it will not without the permission of the offerer be used or disclosed other than for evaluation purposes. This restriction does not limit the Government's right to use or disclose this information if obtained from another source without restriction.
TABLE OF CONTENTS

2. OBJECTIVES ... 3

3. ACCOMPLISHMENTS / FINDINGS ... 5

A. University of Pennsylvania School of Medicine—Dr. David F. Dinges, P.I. 5
 (1) Methods .. 5
 (2) Results – Pharmacology: Plasma caffeine levels 6
 (3) Results – Caffeine and core body temperature 7
 (4) Results – Caffeine, sleep deprivation and norepinephrine .. 8
 (5) Results – Effect of caffeine on nap sleep structure 9
 (6) Results – Effect of caffeine and sleep deprivation on neurobehavioral functioning ... 11
 (7) Results - Effect of caffeine on sleep inertia 15
 (8) Results - Sleep deprivation and immune function 16

B. Brigham & Women’s Hospital/Harvard Medical School—Dr. Charles Czeisler, P.I. 17
 (1) Subject selection and study protocol 17
 (2) Results – Caffeine plasma levels 19
 (3) Results – Neurobehavioral assessments 19
 (4) Results – Polysomnographic data 21
 (5) Results – Further development of biomathematical models of neurobehavioral Functions ... 21

C. Stanford University School of Medicine—Dr. Dale M. Edgar, P.I. 22
 (1) Compensatory sleep responses to drug-induced wakefulness 22
 (2) Results – Modafinil mechanism of action 22
 (3) Results – SCORE-2000 .. 23
 (4) Results – Photic phase response curve in the Octodon degus .. 23
 (5) Results – Caffeine administration during sleep deprivation .. 23
 (6) Results – Sleep deprivation .. 24
 (7) Results – Non-photic entrainment in the Octodon degus 24
 (8) Results – Light-dark cycle masking of sleep-wakefulness in Octodon 24
 (9) Results – REM sleep deprivation studies in intact and SCN-lesioned rats 24

4. PERSONNEL AND TRAINEES (N = 28) SUPPORTED BY CENTER 24

5. LIST OF CENTER PUBLICATIONS 26
 5A. 1995-2000 Total N = 93 Journal articles, chapters, reviews, dissertations 26
 5B. 1995-2000 Total N = 87 Abstracts 33
 5C. 1995-2000 Total N = 6 Manuals and Technical Reports 39

6. PRESENTATIONS AT SCIENTIFIC MEETINGS, CONFERENCES (N = 152) 40

7. CONSULTATIVE / ADVISORY TO OTHER LABORATORIES/AGENCIES (N = 42) 51

8. TRANSITIONS (N = 36) .. 57

9. NEW DISCOVERIES, INVENTIONS, PATENTS 62

10. HONORS/AWARDS .. 62

11. CENTER SCIENTIFIC ADVISORY BOARD 63
2. OBJECTIVES

This AFOSR PRET Center on Countermeasures for Jet Lag and Sleep Deprivation had three primary, overarching objectives:

1. Completion of basic scientific research on the identification, development, validation and integration processes and technologies that could be used by the Air Force to overcome the performance-impairing problems and risks posed by jet lag and sleep deprivation. Three university laboratories were actively involved in this primary objective: University of Pennsylvania School of Medicine (Dr. Dinges, P.I.); Brigham & Women's Hospital/Harvard Medical School (Dr. Czeisler, Co-P.I.); Stanford University School of Medicine (Dr. Edgar, Co-P.I.). The major human research projects undertaken at the University of Pennsylvania and Harvard sites were special experimental protocols designed to permit optimal double blind, placebo-controlled experiments of sustained, low-dose caffeine and its effects on human performance and alertness. Total and partial cumulative sleep deprivation protocols, and forced desynchrony protocols were performed at the two sites, respectively. Other investigators at Harvard (Drs. Jewett and Kronauer) performed work on development of a biomathematical model of the combined circadian and homeostatic regulation of performance, integrating the effects of countermeasures into the model (light, naps, caffeine) from the laboratories of Drs. Dinges and Czeisler. The third set of major research projects undertaken in the Center involved studies on the effects of a number of wake-promoting substances in animal models. Dr. Edgar and colleagues at the Stanford University School of Medicine completed these projects.

2. The dissemination, translation and transition of information on potential countermeasure technologies for jet lag and sleep deprivation to the broader scientific community, to the Air Force and related governmental agencies, and to industries that could ultimately use Center information to provide fatigue countermeasure technologies to the Air Force.

3. The training of students and new scientists in the methods and approaches relevant to identifying novel ways of countering performance impairing fatigue during operations by Air Force personnel.

Center investigators also pursued the following 20 ancillary objectives related to the main goals of the Center. These efforts were often supplemented by support obtained by the P.I.s from other federal and private grants to Center investigators.

4a. Experiments on the effects of body posture and sensory restriction on performance and alertness in sleep-deprived individuals, to determine the potential of different environmental stimuli for enhancing performance (University of Pennsylvania site).

4b. Acquisition of new data on the magnitude of performance deficits upon awakening (i.e., Process W or sleep inertia) and its duration, for input into the biomathematical model of alertness (at the Harvard and University of Pennsylvania sites).

4c. Development of a database to establish the magnitude and predictors of inter-subject variability in neurobehavioral deficits from sleep loss and circadian disturbance (University of Pennsylvania site).

4d. Evaluation of different aspects of fatigue and acquisition of data on rest-activity cycles and fatigue in Air Force personnel engaged in night operations (University of Pennsylvania site).

4e. Obtain data on the effects of sleep deprivation on plasma cytokine levels in humans (University of Pennsylvania site).

4f. Perform study of the duration of sleep needed to recover from sleep deprivation (University of Pennsylvania site).
4g. Review, identification, and, when possible, development of the most promising ambulatory fatigue-detection technologies, to develop a miniaturized monitor that acquires and integrates data on an individual's alertness or performance capability while in the field (University of Pennsylvania site).

4h. Evaluation of the validity and reliability of miniaturized ambulatory technologies for tracking drowsiness during work involving sustained psychomotor vigilance (University of Pennsylvania site).

4i. Evaluation of EOG (eye movement) and EEG correlates of the homeostatic and circadian regulation of wakefulness and neurobehavioral functions in the 42.85 hour forced-desynchrony protocol, in an effort to identify on-line physiological markers of alertness (Harvard University site).

4j. Perform pre-clinical studies of the wake-promoting properties and compensatory sleep responses of Pemoline administration in rats, using the SCORE sleep-wake bioassay (Stanford University site).

4k. Conduct a clinical pilot study (6 subjects) investigating pemoline (Cylert®) as a countermeasure for excessive sleepiness and investigate the somnolytic action of this drug (Stanford University site).

4l. Perform pre-clinical studies on a non-nocturnal animal model (Octodon degus) for pharmacological comparison and validation of data obtained from a nocturnal species (rat) (Stanford University site). The development of a diurnal animal model could potentially speed the transition of new information on wake-promoting compounds from animals to humans.

4m. Conduct further evaluation of Octodon degus as a non-nocturnal animal model of sleep-wake regulation (Stanford University site). Because this species has strong crepuscular waking behavior, judiciously timed sleep deprivation allowed the assessment of compensatory sleep interaction with both the morning and evening episodes of SCN-dependent alerting compounds. Since humans also have two major episodes of physiological arousal across the circadian cycle, these data, and this animal model help expedite the transition of information on wake-promoting therapeutic efficacy and interaction with sleep loss, and make better pre-clinical predictions of how wake-promoting drugs will act in humans.

4n. Perform pre-clinical studies of two selective dopamine transporter blockers (GBR 12783 and 4′4″-difluoro-3α(diphenylmethoxy)tropane, and one additional dopamine autoreceptor antagonist (UH-232) using the SCORE pre-clinical sleep-wake bioassay (Stanford University site). These experiments were designed to investigate the interaction of wake-promoting therapeutic pharmacology with the sleep homeostatic process. They helped clarify whether drug-binding affinity at the dopamine transporter site, or at the dopamine D2 autoreceptor site, directly correlates with efficacy and/or somnolytic drug actions. Such information will help us to make better initial predictions regarding the therapeutic potential of novel drugs (there are many uncharacterized novel compounds that are commercially available or can be made available from our industry associates), thus expediting our drug discovery transition efforts.

4o. Perform pre-clinical studies investigating the recovery sleep profiles of rapid eye movement (REM) sleep deprivation (Stanford University site). Chronic sleep restriction, recovery sleep after sleep deprivation, sleeping during the day (e.g., shift workers), and the use of many medications to manage diverse medical problems (e.g., sleep-wake disorders, blood pressure, depression) cause the displacement and/or inhibition of REM sleep. These studies were targeted at determining the physiological consequences of REM sleep loss or how it may influence the immediate or delayed component of compensatory sleep.

4p. Characterization of the photic phase response curve in the Octodon degus (Stanford University site). These experiments were designed to assess whether nocturnal and diurnal species employ different photic entrainment mechanisms, as suggested by Lee and colleagues in the literature. This is a critically important question with respect to the application of light treatment or the development of light-like pharmaceuticals for the treatment of jet-lag and sleep disorders in night-shift workers.

4q. Design of an engineering project to upgrade the SCORE-Sleep-Wake Bioassay technology for compatibility with modern operating systems and to provide numerous functional enhancements that will facilitate our Center's ongoing research efforts (Stanford University site).
4r. Investigation of the mechanism of action of modafinil (Stanford University site). These experiments determined if the dopamine transporter was necessary for modafinil’s wake-promoting effects, and have proven to be informative toward the development of new lines of selective wake-promoting therapeutics.

4s. Clinical investigation of the effects of modafinil on alertness during sleep deprivation and night shift work (Harvard and University of Pennsylvania sites).

4t. Studies designed to characterized the effects of repeat acute and chronic wake-promoting therapeutic delivery (Stanford University site). These studies addressed critically important operational and safety questions regarding the chronic use of somnolytic wake-promoting drugs.

3. ACCOMPLISHMENTS / FINDINGS

Experiments were conducted at the three university sites simultaneously, under the direction of the P.I. at each site. The methods, accomplishments and findings from these studies are summarized below for each site individually. Greater detail regarding specific findings and additional experiments relevant to Center ancillary goals can be found in the 180 papers, chapters, abstracts, and technical reports generated by Center investigators during the period 1995-2000, listed after the accomplishments and findings.

A. University of Pennsylvania School of Medicine—Dr. David F. Dinges, Principal Investigator

The primary experimental study conducted at the University of Pennsylvania site involved a test of a novel use of naps and caffeine as separate and combined countermeasures to performance degradation during severe sleep deprivation. The laboratory experiment simulated sustained operations scenario in which healthy male subjects in the age range of Air Force personnel were required to perform quasi-continuously for 10 days while undergoing under intense physiological monitoring. The study design displayed in Figure 1 below was a double blind, placebo-controlled, randomized trial of sustained low-dose caffeine (0.3mg per kg, administered hourly) for 66 hours during 88 hours of sleep deprivation (i.e., TSD condition) versus 88 hours in which 2-hour nap opportunities were permitted every 12 hours (i.e., NAP condition). Thus the design permitted a direct test (1) of the effects of sustained low-dose caffeine as a wake-promoting countermeasure; (2) of the effects of naps as a fatigue countermeasure; and (3) of the interaction of sustained low-dose caffeine and naps. A 0.3mg/kg/hr caffeine dose was selected as a low dose because it is equivalent to giving a 175-lb (80kg) male 24mg caffeine hourly, resulting in a cumulative total of 578mg caffeine ingested in 24 hours, which is equivalent to 4-6 cups of coffee per day based on an estimated 100mg to 150mg caffeine per cup of coffee.

