LOVELACE FOUNDATION
for Medical Education and Research

THE BACTERICIDAL ACTIVITY
OF THE SERUM
OF HEALTHY BEAGLES

Albuquerque, New Mexico

by

G. H. MEADE
AND W. E. CLAPPER

June 1964

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

Reproduced From
Best Available Copy

ATOMIC ENERGY COMMISSION-
LOVELACE FOUNDATION
FISSION PRODUCT INHALATION PROJECT

20000919 011
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express, or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

Printed in USA. Price $0.50. Available from the Office of Technical Services, Department of Commerce, Washington 25, D.C.
THE BACTERICIDAL ACTIVITY OF THE SERUM OF HEALTHY BEAGLES

by

G. H. Meade and W. E. Clapper

Submitted as a
Technical Progress Report
to
The Division of Biology and Medicine
United States Atomic Energy Commission
on
Contract No. AT(29-2)-1013
June, 1964

From the Department of Microbiology
Loveland Foundation for Medical Education and Research
Albuquerque, New Mexico
ABSTRACT

A relatively simple method for testing the bactericidal activity of serum from beagles which gave reproducible results was found. Activity was measurable for a strain of Escherichia coli, but not for Pseudomonas aeruginosa, Proteus mirabilis, or Bacillus subtilis. The E. coli bactericidin was inactivated by heat, was not restored by the addition of guinea pig complement, nor augmented by adding complement to the unheated serum. Such serum activity is apparently part of the immune mechanism of beagles and may be important in relation to their ability to resist invasion of the blood stream by intestinal bacteria.
ACKNOWLEDGEMENTS

The authors wish to express their gratitude to Dr. Clayton S. White for his useful suggestions in the preparation of the manuscript and to the members of the Department of Veterinary Medicine for obtaining the specimens from the dogs.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Methods</td>
<td>2</td>
</tr>
<tr>
<td>1. Organisms</td>
<td>2</td>
</tr>
<tr>
<td>2. Serum</td>
<td>2</td>
</tr>
<tr>
<td>3. Test</td>
<td>2</td>
</tr>
<tr>
<td>4. Other Methods</td>
<td>3</td>
</tr>
<tr>
<td>Results</td>
<td>3</td>
</tr>
<tr>
<td>1. Ps. aeruginosa, Pr. mirabilis, B. subtilis</td>
<td>3</td>
</tr>
<tr>
<td>2. E. coli</td>
<td>5</td>
</tr>
<tr>
<td>Bactericidal Activity</td>
<td>5</td>
</tr>
<tr>
<td>Destruction by Heat</td>
<td>5</td>
</tr>
<tr>
<td>Effect of Adding Complement</td>
<td>7</td>
</tr>
<tr>
<td>3. Comparison to Other Antibacterial Factors</td>
<td>7</td>
</tr>
<tr>
<td>Summary</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Absence of Bactericidal Activity of Serum from Beagles for Pseudomonas, Proteus, and Bacillus Species 4

Table 2. Bactericidal Activity of Serum from Beagles for E. coli and the Effect of Heat 6

Table 3. Effect of Complement on the Bactericidal Activity of Serum from Beagles Toward E. coli . 8
THE BACTERICIDAL ACTIVITY OF THE SERUM OF HEALTHY BEAGLES

by

G. H. Meade and W. E. Clapper

INTRODUCTION

The normal bactericidal activity of rabbit serum against *Bacillus subtilis* was reported by Marcus and Donaldson\(^1\) to be decreased following irradiation. The decrease was greatest during the period when the animals were more susceptible to infection. Irradiation has also been shown to decrease the serum bactericidins in mice, rabbits, and guinea pigs to a strain of *Escherichia coli*\(^2\). These investigators did not feel that the decrease was related to the post-irradiation bacteremia in mice. Animal species differ in the activity of their serum to different bacteria. Tilden\(^3\) found that dog serum was bactericidal only to *Proteus morganii*, *Proteus X19*, and *Sarcina lutea* when a large variety of bacteria, including *E. coli*, were tested. Mackie and Finkelstein\(^4\) reported on the serum bactericidins against Gram positive and Gram negative bacteria in various animals. The literature on this subject has been reviewed by Skarnes and Watson\(^5\).