Figure 1. Schematic representing the overall study design

10-day in-laboratory protocol

baseline 1, baseline 2, baseline 3, 3.67 days condition, recovery 1, recovery 2, recovery 3

3.67 days sleep deprivation
TSD

Placebo
7h TIB recovery (2 nights)
14h TIB recovery (2 nights)

Caffeine
7h TIB recovery (2 nights)
14h TIB recovery (2 nights)

3.67 days with 2h nap every 12 h
NAP

Placebo
7h TIB recovery (2 nights)
14h TIB recovery (2 nights)

Caffeine
7h TIB recovery (2 nights)
14h TIB recovery (2 nights)
1) Methods
A total of \(N = 58 \) male subjects (age range: 21 – 47 years) participated in this randomized, double-blind protocol (\(N = 617 \) were initially screened for the study). Following a 7 - 14 day period at home during which time subjects were monitored (actigraphy, sleep diaries, time stamped telephone logs) to ensure stable sleep/wake cycles, subjects completed a 10-day in-laboratory protocol. The protocol consisted of 3 baseline days/ nights, followed by 3.67 days (88 hours) of sustained wakefulness (with and without 2 x two-hour naps), and three recovery sleep nights. During the time in the laboratory, subjects’ sleep and waking physiology (EEG, EOG, ECG, EMG, core body temperature), neurobehavioral functions (comprehensive performance assessments), endocrine functions (melatonin, cortisol, norepinephrine, cytokines), and plasma caffeine levels were monitored. Caffeine pill (0.3 mg per kg per hour) or placebo pill was begun after 22 hours into the 88-hour period, at 0530 hour on second day in the 88-hr period. Figure 2 displays the protocol sequence for the four conditions (\(n = 15 \) TSD + caffeine; \(n = 13 \) TSD + placebo; \(n = 15 \) NAP + caffeine; \(n = 15 \) NAP + placebo).

Figure 2. Schematic representing the 10-day in-laboratory protocol conducted at the University of Pennsylvania site, comparing four treatment conditions (TSD + caffeine; TSD + placebo; NAP + caffeine; NAP + placebo). Neurobehavioral test batteries were completed every 2 hours throughout all waking periods. EEG, ECG, EOG, and core body temperature were continuously recorded. Blood draws were taken via an indwelling catheter every 90 minutes from the last baseline night through the first recovery day. Baseline and recovery sleep periods are shown as horizontal bars; 2-hour nap periods during the 88-hour period are shown as vertical bars.

(2) Results – Pharmacology: Plasma caffeine levels
Plasma caffeine levels achieved with the 0.3mg/kg/hr dose regime in the TSD and NAP conditions are shown in Figure 3. In the caffeine groups a steady increase in plasma caffeine levels commenced from within 3.25 hours of the first administration (at 0530hr, which was 22 hours into the 88 hours), and continued increasing until reaching a plateau after approximately 29 hours. In the nap group, subjects received 5 fewer caffeine doses, since they were not awakened from their 2-hour naps for either caffeine or placebo pill administration. Therefore, during these nap periods the plasma caffeine curve shows a small decrease in the NAP subjects relative to the caffeine levels in the TSD subjects (i.e., open triangles in Figure 3 show the nap period dips in plasma levels as a result of no pill being administered to the NAP group during each nap). Table 1
summarizes the pharmacokinetics for both TSD and NAP conditions. Consistent with the dosing regime differences, the TSD condition resulted in a significantly higher maximum concentration, which tended to peak sooner (i.e., time taken to reach maximum concentration). However there was no difference between the TSD + caffeine and NAP + caffeine conditions in overall caffeine concentration as measured by area under the curve (AUC).

Figure 3. Average plasma caffeine levels for TSD and NAP conditions.

![Graph showing plasma caffeine levels for TSD and NAP conditions](image)

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>0730</th>
<th>2230</th>
<th>1330</th>
<th>0430</th>
<th>1930</th>
<th>0130</th>
<th>1630</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours Awake</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>60</td>
<td>75</td>
<td>87</td>
</tr>
</tbody>
</table>

Table 1. Caffeine pharmacokinetics for the TSD + caffeine condition and NAP + caffeine condition.

<table>
<thead>
<tr>
<th></th>
<th>TSD condition</th>
<th>NAP condition</th>
<th>difference between conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum concentration</td>
<td>$5.9 \pm 0.6 \text{ mg/l}$</td>
<td>$4.4 \pm 0.5 \text{ mg/l}$</td>
<td>$p = 0.043$</td>
</tr>
<tr>
<td>Time to maximum concentration</td>
<td>$50.9 \pm 3.3 \text{ hr}$</td>
<td>$43.64 \pm 3.0 \text{ hr}$</td>
<td>$p = 0.674$</td>
</tr>
<tr>
<td>Area under the curve (AUC)</td>
<td>$3.2 \pm 0.3 \text{ mg/l}$</td>
<td>$2.9 \pm 0.3 \text{ mg/l}$</td>
<td>$p = 0.531$</td>
</tr>
</tbody>
</table>

3) Results – Caffeine and core body temperature

To assess the effects of caffeine on core body temperature (CBT), rectal temperature recordings were continuous recorded throughout the 10-day laboratory protocol, using a flexible probe. CBT results from the TSD condition are shown in Figure 4, comparing average CBT curves for caffeine subjects versus placebo subjects. As expected, circadian variation is evident in both groups across the 5-day period of recording, including during the 88-hour period of continuous waking, during which caffeine or placebo pills were
administered hourly. In the TSD + caffeine group (closed circles) a significant elevation (p<0.001) in core body temperature is evident relative to the TSD + placebo group (open circles), coincident with the steady increase in plasma caffeine levels. The magnitude of the temperature elevation was greatest during the first few hours of caffeine administration (mean difference between caffeine and placebo conditions = 0.51 ± 0.02°C). This hyperthermic effect of caffeine endured for approximately 18 hours following the first caffeine administration. The increase in CBT brought on by sustained low-dose caffeine intake appears to reflect a change in the mean temperature levels rather than a change in the circadian amplitude. We are currently analyzing data from the NAP + caffeine vs. NAP + placebo conditions to determine if this apparent thermogenic effect of caffeine is present when naps are permitted. We are also investigating a potential causal relationship between enhanced performance capabilities and elevated core body temperature levels in the caffeine group relative to the placebo group.

Figure 4. Core body temperature from TSD + caffeine (closed circles) and TSD + placebo (open circles) conditions.

(4) Results – Caffeine, sleep deprivation and norepinephrine

Plasma norepinephrine (NE) levels increased significantly across all four experimental conditions during the 88hr period (p = 0.0001), but the effect was more evident in the caffeine conditions (interaction p = 0.057). Figure 5 shows this effect. The result was further confirmed by ANOVA within each condition (Fs < 1 for both TSD + placebo and PSD + placebo conditions; p = 0.026, for TSD + caffeine; p = 0.029 for PSD + caffeine). Given that the effects of caffeine were much larger than those of placebo (with no difference in

Figure 5. Mean plasma norepinephrine levels for all conditions on baseline days and during the 88-hour period of total or partial sleep deprivation (i.e., naps).
plasma NE levels between TSD and PSD), subjects were pooled into two groups: those that received caffeine and those that received placebo. The 88-hr period was separated into four intervals: day 1 from 0730-0130hr (i.e., 0-18 hr); day 2 from 0730-0130hr (i.e., 24-42 hr); day 3 from 0730-0130hr (i.e., 48-66 hr); and day 4 from 0730-1930hr (i.e., 72-84 hr). A mixed-model ANOVA revealed the increases in plasma norepinephrine levels across days in the caffeine condition relative to the placebo condition (p=0.016). Figure 6 displays these results. We are currently investigating potential relationships between this increase in NE levels and other physiological (i.e., thermoregulatory, sleep) and endocrine (i.e., cortisol, melatonin, thyroid hormones) effects of caffeine. It is noteworthy that preliminary evaluations to date suggest that the effects of caffeine on NE were not accompanied by cardiovascular sequelae. In fact, there was no evidence in performance on a tracking task that sustained low-dose caffeine produced psychomotor agitation. No subject had to be withdrawn from the protocol due to an adverse reaction to caffeine. Therefore, the NE results support a caffeine effect on circulating catecholamines, but apparently not at a level that resulted in cardiovascular or behavioral adverse events. Caffeine did, however, have other physiological and neurobehavioral effects.

Figure 6. Plasma norepinephrine levels for the caffeine and placebo conditions, pooled across TSD and NAP conditions.

(5) Results – Effect of caffeine on nap sleep structure
As expected, there were no significant differences in any nap sleep polysomnographic (PSG) variables between naps 1 and 2, which occurred on the first afternoon and night, respectively, of the initial 24 hours in the 88-hr period, prior to either caffeine administration or sleep deprivation. The effects of hourly caffeine vs. placebo administration on nap sleep physiology was assessed by comparing nap PSG data from the NAP + caffeine condition to results from the NAP + placebo condition. Across naps 3 through 7, which occurred sequentially every 12 hours from the 34 hour to the 82 hour of the 88-hr period, as the amount of partial sleep deprivation progressed, naps had increased total sleep time (TST) (Figure 7), increased slow wave sleep (SWS) (Figure 8), and decreased wake after sleep onset (WASO) (Figure 9) [all ps < 0.005]. Relative to placebo, caffeine reduced nap total sleep time (Figure 7) by an average of 13 minutes (p < 0.001), primarily by increasing sleep latency (Figure 10) an average of 10 minutes (p < 0.001), but it also tended to reduce time in slow wave sleep (Figure 8), especially in naps 3 (p = 0.08) and 4 (p = 0.03), and reduce REM sleep minutes (p = 0.02). Only the amount of SWS (Figure 8) showed a condition by time interaction (p = 0.043), being reduced in nap 3 by an average of 8.4min (p = 0.081) and in nap 4 by 12.2min (p = 0.036). These SWS deficits were associated
with the rising slope of the plasma caffeine pharmacokinetic curve. The effects of sustained low-dose caffeine on nap sleep are currently being evaluated relative to the effects of caffeine and naps on performance, mood, and endocrine responses throughout the experimental protocol. Figure 11 illustrates the mean percentages of sleep stages for naps 3 to 7, and reveals that with caffeine sustained in plasma, sleep during the 2-hr nap sleep opportunities was (on average) less efficient by approximately 10% and included proportionally more stage 1 (light) sleep. These data suggest that caffeine did not prevent nap sleep, but it did reduce its quantity and quality. Quantitative EEG power spectral analyses of nap sleep are underway to establish the effects of caffeine on slow wave activity, the putative homeostatic marker of sleep drive.

Figure 7. Total sleep time in 2-hr nap opportunities every 12 hours across an 88-hr period. Caffeine vs. placebo conditions.

Figure 8. Slow wave sleep in 2-hr nap opportunities every 12 hours across an 88-hr period. Caffeine vs. placebo conditions.

Figure 9. Total sleep time in 2-hr nap opportunities every 12 hours across an 88-hr period. Caffeine vs. placebo conditions.

Figure 10. Slow wave sleep in 2-hr nap opportunities every 12 hours across an 88-hr period. Caffeine vs. placebo conditions.
(6) Results – Effect of caffeine and sleep deprivation on neurobehavioral functioning

The 88-hr period of total sleep deprivation markedly deteriorated virtually every behavioral and physiological marker of performance, alertness, and mood. Analyses are still underway on the large number of outcome variables, but the results thus far have been quite consistent in showing that in terms of behavioral efficiency, the conditions ranked from best to worst were as follows: NAP + caffeine, NAP + placebo, TSD + caffeine, TSD + placebo condition (see Table 2 and Figures 12, 13, 14, 15, 16). The most serious performance failure involves falling asleep (sleep attacks = SA) at computer console. Table 2 clearly reveals the fact that SA data for the 54 subjects thus far analyzed shows the clear advantage NAP conditions had over TSD conditions in preventing sleep attacks.

<table>
<thead>
<tr>
<th>Experimental condition</th>
<th>n</th>
<th>subjects who had >1 SA</th>
<th>% of subjects who had >1 SA</th>
<th># of trials with >1 SA</th>
<th>total number of SAs</th>
<th>time within 88-hr period for 1st SA (hr)</th>
<th>time of day for 1st SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSD + placebo</td>
<td>14</td>
<td>8</td>
<td>57%</td>
<td>29</td>
<td>173</td>
<td>23</td>
<td>06:00</td>
</tr>
<tr>
<td>TSD + caffeine</td>
<td>12</td>
<td>5</td>
<td>42%</td>
<td>16</td>
<td>59</td>
<td>23</td>
<td>06:00</td>
</tr>
<tr>
<td>NAP + placebo</td>
<td>13</td>
<td>2</td>
<td>15%</td>
<td>3</td>
<td>3</td>
<td>72</td>
<td>08:00</td>
</tr>
<tr>
<td>NAP + caffeine</td>
<td>15</td>
<td>2</td>
<td>13%</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>10:00</td>
</tr>
</tbody>
</table>

Analyses completed on the performance assay most sensitive to sleep loss and jet lag (i.e., lapses on the psychomotor vigilance task [PVT], which was invented in our laboratory) indicate that sustained low-dose caffeine reduced the frequency of lapses for up to 22 hr of administration (i.e., through the entire second day of TSD, thereby extending behavioral efficiency for up to 44 hr of TSD) relative to the placebo control condition (p = 0.02). Figures 12, 13 and 14 display the PVT results. Caffeine also tended to improve the fastest reaction times (p = 0.06) as shown in Figure 13. However, it had no effect on cognitive throughput tasks such as digit symbol substitution performance (Figure 15), or on short term memory performance (Figure 16), both of which
tended to occur in the latter portion of each performance test bout. Most remarkable was the complete absence of a main effect or interaction over time from caffeine on any of the subjective scales used to measure sleepiness (Figures 17 and 18), fatigue (POMS), alertness (VAS), or effort required to remain awake. All of these subjective dimensions only showed significant main effects (i.e., deterioration) over the 88 hr TSD period (p < 0.00001). Although remarkable, the failure to find statistically significant effects of sustained low dose caffeine intake for 66 hours on all subjective measures was consistent with the fact that when asked to indicate what drug they thought they had receive each hour of the trial, subjects were completed unable to reliably detect (i.e., better than chance) whether they were receiving caffeine or placebo! This suggests that the effects of caffeine on performance were not due to placebo effects or demand characteristics, but rather, reflected genuine caffeine-induced performance enhancements in psychomotor vigilance.

Although sustained plasma levels of caffeine after a night without sleep tended to improve performance for at least 22 hours, the alertness-promoting effects of caffeine were small in comparison to the repeated nap countermeasure. Permitting subjects to sleep for up to 2 hours every 12 hours (i.e., for no more than 3.7 hours per day for 4 consecutive days, markedly improved all performance outcomes relative to total sleep deprivation across the 88 hours (Figures 12–16)—in many cases holding performance near baseline levels. However, like caffeine, the effects of naps were not detectable in subjective ratings of sleepiness/alertness (Figures 17-18).

Figures 12 through 18: Open squares = TSD + placebo condition. Open triangles = TSD + caffeine condition. Closed diamonds = NAP + placebo condition. Closed circles = the NAP + caffeine condition. In all Figures, hourly administration of caffeine or placebo pills began at 22 hours time awake and ended at 86 hours.

Figure 12. PVT performance lapses (lower values = better performance).
Figure 13. PVT fastest RTs performance (lower values = better performance).

PVT Fastest 10%

time of day

reaction time

Figure 14. PVT slowest 10% (1/RT) performance (higher values = better performance).

PVT Slowest 10%

time of day

1 / reaction time

13
Figure 15. Digit symbol substitution task (DSST) performance (higher values = better performance).

Figure 16. Probed recall memory task (PRM) performance (higher values = better performance).
Figure 17. Stanford Sleepiness Scale (SSS) ratings (higher values = sleepier).

Stanford Sleepiness Scale

Figure 18. Karolinska Sleepiness Scale (KSS) ratings (higher values = sleepier).

Karolinska Sleepiness Scale
(7) Results – Effect of caffeine on sleep inertia.

Sleep inertia refers to the period of impaired performance upon awakening from sleep. It can be especially severe and prolonged when the awakening is abrupt and the sleep follows a period of total or partial sleep deprivation. Analyses were performed to determine whether sustained low dose caffeine had an effect on sleep inertia (as evident in PVT and cognitive performances) in the NAP conditions. Sleep inertia was evident in PVT performance, but not in cognitive performance, probably owing to the latter occurring later in the test bout. As expected, a significant main effect for days of sleep restriction was found (p = 0.001), revealing that PVT performance lapses increased over days of extended wakefulness in the NAP conditions irrespective of caffeine/placebo condition. Furthermore, a significant main effect of circadian phase was observed (p < 0.001), as performance lapses occurred more often during the night than during the day regardless of drug condition. Finally, there was a significant interaction of performance test bout by drug condition (p = 0.002). Performance lapses in the NAP + placebo condition showed dramatic sleep inertia effects in the test bout immediately following each nap. However, this impairment was not evident in the post-nap sleep inertia tests bouts of the NAP + caffeine condition. In fact, there were twice as many performance lapses in the test bout immediately after each nap relative to all other test bouts (p < 0.001). Consequently, an unexpected benefit of sustained low-dose caffeine was the elimination of the only negative performance consequence of naps (i.e., sleep inertia). This helps explain why the NAP + caffeine condition yielded the best performance of all conditions, despite the reduction in sleep efficiency produced by caffeine (see Figures 7-10). The caffeine elimination of sleep inertia lapsing can be seen in Figure 12, in that the NAP + caffeine condition does not show the periodic (12-hr) spikes in lapsing seen in the NAP + placebo condition. This is a new discovery, which suggests that sleep inertia can be blocked pharmacologically, and that the mechanism may be mediation by adenosine receptors. We have submitted a manuscript detailing this novel finding for rapid publication in a major scientific journal.

(8) Results – Sleep deprivation and immune function

In order to identify the effects of sleep deprivation, nap and caffeine countermeasures on human immune function, blood gathered every 6 hr in the protocol was analyzed by enzyme-linked immunoassays for selected cytokines and their soluble receptors including sTNF-αRI, sTNF-αRII, IL-6, sIL-2R, IL-10, and TNF-α. Caffeine had no differential effects on plasma levels of these cytokines or their receptors. However, interactions between the effects of time in 88-hr period and sleep deprivation level (TSD vs. NAP) were detected for sTNF-αRI and IL-6, but not for sTNF-αRII, sIL-2R, IL-10, and TNF-α. Figure 19 shows the TSD results for sTNF-αRI. Relative to the NAP condition, subjects in the TSD condition had elevated plasma levels of sTNF-αRI on day 2 (p = 0.04), day 3 (p = 0.01) of the 88-hr period, and across days 2-4 of total and partial sleep loss (p = 0.01), and elevated levels of IL-6 on the final day of the 88-hr period (p = 0.04). These changes appeared to reflect elevations of the homeostatic drive for sleep, since they occurred in TSD but not the NAP conditions, suggesting that naps may also serve as a countermeasure to inflammatory responses to sleep deprivation.

Figure 19. Plasma sTNF-αRI levels from TSD conditions.
B. Brigham and Women's Hospital/Harvard Medical School—Dr. Charles A. Czeisler, P.I.

The primary experimental study conducted at the Brigham and Women’s Hospital / Harvard Medical School site involved a new forced desynchrony protocol developed to address the specific aims and test the effects of caffeine on the endogenous circadian pacemaker and homeostatic drive for sleep. Prior to the beginning of the active grant period, we had investigated the interaction of sleep homeostasis and circadian rhythmicity in which the rest-activity cycle was scheduled to a 28-hr, 20-hr or 11-hr period. To investigate the interaction of sleep homeostasis and circadian rhythmicity in conditions in which wakefulness is extended to durations such as occur during Air Force operations, we successfully implemented a new forced desynchrony protocol. In this 29-day protocol subjects were scheduled to a 42.85-hr cycle on which they are scheduled to be awake for 28.57 hr (2/3 of 42.65 hr) and scheduled to sleep for 14.28 hr. This 42.85 hr schedule was started after 3 baseline days. A total of N = 16 subjects successfully completed this protocol.

(1) Subject selection and study protocol.

Prior to the inpatient study, each prospective subject received an extensive medical and psychiatric screening. Subjects who responded to advertisements in the community were given a brief telephone screening to determine initial suitability and interest. Next came a medical history and physical examination from a physician, a standard panel of blood and urine chemistries, a 12-lead EKG, and a urine toxicological analysis. Subjects also had to score within the normal range on a series of standard psychological and sleep questionnaires, to rule out self-reported psychiatric or sleep disorders. Next they met with a clinical psychologist or psychiatrist to rule out personal or first-order relative history of past or present major psychopathology. Finally, subjects were interviewed by an Investigator to determine suitability for the protocol and given a complete informed consent briefing, concluding with obtaining full written informed consent. Subjects successfully completing all stages of the screening process were required to maintain a regular sleep/wake schedule for at least two weeks prior to participating, and were asked to refrain from intake of any caffeine, nicotine, alcohol, prescription or over-the-counter medications, health food supplements, or illicit substances. Compliance with the sleep/wake schedule was verified by requiring the subjects to telephone a time-stamped voicemail system prior to going to bed and after waking up, and through estimations of sleep and wake from wrist actigraphic monitoring. Drug-free status was verified with a second urine toxicological analysis upon admission to the study unit.

A total of 16 healthy, young men (ages 18-30 years) were studied in this 29-day, inpatient research protocol (see Figure at right). Following an initial baseline assessment interval consisting of 3 days of 8-hr sleep episodes and 16-hr wake episodes scheduled to occur on their habitual, pre-study schedule, subjects were placed on a “forced desynchrony protocol.” Enforced wakefulness was maintained for 28.57 hr and subjects were required to remain in bed for 14.28 hr. This “42.85-hr day” (versus the standard “24-hr day”) was repeated for 14 cycles. Thus, with the sleep/wake schedule outside the range of entrainment of the intrinsic circadian timing system, with light exposure during scheduled wake episodes being maintained at levels low enough (< 15 lux) to have a minimal circadian phase shifting or entraining effect, and with subjects maintained in an environment free of obvious
information about time, the circadian timing system of each subject “free ran” at the intrinsic period, which averages 24.18 hr.