As a part of a program to study the biological effects in beagles of inhalation of fission products, observation of any changes in their immune mechanisms seemed necessary. The bactericidal activity of the serum is one of these. This investigation was, therefore, undertaken to determine what bacterium could be used as a test organism for the factor in the beagle and what method would be most useful for processing a relatively large number of specimens quickly. The methods used to measure the serum activity, the bacteria tested, and some of the properties of the bactericidin are described.
METHODS

1. Organisms
 A strain each of Pseudomonas aeruginosa, Proteus mirabilis, Bacillus subtilis, and Escherichia coli (ATCC 4157) were used as the test organisms. After growth in 10 ml of dextrose broth (Difco) for 24 hours at 37°C, the cultures were centrifuged, the broth poured off, and the bacteria suspended in distilled water to a density which gave a reading of 150 on the Klett colorimeter using a blue filter. Further dilutions were made, as found by previous trials with each bacterium, to make an easily determined colony count by the method described below.

2. Serum
 Blood from healthy beagles was obtained from the Project colony. The serum, separated after the blood had clotted, was either used immediately or stored at 4°C for no longer than 24 hours.

3. Test
 The procedure was essentially that described by Pindak with minor modifications. Five-tenths ml of serum, 0.16 ml of bacterial suspension, and 0.32 ml of Kolmer's saline were mixed in a small screw-capped tube. From this tube duplicate 0.1-ml samples were immediately removed and spread evenly with a bent glass rod over the surface of desoxycholate or blood agar plates, depending upon the type of bacteria used. Further dilutions of 1-10 and 1-100 were made in saline and plated in a similar manner. The original undiluted bacterial suspension with serum was then incubated in a 37°C water bath for six hours and 0.1 ml of undiluted and 1-10 and 1-100 dilutions were again plated. The 6-hour incubation period had been determined by preliminary tests to be the most satisfactory. All plates were incubated overnight at 37°C, after which colonies were counted.

 The activity after heating the serum to 56°C for 30 minutes and after the addition of guinea pig complement was determined by the method described above, except that the amount of serum was reduced to 0.25 ml,
the 10^{-3} bacterial suspension to 0.08 ml, and 0.16 ml of commercial
guinea pig complement replaced the saline used in other experiments.
Both heated and unheated complement were added.

4. Other Methods

(1) The turbidity of a broth suspension of \textit{E. coli} and a measured
amount of undiluted serum was determined at intervals with a Klett
colorimeter.

(2) Filter paper disks were saturated with serum and placed on
agar plates which had been inoculated with \textit{E. coli}.

RESULTS

1. \textit{Ps. aeruginosa, Pr. mirabilis, B. subtilis}

Sera from six dogs were incubated with the three test organisms.
Plate counts were made in duplicate. The total number of bacteria in
0.1 ml of the suspensions before incubation may be seen in Table 1
in the first three columns under \textit{Pseudomonas aeruginosa}. With no
dilution, the colonies were too numerous to count. With a 1-10 dilu-
tion, approximately 400 colonies were found on every plate. The
1-100 dilution could be accurately counted. The absence of bacte-
cidal activity may be seen by comparing the number of bacteria (as
shown by the colonies on the plates) after incubation with the sera
for six hours. The values are given in the three columns under the
six-hour heading. The number of colonies shown on the plates inocu-
lated with the 1-10 and 1-100 dilutions of the bacterial suspension in-
dicates that there was an increase in growth. Similar results may be
seen for the activity of the sera against \textit{Proteus mirabilis} and \textit{Bacillus}
subtilis. There was no bactericidal activity for any of the three or-
organisms. Myrvik and Weiser7 have reported dog sera to have low
activity against \textit{B. subtilis}.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1-10 1-100</td>
<td></td>
<td>0 1-10 1-100</td>
<td></td>
<td>0 1-10 1-100</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>inn a 400+ b 0 49</td>
<td>inn inn 250</td>
<td>inn 300+ 62</td>
<td>inn inn 400+</td>
<td>inn 186 19</td>
<td>inn 400+ 210</td>
</tr>
<tr>
<td>B12</td>
<td>inn 400+ inn 58</td>
<td>inn inn 224</td>
<td>inn 300+ 58</td>
<td>inn inn 400+</td>
<td>inn 201 24</td>
<td>inn 400+ 200</td>
</tr>
<tr>
<td>B13</td>
<td>inn 400+ inn 68</td>
<td>inn inn 400+</td>
<td>inn 150 19</td>
<td>inn inn 400+</td>
<td>inn 196 16</td>
<td>inn inn 1n</td>
</tr>
<tr>
<td>B14</td>
<td>inn 400+ inn 87</td>
<td>inn inn 300+</td>
<td>inn 160 14</td>
<td>inn inn 300+</td>
<td>inn 175 15</td>
<td>inn 400+ 180</td>
</tr>
<tr>
<td>B15</td>
<td>inn 400+ inn 86</td>
<td>inn inn 300+</td>
<td>inn 160 10</td>
<td>inn inn 300+</td>
<td>inn 188 16</td>
<td>inn 400+ 196</td>
</tr>
<tr>
<td>B18</td>
<td>inn 400+ inn 89</td>
<td>inn inn 300+</td>
<td>inn 150 10</td>
<td>inn inn 300+</td>
<td>inn 150 13</td>
<td>inn 400+</td>
</tr>
</tbody>
</table>

Experimental conditions: 0.5 ml serum, 0.16 ml bacterial suspension diluted 10⁻³, 0.32 ml Kolmer’s saline.