This protocol allowed for simulations of multiple conditions relevant to Air Force operations: extended hours of enforced wakefulness (28.54 hr), night operations (a portion of each wake episode occurred during the range of circadian phases of the subjective night), and jet lag (each sleep and wake episode was initiated at a different circadian phase).

The ingestion of low-dose, repeated administration caffeine capsules was tested as a countermeasure to the deficits in neurobehavioral functions observed during times of sleep loss with encountered across a full range of circadian phases. All subjects ingested placebo capsules hourly during scheduled wake episodes in the three baseline days. During forced desynchrony, half (n = 8) received only placebo capsules and half (n = 8) received a low dose of caffeine (0.3 mg/kg/hr). Again, each subject ingested a capsule each hour during scheduled wakefulness, and double-blind conditions were maintained throughout the study. It was initially thought that we might need to assess a higher dose of caffeine (0.6 mg/kg/hr) to significantly attenuate neurobehavioral deficits during extended wakefulness across a full range of circadian phases, but our initial mathematical modeling in combination with plasma assays for caffeine level in our first few subjects clearly indicated that a higher dose would exceed our desired maximal dose, risking possible side effects (e.g., diuresis, psychomotor agitation).

Intensive physiological monitoring was conducted on subjects throughout the protocol. Circadian phase, amplitude, and free-running period were determined from two measurements of oscillating biological processes regulated by the intrinsic circadian timing system – core body temperature and plasma melatonin. Subjects wore rectal temperature sensors throughout the experiment, which allowed for minute-by-minute recording of core body temperature. An indwelling, forearm intravenous catheter allowed collection of hourly blood samples for analysis of circulating melatonin levels, as well as determination of caffeine level of those subjects receiving caffeine capsules. Statistical procedures for estimating circadian phase, amplitude, and free-running period are described in Czeisler et al., 1999 (published in Science).

Comprehensive neurobehavioral assessment batteries were delivered via computerized system each 2-hr during scheduled wakefulness throughout the protocol. These 30-minute assessments were monitored by research staff to ensure subjects maintained wakefulness and continued to put forth reasonable effort. This battery was comparable to the one given at the University of Pennsylvania site, to allow for future data comparisons between the related protocols and comparable dependent variables for the biomathematical modeling. The assessments consisted of the following measures:

- Karolinska Sleepiness Scale (KSS): subjective sleepiness
- Psychomotor Vigilance Task (PVT): visual motor, simple reaction time and visual vigilance
- Probed Recall Memory task (PRM): cued-recall, short-term memory for visually-presented verbal material
- Addition Task (ADD): mental calculation and cognitive throughput
- Digit Symbol Substitution Task (DSST): number-to-symbol matching and cognitive throughput
- Nonlinear Tracking Task (TRACK): psychomotor steadiness and visual motor tracking
- Karolinska Drowsiness Test (KDT): electrophysiological measures (scalp EEG and eye-movement recording) under standardized, unstimulated, sedentary conditions
- Fitness and mood scales (MOOD): visual analog scales for self-reporting of physical and mental status
- Performance Evaluation and Effort Rating Scales (PEERS): self-report of amount of effort expended to achieve a certain level of estimated performance

Following data collection, each experimental neurobehavioral measurement was assigned values for duration of prior scheduled wakefulness and circadian phase. Thus, it was possible to separately average data points, first within subject and then across subjects within drug condition, by either circadian phase bin or by bin of prior scheduled wakefulness. This process allows for determination of the independent sleep/wake
homeostatic and circadian contributions to the modulation of waking neurobehavioral functioning. Similar procedures were carried out for analysis of the polysomnographic (sleep recording) data. In addition, this procedure allowed for determination of the complex, nonlinear interaction of the sleep/wake homeostatic system in its regulation of the amplitude of circadian system’s modulation of waking neurobehavioral functioning and sleep structure, as described below for the results. Data were compared across subjects by drug condition with repeated measures analysis of variance (rANOVA). The Huynh-Feldt correction for sphericity was applied, but the original degrees of freedom are reported. Post hoc analyses utilized the T-test for least significant differences (T[LS]) All analyses were conducted with SAS software (Version 6.12 for PC).

For the figures below, the left panels represents data averaged with respect to duration of prior wakefulness, to address the sleep homeostatic component of sleep and neurobehavioral regulation. The right panels represents data averaged with respect to the maximum level of endogenous melatonin, which corresponds approximately to the middle of the habitual nocturnal sleep episode, and illustrates the circadian modulation of sleep and neurobehavioral measures.

(2) Results – Caffeine plasma levels.

As indicated in the figure (at left), plasma caffeine levels rose in parallel to the hypothesized wake-dependent increase in homeostatic sleep pressure. However, as expected, we did not observe circadian modulation of plasma caffeine levels. In general, caffeine levels built up gradually throughout the course of the protocol, and were not entirely cleared from the plasma at the time of the beginning of subsequent wake episodes.

(3) Results – Neurobehavioral assessments.

As illustrated in the figures above and below, there was modulation of all neurobehavioral measures based on the duration of prior scheduled wakefulness (left panels) and circadian phase (right panels) for the subjects receiving only placebo during the protocol. However, for the two cognitive throughput tasks (ADD and
DSST, above), caffeine administration significantly attenuated the wake-dependent impairment of performance. Thus, although subjects in both drug groups began each wake episode with comparable levels of performance, subjects receiving caffeine evidenced very little impairment across these 28.54-hr long wake episodes.

As illustrated in the two figures directly above, caffeine did not appear to significantly impact wake-dependent impairments on the short-term memory (PRM) or psychomotor vigilance tasks (PVT). However, there is suggestive evidence that a beneficial effect of caffeine effect was just beginning to emerge at the end of the wake episodes, which may have become more pronounced with even greater durations of enforced wakefulness, as occurred in the University of Pennsylvania study, where sustained wakefulness episodes in the TSD conditions extended to 88 hours, which is well beyond our 28.56-hr wake episodes.

Regardless of drug condition, subjects rated themselves as more sleepy the longer they were forced to remain awake, and also when wakefulness occurred at the circadian phase just following the maximum of endogenous melatonin secretion. Interestingly, subjects who received caffeine rated themselves as significantly sleepier on two measures of alertness/sleepiness (KSS and VAS, directly above), essentially irrespective of duration of prior wakefulness or circadian phase. To explore this intriguing finding further, we compared the drug conditions for the first wake episodes, when all subjects had been in the laboratory for the preceding three days under normal sleep and wake conditions, and had been receiving only placebo capsules. For only this first long wake episode (see below, left), subjects who received caffeine capsules did not self-report higher levels of sleepiness. This finding reversed itself in subsequent wake episodes, and thus, it is hypothesized that there may be a differential acute versus chronic effect of caffeine administration on waking reports of sleepiness.
(4) Results – Polysomnographic data.
As illustrated above (right figure), caffeine ingestion appeared to significantly decrease sleep efficiency when sleep was scheduled near the minimum of endogenous plasma melatonin secretion. This corresponds to the time interval at the end of the habitual 16-hr wake episode under a normal sleep/wake cycle. Thus, at the time when the intrinsic circadian timing system is maximally promoting wakefulness, caffeine ingestion can add to this wake promoting, sleep impairing effect. This could have important implications for the use of caffeine as a wake promoting therapeutic for round-the-clock operations. The result is consistent with the finding at the University of Pennsylvania site that caffeine reduced sleep efficiency in the NAP + caffeine condition. AT both sites, further analyses are underway to explore potential indications of more subtle sleep disruption related to caffeine, through the use of power spectral analysis of the sleep electroencephalogram recordings.

(5) Further development of biomathematical models of neurobehavioral functions.
Dr. Megan Jewett, Dr. Richard Kronauer and graduate student Daniel Forger have worked extensively to validate the component of the biomathematical model of neurobehavioral function that predicts the effect of light on the human circadian pacemaker that they revised in previous years. This pacemaker model drives the circadian components of alertness and performance in the models of neurobehavioral function. While previous versions of the light model have been unable to accurately predict the response of the human circadian pacemaker to brief stimuli and stimuli of low light intensity, their revised model, consisting of a dynamic light stimulus pre-processor (called Process L) and a circadian pacemaker (called Process P), can accurately predict a wide range of experimental data, including circadian phase resetting and amplitude suppression. They then went on to identify a simpler (lower-order) set of equations for Process P that also could accurately predict the response of the circadian pacemaker to light stimuli. This work was published as three reports in a special issue of the Journal of Biological Rhythms, Dec. 1999 (edited by Drs. Jewett, Czeisler and Borbély). This issue contained the proceedings of an international workshop entitled Biomathematical Models of Circadian Rhythmicity, Sleep Regulation and Neurobehavioral Function in Humans, May 1999, that was organized by Dr. Jewett, chaired by Drs. Czeisler and Borbély, and funded, in part, by the AFOSR. Finally, Mr. Forger, under the supervision of Dr. Kronauer, has developed a preliminary analysis demonstrating that a 10-variable molecular model of the drosophila circadian pacemaker can be mathematically simplified to approximate the features of the validated model of Process P for humans. This work was presented at the international meeting of the Society for Research in Biological Rhythms in May 2000.

Dr. Megan Jewett has continued to refine and validate her mathematical models of neurobehavioral function. A full description of the development, refinement and validation of mathematical models of subjective alertness and cognitive throughput was published in the special issue of the Journal of Biological Rhythms, Dec. 1999. Dr. Jewett has developed a preliminary model of psychomotor vigilance using data collected in the
studies in both Dr. Czeisler’s (Harvard) and Dr. Dinges’ (University of Pennsylvania) laboratories. This model is able to accurately predict the increase in the number of lapses of attention that occurs during sleep deprivation. Dr. Jewett is currently refining that preliminary model, as well as investigating alternative parameters of the psychomotor vigilance test that may best describe overall performance and assessing the best method to eliminate long-term learning effects from data used in model development. Finally, Drs. Jewett and Kronauer are considering alternate functions to describe the homeostatic effects of sleep and wakefulness on human performance that are mathematically preferable to the current functions (e.g., have a slope > 0 at the maximum, can be easily integrated, etc.) and that better describe the recovery of neurobehavioral function during sleep in cumulative partial sleep deprivation data collected in the laboratory of Dr. David Dingess.

C. Stanford University School of Medicine—Dr. Dale M. Edgar, P.I.

The third set of major research projects undertaken in the Center involved studies on the effects of a number of wake-promoting substances in animal models. This component is vital to the continued identification and development of optimal pharmacological countermeasures to performance-imparing fatigue in Air Force operations. Dr. Edgar and colleagues at the Stanford University School of Medicine completed these projects.

(1) Compensatory sleep responses to drug-induced wakefulness.

Our ongoing studies of wake-promoting therapeutics have included repetitive administration protocols and sustained drug delivery protocols. Both address tolerance and withdrawal issues associated with prolonged use of stimulants involving the dopamine transporter. These studies are critical toward assessing the practical utility of developing selective dopamine reuptake blockers or other somnolytic agents for clinical trials in humans. To establish practical benchmarks, we first evaluated the sleep-wake efficacy of once-weekly treatments of pemoline, GBR12909, methamphetamine and cocaine. Methamphetamine and cocaine are used here as benchmark representatives of drugs with known abuse liability. Each of these drugs retained efficacy (showed little or no tolerance effects) when used in at this frequency. These drugs also exhibited no appreciable wake-promoting sensitization. However early indications suggest that there may be sensitization to the response characteristics of compensatory sleep; that is, repeat administration of dopamine releasing agents (methamphetamine or higher doses of cocaine) may elicit more severe hypersomnolence with repeat administration, even if wake-promoting efficacy remains unaffected or decreases with tolerance. These results point to additional needed studies to assay the safety of somnolytic agents through chronic treatment paradigms. We have initiated chronic treatment studies with cocaine (class example benchmark for drugs of abuse). Cocaine was administered continuously for 7 days via a minipump (10 mg/kg/day and 20mg/kg/day). Sleep-wakefulness was monitored continuously for 21 days using SCORE (see below for a description). Chronic treatment produced wakefulness that resulted in tolerance after 3 days. Upon drug withdrawal, there was no change in NREM sleep, but a marked decrease in REM sleep lasting 3 days. Interestingly, the wake-promoting action of the drug was never compensated through elevated sleep time at any point throughout the study. These data constitute critically important benchmark data on which to preclinically assess the effects of sustained delivery/use of other wake-promoting therapeutics (modafinil, GBR12909, pemoline, etc).

(2) Results – Modafinil mechanism of action.

In the course of our AFOSR sponsored research we have shown that selective dopamine reuptake inhibitors can promote wakefulness without invoking rebound hypersomnolence. In many cases (e.g., GBR12909, pemoline) the NREM sleep displaced by drug-induced wakefulness is never compensated. We therefore created class definitions for “somnolytic” (Edgar 1994) wake-promoting therapeutics. The mechanism of action of modafinil, which also has somnolytic properties, has eluded investigators for some time. Since the only “known” receptor that modafinil binds to involves the dopamine transporter (but with weak binding), we hypothesized that drug action at the transporter, even with weak affinity, could have wake-promoting action. We further postulated that the dopamine transporter was necessary for modafinil, GBR12920, and methamphetamine wake-promoting action, but not for the wake-promoting action of caffeine. To test this
hypothesis we gave each of these drugs to mice that genetically lack functional dopamine transporters (DAT). Modafinil efficacy was completely blocked in the DAT knockout mice. Likewise for GBR12909 and methamphetamine. However caffeine efficacy actually increased (e.g., was more potent) in DAT mice. Taken together, these findings support our hypothesis that (1) modafinil's mechanism of action is mediated by the dopamine transporter, and (2) dopamine and adenosine receptors interact as opposing elements of the opponent process mechanisms of sleep regulation. Dopamine activation of D1 receptors may indeed counteract adenosine's sleep promoting action at adenosine A1 receptors through coupled interactions. Modafinil has an outstanding pharmacodynamic profile and is now indicated for disorders of excessive sleepiness and may have important applications in SUSOPS. This study has been submitted for publication in J. Neuroscience. Modafinil is therefore a prime candidate.

(3) Results – SCORE-2000.

One of our major objectives in the last 6 months of this research program was to upgrade our SCORE™ technology from a DOS operating system environment to state of the art computer platform. We have completed this effort with the creation of SCORE-2000™. This new pre-clinical sleep-wake bioassay system is fully compatible with our existing SCORE™ Sleep-Wake Bioassay Database and data management systems. The new SCORE-2000 system monitors 16 animals per computer, can ultimately employ up to 5 scoring algorithms simultaneously together with consensus algorithms to make consensus state scoring decisions much the way teams of humans would evaluate data. The new SCORE technology samples EEG and EMG in real time and at 4 times the rate of the older SCORE technology – thus the new SCORE-2000 can do real-time digital filtering and real-time artifact detection. The data collection side of SCORE-2000 operates on top of Linux, using inexpensive entry-level servers with RAID-0 data redundancy. Data redundancy/security is further assured by automatically transferring SCORE data over highly secure (128 bit RSA certified tunneling protocols) to a centralized SCORE Database server. But the real power of the new SCORE-2000 technology derives from its accessibility via the Internet. A SCORE-2000 Linux data collection system (referred to as a “SCORE-2000 node”) can be set up as a turn-key system anywhere in the world, while operated form a centralized study control center (e.g., our lab at Stanford). All data from the SCORE-2000 node is visualized in real time via Windows-2000 based SCORE-2000 Monitoring Workstations and appropriately configured Windows-98 notebook systems. As an example, data collection from Black Bears in Fairbanks Alaska can now be fully monitored and controlled as efficiently from Stanford as from the SCORE-2000 console at Fairbanks. SCORE system performance and study protocols can also be directly monitored by the Principal Investigator while he/she is traveling to give presentations. This technology is unique, has important implications for centralized pre-clinical and clinical research practices, and will greatly enhance pre-clinical research outreach efforts, all of which should accelerate the process of bring new sleep-wake drugs to the market and identifying sleep-wake side effects in all other drugs.

Recognizing the value of this technology Dr. Edgar, Dr. Mignot, and 3 other colleagues founded a company called Hypnion, Inc. This company is a direct transition of AFOSR-PRET efforts conducted at Stanford University. The company has licensed SCORE™, SCORE-2000™ and the SCORE Sleep-Wake Pharmacology Database (which also constitutes an AFOSR-PRET technology transition into industry).

(4) Results – Photic phase response curve in the Octodon degus.

Studies at Stanford laboratory established that the photic phase response curve in the Octodon degus, a mammal that can exhibit both diurnal and nocturnal activity phase preferences (Kas & Edgar, J. Neuroscience, PRET-sponsored research) are the same as the prototypical PRC for virtually all other organisms. These findings are critically important for the development of novel phase shifting agents or light treatment strategies. This work is now described in a published paper (Am. J. Physiol. 278: R1385-R1389, 2000).

(5) Results – Caffeine administration during sleep deprivation.

This study investigated the effects of caffeine on attempts to sleep during sleep deprivation and
subsequent compensatory sleep response. This study has been completed and has been accepted in a peer-reviewed publication (Wurts, SW, and Edgar DM: Caffeine during sleep deprivation: Sleep tendency and dynamics of recovery sleep in rats. Pharmacol. Biochem. Behav., 65: 155-162, 2000). Results show sustained caffeine efficacy toward reducing sleep attempts during the course of sleep deprivation.

(6) Results – Sleep deprivation.
This study has been completed and is described in a published manuscript (Sleep 22: 1045-1053, 1999). The research provides evidence for SCN-dependent alerting mechanisms that oppose homeostatic sleep drive in a crepuscular rodent, confirming the generality of “opponent Processes” in mammalian sleep-wake regulation.

(7) Results – Non-photic entrainment in the Octodon degus.
This study has been completed and has been accepted for publication in the Journal of Biological Rhythms. The study shows that exercise-related non-photic stimuli can have complex interactions on period and phase control.

(8) Results – Light-Dark cycle masking of sleep-wakefulness in the Octodon degus.
The purpose of this study was to determine if the activity-dependent reversal of active-phase preference (e.g. reversal from diurnal to nocturnal) reverses the animals’ phenotypic masking response to light. Normally light increases activity in diurnal species and inhibits activity in nocturnal species. Our experiments revealed that reversal of activity phase preference could also reverse masking responses, although not in 100% of the animals’ studies. Nonetheless, evidence for reversal in masking responses as a function of exercise in Octodon degus confirm our hypothesis that phase preference reversal occurs downstream from the pacemaker (e.g., is mediated by a polarity reversal element in a primary effector relay pathway that does not involve the timing elements of circadian pacemaker). This work has been written up for publication in Brain Research.

(9) Results – REM sleep deprivation studies in intact and SCN-lesioned rats.
The purpose of this experiment was to examine the dynamics of REM sleep recovery and potential modulation of this recovery by the circadian system. Intact and SCN-lesioned rats (lesions that experimentally inactivate the circadian time keeping system) were subjected to 24 hours of selective REM sleep deprivation using our unique NOSLEEP sleep-deprivation system (a variant of SCORE™) that was developed and implemented under this AFOSR grant. These studies suggest that, in addition to the well-documented non-REM sleep homeostatic process, a separate REM sleep homeostatic process exists in mammals. The data we have collected to date suggests that the recovery of REM sleep after selective REM sleep deprivation is not gated by the circadian system, however propensity to enter REM sleep during selective REM sleep deprivation is strongly modulated by circadian phase. A comprehensive report on this work is published in J. Neuroscience 20: 4300-4310, 2000.

4. PERSONNEL AND TRAINEES (N = 28) SUPPORTED BY CENTER

University of Pennsylvania:
David F. Dinges, Ph.D. Professor of Psychology in Psychiatry
Shiv Kapoor, Ph.D. Assistant Professor of Medicine
Martin P. Szuba, M.D. Assistant Professor of Psychiatry
Janet M. Mullington, Ph.D.* Post-doctoral Researcher
Naomi Rogers, Ph.D.* Post-doctoral Researcher
Hans P. A. Van Dongen, Ph.D.* Post-doctoral Researcher
Melissa M. Mallis, Ph.D.* Senior Computer/Technology Specialist
John W. Powell, IV, M.A.

24
Linda Mangino
Barbara R. Barras, M.B.A.
Marieke Dijkman, M.D.*
Nicholas Price*
Michele M. Carlin
Emily Carota Orne
Kelly A. Gillen, RPSGT
Claire G. Brodnyan, RPSGT
Christine M. Dingies
Sharon Kelley
Jennifer Law*
Matthew Martino*
Nicole Konowal*
Angela Kuo*
Natalie Denney*
Judd Flesch*
Beatrice Jauregui*
Sofiya Kuchuk*
Erica Levine*
Lucy MacGillis*

Harvard University:
Charles A. Czeisler, Ph.D., M.D.
Richard E. Kronauer, Ph.D.
Derk-Jan Dijk, Ph.D.
Christian Cajochen, Ph.D.*
Rod J. Hughes, Ph.D.
Megan E. Jewett, Ph.D.*
James K. Wyatt, Ph.D.*
Kenneth Wright, Ph.D.*
Joseph M. Ronda, M.S.
Angela Ritz-DeCecco, M.S.*
Ralph Todesco
Lisa DiFabio
Karen O'Hagen
Wendy Campanella
Sara Den Besten
Sara Dineen
Johnette Kao
David Rimmer
Eymand Reil
Val Saxe
Gerald Jayne
Lisa Bocelli
Brian Cade
Dorothy Chen
Deirdre Conroy
Theresa Kelly
Anthony Monacelli

Program Coordinator (9/99-present)
Program Coordinator (1995-8/99)
Pre-doctoral Trainee
Pre-doctoral Trainee, Biomedical Engineering
Research Associate, Project Manager
Research Associate
Physiological Monitoring Coordinator
Physiological Monitoring Coordinator
Research Associate
Research Associate
Research Associate
Research Associate
Undergraduate Honors Student/Behavioral Monitor
Undergraduate Honors Student/Behavioral Monitor
Undergraduate Student/Behavioral Monitor

Professor of Medicine
Professor of Applied Mathematics
Assistant Professor of Medicine
Instructor in Medicine
Instructor in Medicine
Instructor in Medicine
Post-doctoral Researcher
Computer Systems Manager
Research Graduate Student
Operations Manager
Administrative Secretary
Office Assistant
Research Assistant
Research Assistant
Research Assistant
Research Assistant
Sleep EEG Analysis Research Assistant
Chief Technician
Senior Research Technician
Technical Research Assistant
Patricia Poladori Technical Research Assistant
Jason Sullivan Technical Research Assistant
John Whittemore Technical Research Assistant
Zachery Zichitella Technical Research Assistant
Edward Silva Data Coordinator
David Wachs* Undergraduate Student/Research Assistant