*Inoculated with 0.1 ml.
**inn = innumerable.
***400+ and 300+ = approximate values.
In preliminary testing, 36 specimens taken from 12 dogs at different times were found to be bactericidal to E. coli in most cases. The 1-100 dilution added nothing to the data that was not better demonstrated by the undiluted and 1-10 dilution, so this dilution was not included in the final studies. Plate counts showing the antibacterial activity of the sera from 12 dogs are listed in the four columns under "unheated serum" in Table 2. All sera appreciably reduced the number of bacteria after incubation for six hours.

Table 2 also shows that the bactericidal activity was destroyed by heating the sera to 56°C for 30 minutes. This is similar to the findings of Waisbren and Brown that heating human sera to this temperature markedly reduced its bactericidal activity for E. coli. They also reported that, although the addition of guinea pig serum did not restore bactericidal activity to heated sera, it did enhance the activity in seven of nine of the unheated sera tested. Rowley reported that mouse serum requires about 50% added guinea pig serum to show antibacterial activity against E. coli because mouse serum not only lacks complement, but is also anticomplementary.

These results prompted us to determine the effect of adding guinea pig serum to several of the dog sera. Both heated and unheated commercial guinea pig serum (complement) were added. The results in Table 3 indicate that guinea pig complement does not potentiate the bactericidin for E. coli in dog serum. Each of the sera or pools of sera were tested on different days which accounts for the variability of the initial colony counts.

It is well known that the bactericidal activity of many animal sera against Gram negative organisms is dependent upon a heat labile substance and that the activity of the heated serum may often be restored by the addition of the heat labile protein complex in serum called complement. In order to determine whether the bactericidin with which we were dealing was one of this type, three active dog
TABLE 2

BACTERICIDAL ACTIVITY OF SERUM FROM BEAGLES FOR E. COLI AND THE EFFECT OF HEAT

<table>
<thead>
<tr>
<th>Date</th>
<th>Dog No.</th>
<th>Inn+</th>
<th>24</th>
<th>1</th>
<th>0</th>
<th>Inn</th>
<th>19</th>
<th>300+</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-27-62</td>
<td>140F</td>
<td>Inn</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>Inn</td>
<td>28</td>
<td>300+</td>
<td>11</td>
</tr>
<tr>
<td>9-27-62</td>
<td>140G</td>
<td>Inn</td>
<td>33</td>
<td>17</td>
<td>0</td>
<td>Inn</td>
<td>30</td>
<td>Inn</td>
<td>98</td>
</tr>
<tr>
<td>9-27-62</td>
<td>141I</td>
<td>Inn</td>
<td>28</td>
<td>30</td>
<td>6</td>
<td>Inn</td>
<td>34</td>
<td>Inn</td>
<td>78</td>
</tr>
<tr>
<td>10-4-62</td>
<td>137D</td>
<td>Inn</td>
<td>80</td>
<td>70</td>
<td>2</td>
<td>Inn</td>
<td>85</td>
<td>Inn</td>
<td>90</td>
</tr>
<tr>
<td>10-4-62</td>
<td>141G</td>
<td>Inn</td>
<td>50</td>
<td>48</td>
<td>2</td>
<td>Inn</td>
<td>48</td>
<td>Inn</td>
<td>78</td>
</tr>
<tr>
<td>10-4-62</td>
<td>143C</td>
<td>Inn</td>
<td>52</td>
<td>43</td>
<td>1</td>
<td>Inn</td>
<td>75</td>
<td>Inn</td>
<td>66</td>
</tr>
<tr>
<td>10-11-62</td>
<td>136D</td>
<td>Inn</td>
<td>96</td>
<td>10</td>
<td>10</td>
<td>Inn</td>
<td>119</td>
<td>Inn</td>
<td>77</td>
</tr>
<tr>
<td>10-11-62</td>
<td>137E</td>
<td>Inn</td>
<td>140</td>
<td>110</td>
<td>12</td>
<td>Inn</td>
<td>130</td>
<td>Inn</td>
<td>116</td>
</tr>
<tr>
<td>10-11-62</td>
<td>141H</td>
<td>Inn</td>
<td>110</td>
<td>125</td>
<td>3</td>
<td>Inn</td>
<td>96</td>
<td>Inn</td>
<td>140</td>
</tr>
<tr>
<td>10-17-62</td>
<td>135E</td>
<td>Inn</td>
<td>44</td>
<td>60</td>
<td>7</td>
<td>Inn</td>
<td>66</td>
<td>Inn</td>
<td>96</td>
</tr>
<tr>
<td>10-17-62</td>
<td>137F</td>
<td>Inn</td>
<td>73</td>
<td>75</td>
<td>14</td>
<td>Inn</td>
<td>46</td>
<td>Inn</td>
<td>66</td>
</tr>
<tr>
<td>10-17-62</td>
<td>137B</td>
<td>Inn</td>
<td>54</td>
<td>80</td>
<td>6</td>
<td>Inn</td>
<td>50</td>
<td>Inn</td>
<td>78</td>
</tr>
</tbody>
</table>