Stanford University:
Dale M. Edgar, Ph.D. Associate Professor & Stanford AFOSR-PRET P.I.
William C. Dement, M.D., Ph.D. Professor of Psychiatry & Behavioral Sciences
Emmanuel Mignot, M.D., Ph.D. Associate Professor of Psychiatry & Behavioral Sci.
Seiji Nishino, Ph.D. Senior Research Scientist
Margaret J. Bradbury, Ph.D.* Post-doctoral Researcher
Foster Olive, Ph.D.* Post-doctoral Researcher
Jonathan P. Wisor, Ph.D.* Post-doctoral Researcher
Sarah (Sally) Wurts, Ph.D.* Doctoral Student (Sleep & Circadian Neurobiology)
Martien Kas, Ph.D.* Doctoral Student (Sleep & Circadian Neurobiology)
Laura Alexander SCORE Animal Health Technician
Sonia Baragan Research Administration
Katy Filikova Research Administration
Pamela Hyde Research Administration Manager
Tela Roche Research Administration
Susan Wise Assistant to Professor Edgar 3/97-6/97
Humberto Garcia SCORE Animal Surgery and Treatment
Wesley Seidel SCORE Bioassay and Database Manager
Ronny Tjon Electronics and Computer Technician
Mark Sergott Research and Database Assistant
Irene Linetskaya* Undergraduate Student/Research Assistant

*PRET Center Trainees (total N = 28)

5. LIST OF CENTER PUBLICATIONS

5A. 1995-2000 TOTAL N = 93 JOURNAL ARTICLES, CHAPTERS, REVIEWS, DISSERTATIONS SUPPORTED IN WHOLE OR IN PART BY THE CENTER

1995 (n = 3) Journal articles, chapters, reviews, dissertations

1996 (n = 4) Journal articles, chapters, reviews, dissertations

26

1997 (n = 24) Journal articles, chapters, reviews, dissertations

1998 (n = 12) Journal articles, chapters, reviews, dissertations

1999 (n = 33) Journal articles, chapters, reviews, dissertations

2000, in press, and submitted manuscripts (n = 17) Journal articles, chapters, reviews, dissertations

5B. 1995-2000 TOTAL N = 87 ABSTRACTS SUPPORTED IN WHOLE OR IN PART BY THE CENTER

1995 (n = 4) Abstracts

1996 (n = 7) Abstracts

1997 (n = 13) Abstracts

34

1998 (n = 23) Abstracts

1999 (n = 26) Abstracts

2000, in press (n = 14) Abstracts

5C. 1995-2000 Total N = 6 MANUALS AND TECHNICAL REPORTS SUPPORTED IN PART BY THE CENTER

6. PRESENTATIONS AT SCIENTIFIC MEETINGS, CONFERENCES (N = 152)

Reviews of AFOSR PRET Center Progress by External Scientific Advisory Board.
July 31, 1995, Philadelphia, PA (hosted by University of Pennsylvania)
June 11, 1997, San Francisco, CA (hosted by Stanford University)
July 17, 1998, Boston, MA (hosted by Harvard University)

1995-2000 Presentations (total N = 152)

1995 chronological (n = 3)

1996 chronological (n = 29)
D-J Dijk: “Role of the circadian pacemaker and sleep homeostasis in the regulation of sleep timing, sleep structure and the sleep EEG.” Invited lecture for the International Workshop on Basic Sleep Regulating Mechanisms (AA Borbely, I Tobler, P Achermann; organizers), Monte Verita, Ascona, Switzerland, March 1996.

DM Edgar: Scientific Program Committee, and symposium organizer, slide symposium presentation, and general symposium presentation entitled "Practical Circadian Biology in the Clinic and the Workplace." Society for Research on Biological Rhythms, Fifth Meeting, Amelia Island FL, May 8-12, 1996.

ME Jewett: Homeostatic and circadian components of subjective alertness interact in a non-additive manner during 48 hours of sleep deprivation. Invited presentation in the Young Scientists’ Symposium of the 13th Congress of the European Sleep Research Society. Brussels, Belgium, June 16-21, 1996.

J Wyatt: “Modulation of Neurobehavioral Functions by Circadian- and Sleep/Wake Dependent Processes.” Seminar, Endocrine Division, Brigham and Women's Hospital, Boston, MA, November 12, 1996.

DF Dinges: “Functional impact of sleep deprivation.” Harvard Medical School, Brigham and Women's Hospital, Boston, MA, November 16, 1996.

D-J Dijk: “Quantifying the contribution of circadian and homeostatic processes to sleep propensity, sleep structure, alertness, and mood in healthy subjects.” Seminar, NIMH, Psychobiology Branch, Bethesda, MD, 1996.

1997 chronological (n = 23)

DM Edgar: “Circadian and homeostatic control of sleep-wakefulness: Relevance in the treatment of sleep disorders.” Sleep Disorders Medicine Silver Anniversary Symposium, Treatment Strategies for

1998 chronological (n = 29)

DM Edgar: "Wakefulness-Promoting Therapeutics and Sleep Homeostasis," Grand Rounds, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, October 29, 1998.

CA Czeisler: Keynote Speaker NSF Center for Biological Timing and National Center for Sleep Disorders Research, NIH. Workshop on “What is sleep? What is it good for?” jointly sponsored by the National Center on Sleep Disorders Research, National Heart, Lung, and Blood Institute, National Institute of Mental Health, National Institute on Aging, and the National Science Foundation Center for Biological Timing, Dulles, Virginia, November/December, 1998.

DM Edgar: Workshop on "What is Sleep? What is it Good For?" jointly sponsored by the National Center on Sleep Disorders Research, National Heart, Lung, and Blood Institute, National Institute of Mental Health, National Institute on Aging, and the National Science Foundation Center for Biological Timing, Dulles, Virginia, November/December, 1998.

DF Dinges: "Sleep need and neurobehavioral vulnerability to sleep loss." Workshop on "What is sleep? What is it good for?" jointly sponsored by the National Center on Sleep Disorders Research, National Heart, Lung, and Blood Institute, National Institute of Mental Health, National Institute on Aging, and the National Science Foundation Center for Biological Timing, Dulles, Virginia, November/December, 1998.

DF Dinges: "Neurobehavioral determinants and consequences of sleepiness in a world that values wakefulness." Medical Grand Rounds, Yale School of Medicine, New Haven, Connecticut, December 16, 1998.

1999 chronological (n = 49)

CA Czeisler: "Ambient light intensity, actigraphy, sleep and respiration, circadian temperature and melatonin rhythms and daytime performance of crew members during space flight on STS90 and STS-95 missions." First Biennial Space Biomedical Investigators Workshop, League City, Texas, January 11-13, 1999.

ME Jewett: “Homeostatic and circadian regulation of neurobehavioral function.” Invited speaker for the Endocrine Research Conference, Endocrine-Hypertension Division, Brigham and Women’s Hospital, Boston, Massachusetts, April, 1999.

DF Dinges: “Key actions to reduce fatigue related accidents on the road and in the workplace – lessons we can learn from the aviation and military experience.” Transportation Seminar, Melbourne, Australia, July 28, 1999.

HPA VanDongen: “Sleep inertia following 2-hour naps occurring every 12 hours during 88 hours of partial sleep deprivation.” Congress Focus Group on Neuropsychology of Sleep and Awakening, World Federation of Sleep Research Societies, Dresden, Germany, October 7, 1999.

DF Dinges: “Sleep need and neurobehavioral function: Can we adapt to sleep loss?” Sleep Grand Rounds, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, December 8, 1999.

2000 chronological (n = 19)

DF Dinges: “Sleep deprivation-induced cytokine disturbances.” 56th Annual Meeting of the American Academy of Allergy, Asthma and Immunology, San Diego, California, March 6, 2000.

DF Dinges: "Dose-response effects of chronic sleep restriction on sleep and waking functions: Results from randomized controlled trials." 14th Annual Meeting of the Association of Professional Sleep Societies, Las Vegas, Nevada, June 20, 2000.

DF Dinges: "Field measurement of EDS." 14th Annual Meeting of the Association of Professional Sleep Societies, Las Vegas, Nevada, June 20, 2000.

7. CONSULTATIVE / ADVISORY TO OTHER LABORATORIES/AGENCIES (N = 42)

1995-2000 chronological (Total N = 42)
1. DM Edgar, Stanford University
 Institution: Air Force military staging areas in northern Alaska
 Activity: Collaboration in ongoing study of sleep-wakefulness in Alaskan Black Bears. Animals obtained from Air Force military staging areas in northern Alaska.
 Location: University of Alaska, Fairbanks, Alaska
 Dates: May 1995-present

2. DF Dinges, University of Pennsylvania
 Institution: AFOSR/NL, 11 Air Force personnel, 3 other academic consultants
 Location: Holloman AFB, NM
 Dates: January 4-5, 1996

3. DF Dinges, University of Pennsylvania
 KA Gillen, University of Pennsylvania
 EC Orne, University of Pennsylvania
 CA Czeisler, Brigham and Women's Hospital / Harvard Medical School
 DJ Dijk, Brigham and Women's Hospital / Harvard Medical School
 JK Wyatt, Brigham and Women's Hospital / Harvard Medical School
 ME Jewett, Brigham and Women's Hospital / Harvard Medical School
 JM Ronda, Brigham and Women's Hospital / Harvard Medical School
 R Kronauer, Harvard University
 E Yates, Alza Corporation
 Institution: Alza Corporation
 Activity: Consultation to standardize neurobehavioral and physiological protocols at University of Pennsylvania and the Brigham and Women's Hospital. Advisory discussion with Alza representative on use of caffeine.
 Location: Brigham and Women's Hospital / Harvard, Boston, MA
 Dates: February 14, 1996.

4. DF Dinges, University of Pennsylvania
 KA Gillen, University of Pennsylvania
 EC Orne, University of Pennsylvania
 CA Czeisler, Brigham and Women's Hospital / Harvard Medical School
 DJ Dijk, Brigham and Women's Hospital / Harvard Medical School
 JK Wyatt, Brigham and Women's Hospital / Harvard Medical School
 ME Jewett, Brigham and Women's Hospital / Harvard Medical School
 JM Ronda, Brigham and Women's Hospital / Harvard Medical School
 R Kronauer, Harvard University
 S Koretz, Alza Corporation
 E Yates, Alza Corporation

51
5. DF Dinges, University of Pennsylvania
 D-J Dijk, Brigham and Women's Hospital / Harvard Medical School
 T Akerstedt, Karolinska Institute
 MR Rosekind, NASA Ames Research Center
 G Haddad, AFOSR/NL
 A Gevins, SAM Technology, Inc.
 Institution: SAM Technology, Inc.
 Activity: Advisory discussion of how to utilize state-of-the-art EEG technologies for fatigue detection.
 New collaboration initiatives explored.
 Location: SAM Technology, Inc., San Francisco, CA
 Dates: July 31, 1996

6. DM Edgar, Stanford University
 DF Dinges, University of Pennsylvania
 Institution: Brown University
 Activity: Advisor to Dr. Mary Carskadon and Dr. Barbara Tate, Sleep studies in the Octodon degus.
 Location: Stanford University, Palo Alto, CA
 Dates: July 31 - August 2, 1996.

7. DF Dinges, University of Pennsylvania
 CA Czeisler, Brigham and Women's Hospital / Harvard Medical School
 MR Rosekind, NASA Ames Research Center
 G Haddad, AFOSR/NL
 RC Graeber, Boeing Commerical Airplane Group
 14 other Boeing employees
 Institution: Boeing Commerical Airplane Group
 Activity: Demonstration of new automated glass cockpits; presentation on PRET Center activity;
 advisory discussion of implications of PRET Center initiatives and findings in airplane design.
 Location: Boeing Commercial Airplane Group, Seattle, WA
 Date: August 1, 1996

8. DM Edgar, Stanford
 Institutions: Cephalon, Inc.
 Co-Censys, Inc.
 Glaxo SpA
 Gliatech, Inc.
 Neurogen, Inc.
 Smith-Kline Beecham Pharmaceuticals, UK
 Activity: Consultation and collaboration towards pre-clinical drug discovery of novel sleep-wake
 therapeutics and circadian rhythm phase-shifting medications.
 Location: Stanford University, Stanford, CA
 Date: August, 1996-August, 1997
9. DF Dinges, University of Pennsylvania
 Institution: Cephalon (Lynne Brooks)
 Activity: Expert advice on performance impairment from sleepiness.
 Location: University of Pennsylvania, Philadelphia, PA
 Dates: October 24, 1996

10. DF Dinges, University of Pennsylvania
 Institution: Wyeth-Ayerst
 Activity: Expert advice on performance impairment from dyssomnia and on sleep facilitation.
 Location: University of Pennsylvania, Philadelphia, PA
 Dates: November 5, 1996; August 19, 1997

11. DF Dinges, University of Pennsylvania
 Institution: NASA-Ames Research Center
 Activity: Countermeasures to performance impairment from fatigue: Study design and assessment.
 Location: Moffett Field, CA
 Dates: January 5-8, 1997
 June 9, 1997
 July 29-August 1, 1997

12. DF Dinges, University of Pennsylvania
 Institution: NASA-Johnson Space Center
 Activity: Selection of scientific and technical hardware for life science research on the International Space Station.
 Location: Houston, TX
 Dates: July 27-28, 1997

13. DM Edgar, Stanford University
 Institutions: Army Research Office and Stanford University
 Activity: Collaboration in support of studies investigating neurotrophin regulation during sleep deprivation (research sponsored by ARO, T. Kilduff, PI). Studies required use of the SCORE Sleep-Wake Bioassay Facility (Dr. Edgar’s laboratory) and the expertise of Dr. Edgar and his technical staff.
 Location: Stanford University, Stanford, CA
 Dates: August 1997-present

14. DF Dinges, University of Pennsylvania
 Institution: U.S. Department of Transportation (NHTSA, FHWA)
 Activity: Numerous consultations on standards for technologies to monitor drowsiness and fatigue during performance.
 Location: Washington, DC
 Dates: August, 1997 through August, 1999

15. DF Dinges, University of Pennsylvania
 Institution: Boeing Commercial Airplane Group, Human Factors Division
 Activity: Expert advice on incorporation of fatigue tracking technologies in the cockpit.
 Location: Seattle, WA
 Dates: May 20, 1998
16. DF Dinges, University of Pennsylvania
 Institution: NASA Ames Research Center
 Activity: Consultation on development of a Boeing 747-400 simulator study evaluating alertness of pilots during a night flight after prolonged wakefulness.
 Location: Moffett Field, CA
 Dates: May 21, 1998

17. DF Dinges, University of Pennsylvania
 Institution: NASA Ames Research Center
 Activity: Consultation on statistical analyses to be performed on “Alertness During a Night Flight After Prolonged Wakefulness: A Simulator Study.”
 Location: Moffett Field, CA
 Dates: August 17, 1998

18. DF Dinges, University of Pennsylvania
 Institution: Massachusetts Institute of Technology (NSBRI External Advisory Council)
 Activity: To review sleep deprivation effects on immune function.
 Location: Cambridge, MA
 Dates: September 3-4, 1998

19. DF Dinges, University of Pennsylvania
 Institution: NASA Johnson Space Center
 Activity: Discussion on fatigue, sleep and sleep assessment.
 Location: Houston, TX
 Dates: October 8, 1998

20. DF Dinges, University of Pennsylvania
 Institution: NASA Johnson Space Center (Dr. Chris Flynn)
 Activity: Advising flight surgeons on the measurement of fatigue and performance impairment in astronauts.
 Location: Houston, TX
 Dates: November, 1998

21. DF Dinges, University of Pennsylvania
 Institution: Carnegie Mellon Research Institute (CMRI)
 Activity: To review results from objective fatigue monitor on driver performance.
 Location: Pittsburgh, PA
 Dates: November 4, 1998

22. DF Dinges, University of Pennsylvania
 Institution: NASA Johnson Space Center
 Location: Houston, TX
 Dates: January 10-14, 1999

23. DF Dinges, University of Pennsylvania
 Institution: NASA Ames Research Center
 Activity: Planning and implementation of a Boeing 747-400 simulator study on objective monitors of
vigilance.
Location: Moffet Field, CA
Dates: February 6-8, 1999

24. DF Dinges, University of Pennsylvania
 Institution: Boeing Commercial Airplane Group, Human Factors Division
 Activity: Expert advice on incorporation of fatigue tracking technologies in the cockpit.
 Location: Seattle, WA
 Dates: February 9, 1999

25. DF Dinges, University of Pennsylvania
 Institution: Johnson Hopkins University Applied Physics Lab
 (NSBRI External Advisory Council)
 Activity: To review sleep deprivation effects on immune function.
 Location: Baltimore, MD
 Dates: February 22-23, 1999

26. DF Dinges, University of Pennsylvania
 Institution: Johns Hopkins University Applied Physics Lab
 Activity: Discussion on development of automated blood acquisition system.
 Location: Baltimore, MD
 Dates: April 23, 1999

27. DF Dinges, University of Pennsylvania
 Institution: U.S. Department of Transportation (FHWA)
 Activity: Discussion on development of objective, ocular-based measures of vigilance.
 Location: Herndon, VA
 Dates: April 26, 1999

28. DF Dinges, University of Pennsylvania
 Institution: NASA Ames Research Center (Dr. David Neri)
 Activity: Implementation of a Boeing 747-400 simulator study on objective monitors of vigilance.
 Location: Moffet Field, CA
 Dates: May 7, 1999

29. DF Dinges, University of Pennsylvania
 Institution: U.S. Department of Transportation (NHTSA)
 Activity: Review continuing validation and implementation of PERCLOS as an objective vigilance
detection system.
 Location: Moffet Field, CA
 Dates: May 13, 1999

30. ME Jewett, Harvard University
 Institution: Psychiatrische Universitätsklinik (Dr. Anna Wirz-Justice)
 Activity: Consult on circadian phase and amplitude assessment in patients with seasonal affective disorder.
 Location: Harvard University, Boston, MA
 Dates: June 1999-present

31. DF Dinges, University of Pennsylvania
32. DF Dinges, University of Pennsylvania
 Institution: National Institutes of Health (Dr. Michael Twery)
 Activity: Workshop on sleep and host defense.
 Location: Washington, DC
 Dates: August 24-26, 1999

33. DF Dinges, University of Pennsylvania
 Institution: National Transportation Safety Board (Mr. James Hall)
 Activity: Testimony to NTSB on technologies for fatigue detection.
 Location: Nashville, TN
 Dates: August 31, 1999

34. DM Edgar, Stanford University
 Institution: National Space Biomedical Research Institute (NSBRI)
 Activity: Service on Research Funding Announcement Development Group responsible for establishing NSBRI research objectives in the area of sleep and circadian rhythms.
 Location: Houston, TX
 Dates: October 25-26, 1999

35. CA Czeisler, Harvard University
 Rod Hughes, Harvard University
 DF Dinges, University of Pennsylvania
 Institution: Cephalon, Inc. (Dr. Frank Baldino)
 Activity: Discussion of studies needed on modafinil as a countermeasure to jet lag and sleep deprivation.
 Location: Boston, MA
 Dates: January 5, 2000

36. DF Dinges, University of Pennsylvania
 Institution: Brookhaven National Laboratory (Dr. Nora Volkow)
 Activity: Discussion of experimental plan for neuroimaging GABA receptors in sleep deprived subjects.
 Location: Brookhaven National Laboratory, NY
 Dates: February 9, 2000

37. DF Dinges, University of Pennsylvania
 Institution: MacArthur Foundation (Dr. Robert Rose)
 Activity: Mechanisms of the placebo response.
 Location: Naples, FL
 Dates: February 17-18, 2000

38. ME Jewett, Harvard University
 Institution: NASA Johnson Space Center (Dr. Chris Flynn)
 Activity: Discussion on fatigue and the use of mathematical models to determine appropriate timing of countermeasures.
 Location: Houston, TX
39. DF Dinges, University of Pennsylvania
 Institution: NASA Ames Research Center (Dr. David Neri)
 Activity: Review of research on fatigue management on the flight deck.
 Location: Moffet Field, CA
 Dates: March 7, 2000

40. ME Jewett, Harvard University
 Institution: Boston University (Dr. John Howland)
 Activity: Consultant on protocol design and use of PVT in studies of the effects of alcohol and sleep deprivation on performance in naval simulators.
 Location: Harvard University, Boston, MA
 Dates: May 2000-present

41. DF Dinges, University of Pennsylvania
 Institution: Walter Reed Army Institute of Research
 Activity: Review of WRAIR, USARIEM, and USAARL research programs on fatigue management and countermeasures.
 Location: Silver Spring, MA
 Dates: April 3, 2000

42. ME Jewett, Harvard University
 Institution: Stanford University (Dr. Norman Ruby)
 Activity: Consultant on limit cycle models and their application to circadian systems of Siberian Hamsters.
 Location: Harvard University, Boston, MA
 Dates: May 2000-present

Note: PRET Center investigators and industry partners also had a number of advisory and consultative communications via e-mail, telephone, fax, and in writing, as well as meetings specifically focused on methodological and technical aspects of the projects.

8. TRANSITIONS (N = 36)

1995-2000 Total N = 36

Provider: DF Dinges, CA Czeisler et al.
Recipient: Air Force Command Flight Surgeons and flight crews at Bolling AFB, Washington, DC
Application: Use of fatigue countermeasures in Air Force operations and deployment.

Provider: DF Dinges et al.
Recipient: Air Force Command Flight Surgeons and flight crews at Holloman Air Force Base, New Mexico
Application: Use of fatigue countermeasures in Air Force night operations and deployment.
Recipient: Lt. Colonel Lex Brown, Holloman Air Force Base, New Mexico
Result: Comparison of sleep need versus sleep duration of F117, F4, and HH60 pilots.
Application: Development of scheduling techniques.

Provider: DF Dinges et al.
Recipient: Lt. Colonel George Talley and Major Kimberly Grimes, Dover Air Force Base, Delaware
Result: Comparison of sleep need versus sleep duration of C5 aircrew.
Application: Development of scheduling techniques.

Provider: DF Dinges et al.
Recipient: Major Virgil Wooten, Langley Air Force Base, Virginia
Result: Comparison of sleep need versus sleep duration of F14 pilots.
Application: Development of scheduling techniques.

Provider: CA Czeisler, DM Edgar, DF Dinges et al.
Recipient: Air Force Command Flight Surgeons and flight crews at Brooks AFB, San Antonio, TX
Application: Use of fatigue countermeasures in Air Force operations and deployment.