Experimental conditions: 0.5 ml serum, 0.16 ml bacterial suspension diluted 10^2, 0.32 ml Kolmer's saline.

*Plate inoculated with 0.1 ml. *Inn = innumerable.
sera were inactivated by heating to 56°C. The addition of 0.16 ml of a 1-10 dilution of commercial guinea pig complement did not restore activity. This amount of complement hemolyzed sheep cells in the presence of hemolysin. It is still possible, however, that the activity might be in the complement supplied by the dog serum, since Dingle et al. reported that guinea pig complement would not reactivate heated anti influenzae horse sera, but human complement would.

Dog serum does have a factor with the properties of complement found in other species, that is: the ability to hemolyze sheep cells in the presence of hemolysin and lability to heat. This hemolytic activity was also determined in our laboratory with the serum obtained from the beagles used in the preceding experiments.

3. Comparison to Other Antibacterial Factors

Antibacterial factors for Gram negative organisms in human serum which were heat labile and which were not reactivated by the addition of guinea pig complement have been reported by Pillemer et al., Pindak, and Waisbren and Brown. Pillemer's group called the factor "properdin" and studied it in other species, but did not include the dog. Pindak presented evidence that the activity he studied was different from properdin. The anti-E. coli factor found in beagle's serum is similar to these previously reported bactericidins from human serum in these two properties. Further studies to characterize it as a component of complement, lysozyme, a "normal" antibody or properdin as attempted by others were not done. We were interested only in finding a test for the bactericidal activity of the serum of the beagle which could be used, along with other tests, to evaluate the physiological effects of exposure to radiation.
TABLE 3

EFFECT OF COMPLEMENT ON THE BACTERICIDAL ACTIVITY OF SERUM FROM BEAGLES TOWARD *E. coli*

<table>
<thead>
<tr>
<th>Incubation period</th>
<th>E. coli #4157</th>
<th>Inactivated complement</th>
<th>Active complement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 hour</td>
<td>6 hour</td>
<td>0 hour</td>
</tr>
<tr>
<td>Dog number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool A**</td>
<td>inn</td>
<td>2</td>
<td>inn</td>
</tr>
<tr>
<td>Pool B</td>
<td>200+</td>
<td>3</td>
<td>200+</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>B4</td>
<td>125</td>
<td>2</td>
<td>150</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>67</td>
<td>80</td>
</tr>
</tbody>
</table>

Experimental conditions: 0.25 ml serum, 0.16 ml complement (commercial guinea pig complement diluted 10^{-3}), 0.08 ml bacterial suspension diluted 10^{-3}.

*Plates inoculated with 0.1 ml.

**Two dogs in each pool.
SUMMARY

The bactericidal activity of fresh serum from healthy beagles was determined. Serum was incubated with measured numbers of four different species of bacteria for six hours, after which the number of bacteria was again determined. The bacteria were counted by means of spread plates. No activity was found for B. subtilis, Pr. mirabilis, or Ps. aeruginosa. Serum from 12 dogs was found to be bactericidal to E. coli.

The activity was destroyed by heating to 56°C for 30 minutes. It was not restored by adding guinea pig serum (complement), nor did the addition of complement to the fresh dog serum enhance its activity.

Since the bactericidal activity of the serum of the beagle is part of its immune mechanism and may be destroyed or enhanced by radiation, it could be a factor contributing to the physiological state of the animal after inhalation of radioactive fission products.
REFERENCES