Provider: CA Czeisler, DF Dinges et al.
Recipient: Air Force Command Flight Surgeons and flight crews at Hurlburt AFB, Pensacola, Florida
Result: Provided information on fatigue countermeasures and scheduling techniques for F117 crews.
Application: Use of fatigue countermeasures in the development of new scheduling techniques for F117 crews.

Provider: DM Edgar, DF Dinges et al.
Recipient: Air Force Command Flight Surgeons and flight crews at Charleston AFB, Charleston, SC
Result: Provided information on fatigue countermeasures and scheduling techniques for C-17 crews.
Application: Use of fatigue countermeasures in the development of new scheduling techniques for C-17 crews.

Provider: DF Dinges, CA Czeisler et al.
Recipient: RC Graeber, Boeing Commercial Airplane Group, Seattle, Washington
Result: Demonstration of new automated glass cockpits; presentation on PRET Center activity; advisory discussion of implications of PRET Center initiatives and findings in airplane design.
Application: Integration of information in cockpit design.

Provider: DF Dinges et al.
Recipient: RC Graeber, Boeing Commercial Airplane Group, Seattle, Washington
Result: Expert advice on incorporation of fatigue tracking technologies in the cockpit.
Application: Research and development of cockpits that incorporate fatigue monitoring technologies.

Provider: DF Dinges et al.
Recipient: Dr. Mark Rosekind, NASA Ames Research Center
Dr. R. Curtis Graeber, Boeing Commercial Airplane Group
Result: Results of experiments on restricted stimulation and posture on PVT performance lapses—potential for a metascore for performance capability.
Comparisons to extant data on PVT performance in aviators.

CA Czeisler, DF Dinges et al.

NASA - Johnson Space Center, Houston, Texas

Neurobehavioral test batteries used in the PRET Center program have been flown successfully aboard STS-90 (Neurolab) and STS-95 space shuttle missions.

Evaluation of astronaut performance capability.

CA Czeisler, DF Dinges et al.

NSBRI (National Space Biomedical Research Institute)

Three funded NSBRI projects interact with the PRET program, concerning the development of the biomathematical model for neurobehavioral function and assessment of circadian phase as well as the development of EEG/EOG based systems for the monitoring of vigilance and neurobehavioral performance capability.

Development of biomedical countermeasures for manned space flight.

DF Dinges et al.

NASA-Ames Research Center, Moffett Field, CA

Countermeasures to performance impairment from fatigue: Study design and assessment.

Design of a Boeing 747-400 simulator study on pilots evaluating alertness of pilots during a night flight after prolonged wakefulness.

DF Dinges et al.

NASA-Johnson Space Center, Houston, TX

Selection of scientific and technical hardware for life science research on the International Space Station.

Development of critically needed data on biomedical function in space flight.

DF Dinges et al.

NASA Ames Research Center, Moffett Field, CA

Consultation on development of a Boeing 747-400 simulator study evaluating alertness of pilots during a night flight after prolonged wakefulness.

Development and completion of a Boeing 747-400 simulator study on pilots evaluating alertness of pilots during a night flight after prolonged wakefulness.

DF Dinges et al.

NASA Ames Research Center, Moffett Field, CA

Consultation on statistical analyses to be performed on “Alertness During a Night Flight After Prolonged Wakefulness: A Simulator Study.”

Data analyses completed and results presented at Aerospace Medical Association Meeting.

DF Dinges et al.

Col. Gregory Belenky, Walter Reed Army Institute of Research

Psychomotor vigilance task (PVT) hardware and software.

Assessment of neurobehavioral function during cumulative partial sleep deprivation.

DM Edgar et al.

Army Research Office

Collaboration in support of studies investigating neurotrophin regulation during sleep.
deprivation.

Application: Studies required use of the SCORE Sleep-Wake Bioassay Facility (Dr. Edgar’s laboratory) and the expert research of Dr. Edgar and his technical staff.

Provider: DM Edgar et al.
Result: “Somnolytic index” and “locomotor activity intensity index” within the framework of the SCORE Sleep-Wake Bioassay.
Application: Pre-clinical drug screening indicator for process, application and safety decisions for advancing compounds to clinical trials.

Provider: CA Czeisler et al.
Recipient: Dr. T. Baker, Shiftwork Systems
Result: Biomathematical model of regulation of human alertness.
Application: Use of concepts derived from modeling effort to simulate shiftwork.

Provider: DF Dinges et al.
Recipient: North Atlantic Treaty Organization (NATO)
Result: Summary review of effects of melatonin on human sleep and performance.
Application: Evaluation of current potential of melatonin as a hypnotic and chronobiotic.

Provider: DM Edgar et al.
Recipient: Dr. Jeffrey Vaught and Dr. Patricia Contreras, Cephalon Inc.
Result: Pre-clinical assessment of modafinil in sleep-deprived rats.
Application: Wake promoting therapeutic for disorders of excessive sleepiness.

Provider: CA Czeisler et al.
Recipient: ALZA
Result: ALZA has reconfirmed their commitment to a cost sharing arrangement, which will be applied to the assessment of caffeine levels in plasma.
Application: Development of an electrochemistry patch for use of caffeine as a wake-promoting countermeasure in sustained operations.

Provider: CA Czeisler, DF Dinges et al.
Recipient: E Yates, Alza Corporation
Result: Consultation to standardize neurobehavioral and physiological protocols at University of Pennsylvania and the Brigham and Women's Hospital. Advisory discussion with Alza representative on use of caffeine.
Application: Development of an electrochemistry patch for use of caffeine as a wake-promoting countermeasure in sustained operations.

Provider: CA Czeisler, DF Dinges et al.
Recipient: TL Baker, Shiftwork Systems; S Koretz, E Yates Alza Corporation
Result: Meeting of PRET investigators and industry partners to discuss transition of PRET products and developmental issues.
Application: Development of an interactive computer program that provides a mathematical algorithm for scheduling countermeasure deployments.
Provider: DF Dinges et al.
Recipient: A Gevins, SAM Technology, Inc.
Result: Advisory discussion of how to utilize state-of-the-art EEG technologies for fatigue detection.
Application: Development of an EEG based fatigue detection technology.

Provider: DM Edgar, DF Dinges et al.
Recipient: Dr. Mary Carskadon and Dr. Barbara Tate
Result: Advisor to Dr. Mary Carskadon and Dr. Barbara Tate, Sleep studies in the *Octodon degus*.
Application: Studies of behavioral arousal in diurnal rodent model.

Provider: DM Edgar
Recipient: University of Alaska, Fairbanks, Alaska
Result: Collaboration in ongoing study of sleep-wakefulness in Alaskan Black Bears Animals obtained from Air Force military staging areas in northern Alaska.
Application: Studies of how a mammalian model copes with extreme environments.

Provider: DM Edgar et al.
Recipient: Cephalon, Inc.; CoCensys, Inc.; Glaxo SpA; Gliatech, Inc.; Neurogen, Inc.; Smith-Kline Beecham Pharmaceuticals, UK.
Result: Consultation and collaboration towards pre-clinical drug discovery of novel sleep-wake therapeutics and circadian rhythm phase-shifting medications.
Application: Discovery of new wake promoting therapeutics for maintaining alertness.

Provider: DF Dinges et al.
Recipient: Lynne Brooks, Cephalon
Result: Expert advice on performance impairment from sleepiness.
Application: Novel ways to use modafinil (wake-promoting therapeutic) in promoting human alertness in operational settings.

Provider: DF Dinges et al.
Recipient: Wyeth-Ayerst
Result: Expert advice on performance impairment from dyssomnia and on sleep facilitation.
Application: Novel way to use rapidly acting sleep aids in promoting sleep in operational settings.

Provider: CA Czeisler, DF Dinges, DM Edgar et al.
Recipient: Air Force Office of Scientific Research (AFOSR), NASA and National Space Biomedical Research Institute (NSBRI) et al.
Result: Workshop on Biomathematical Models of Circadian Rhythmicity, Sleep Regulation, and Neurobehavioral Function in Humans.
Application: Use of biomathematical models for optimizing human functioning.

Provider: DM Edgar
Recipient: Hypnion, Inc., Worcester, MA
Result: Creation of new sleep Biotechnology Company founded upon the SCORE sleep-wake bioassay technology and SCORE Sleep-Wake Pharmacological Database.
Application: Commercial screening of drugs for sleep-wake effects and/or side effects. Hypnion also has in-licensing efforts to identify novel safe & effective soporific drugs and wake promoting therapeutics for maintaining alertness.
9. NEW DISCOVERIES, INVENTIONS, PATENTS

SCORE-2000: AFOSR PRET funding, and equipment funding provided under DURIP, made possible the creation of a new-generation SCORE Sleep-Wake Bioassay system called SCORE-2000. This technology constitutes the most advanced pre-clinical sleep-wake bioassay system of its kind. SCORE-2000 technological advancements include expanded artificial intelligence, compatibility with multi-algorithmic consensus scoring, expanded variable acquisition, double the animal capacity, and intrinsic Internet interface. The latter feature allows SCORE-2000 systems to serve as remote sleep-scoring nodes that can be fully monitored and controlled in real time from anywhere in the world via secure tunneling protocols in a Windows-2000 OS environment. A new security provision also allows control over user permissions. Completion of this work satisfies the proposed expanded PRET research & development objectives and goals of the DURIP. SCORE-2000 was obtained under a procurement agreement between Stanford Software Systems and Stanford University. The copyright to SCORE-2000 is owned by Dr. Dale M. Edgar (Center Co-P.I.), with exclusive sub-license authority granted to Stanford University. SCORE-2000 and the SCORE Sleep-Wake Pharmacology Database have been licensed to Hypnion, Inc. (Worcester, MA) for commercial drug discovery and development work. Dr. Edgar is a co-founder of Hypnion, Inc.

10. HONORS/AWARDS.

- **David F. Dinges, Ph.D.**
 - Fellow, Academy of Behavioral Medicine Research (1995)
 - Excellence in Teaching Award, University of Pennsylvania (1996)
 - Promotion to Associate Professor, Department of Psychiatry & Behavioral Sciences, Stanford University (1996)
 - Keynote Address, Association of Professional Sleep Societies (1998)
 - Dean's Award for Excellence in Basic Science Teaching, University of Pennsylvania School of Medicine (1999)
 - Professor of the Year, Biological Basis of Behavior, University of Pennsylvania School of Medicine (2000)
 - NASA TIGR Aviation Safety Award to the Fatigue Countermeasures Project Team for “Turning Goals into Reality” (2000)
 - President-Elect, Sleep Research Society (2000)
11. CENTER SCIENTIFIC ADVISORY BOARD

Civilian members
Professor Torbjorn Åkerstedt, Ph.D., Karolinska Institute, Stockholm, Sweden
Professor Gene Block, Ph.D., University of Virginia
Professor Robert Moore, M.D., Ph.D., University of Pittsburgh
Professor Adrian Morrison, DVM, Ph.D., University of Pennsylvania
Garrison Rapmund, M.D., Bethesda, MD
Mark Rosekind, Ph.D., Alertness Solutions, Mountain View, CA

Government agency members
Col. Greg Belenky, Walter Reed Army Institute of Research
Col. Lex Brown, Wright-Patterson Air Force Base
Commander David Neri, Ph.D., Office of Naval Research