Multidimensional Digital Signal Processing, Devices for Information Processing, and Electromagnetic Analysis and Measurement

FINAL REPORT

Joint Services Electronics Program
Contract DAAH-04-96-1-0161
June 1, 1996 – September 30, 1999

February 29, 2000

20000628 152
REPORT DOCUMENTATION PAGE

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1244, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank)  2. REPORT DATE  3. REPORT TYPE AND DATES COVERED:
2-20-00  Final Report – June 1, 1996 through September 30, 1999

4. TITLE AND SUBTITLE
Multidimensional Digital Signal Processing, Devices for Information Processing, and Electromagnetic Analysis and Measurement

5. FUNDING NUMBERS
DAAH04-96-1-0161

6. AUTHOR(S)
Ronald W. Schafer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology
School of ECE
Atlanta, GA 30332-0250

8. PERFORMING ORGANIZATION REPORT NUMBER
E21-W70

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING AGENCY REPORT NUMBER
ARO 35-010-10-EL-JSEP

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This final report covers research carried out under Contract DAAH-04-96-1-0161 for the period June 1, 1996 through September 30, 1999. Research activities are concentrated in the following areas: multidimensional digital signal processing, optical storage and information processing, and electromagnetic measurements. Individual work units involve research in multidimensional digital signal processing and modeling, stereo and multiview image processing, nonlinear systems for image and video signal processing, linear multidimensional multiresolution processing, optical devices for information processing, semiconductor quantum wave devices, electromagnetic analysis and measurements in the time and frequency domains, and far-field, compact and near-field antenna measurement facility compensation.

14. SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OR REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION ON THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500

Form Approved
OMB No. 0704-0188

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102
Multidimensional Digital Signal Processing, Devices for Information Processing, and Electromagnetic Analysis and Measurement

FINAL REPORT
Joint Services Electronics Program
Contract DAAH-04-96-1-0161
June 1, 1996 – September 30, 1999

February 29, 2000

Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, GA 30332-0250

Approved for public release.
Distribution unlimited.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OVERVIEW</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Progress in Multidimensional Digital Signal Processing</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Progress in Optical Devices for Information Processing</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Progress in Electromagnetic Analysis and Measurement</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Work Units and Principal Investigators</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Doctoral Degrees Awarded</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Publications</td>
<td>8</td>
</tr>
</tbody>
</table>
1 OVERVIEW

This is the Final Report on research carried out under Contract DAAH-04-96-1-0161 for the period June 1, 1996 through September 30, 1999. The research was part of the Joint Services Electronics Program (JSEP) and was administered by the U.S. Army Research Office. The research in this program was concentrated in the following broad areas of electronics:

- Multidimensional Digital Signal Processing
- Optical Devices for Information Processing
- Electromagnetic Analysis and Measurement

The details of research progress in this program have been given in three annual reports. This final report gives in Sections 1.1 – 1.3, a brief review of some of the significant results during the term of the contract. The principal investigators of the individual work units are listed in Section 2; the doctoral degrees awarded on research during the contract period are listed in Section 3; and the publications during the reporting period are listed in Section 4.

1.1 Progress in Multidimensional Digital Signal Processing

Research in multidimensional signal processing was carried out in four work units. The work in this area was concerned with video coding and interpolation, the use of hidden Markov models in multimedia communication and in face recognition, stereo image compression, motion and disparity estimation, implementation of nonlinear image operations using partial differential equations, wavelet transform theory and applications, 3-D subband coding, adaptive and directional filterbanks, target tracking in video sequences, and multidimensional filter design algorithms for complex frequency responses. Several research highlights are described briefly below.

- Rate-Quality Based Video Coding
  A doctoral thesis by F.-H. Lin produced new results on the trade-off between perceived quality and bit-rate in video coding. The work presents a new objective measure of quality that correlates well with perceived video quality. Linear regression was used to find sets of measured features that have a high correlation with perceptual ratings of distorted video sequences. Then a new measure was designed by using a nonlinear regression implemented with a neural network to select combinations of the best features. The result was an objective measure with more than 96% correlation with the subjective data base. This measure was used to design MPEG video encoders that allow very flexible tradeoff between quality and bit-rate while out-performing the MPEG Standard reference encoder by about half a quality point (on a 5-point scale).
• New Approach to Sensor Fusion
Doctoral work by R. Rao was concerned with using hidden Markov models (HMMs) to perform pattern recognition on data from two different modalities. It looks specifically at the information in the video and audio tracks of video recordings of people talking, but the results are potentially applicable to many other types of sensor fusion applications. Two very specific questions that the research seeks to answer are: can the performance of speech recognizers be improved when the video signal is used, particularly in high acoustic noise environments? and can a realistic synthetic video signal be generated from just the audio signal? Results of the research suggest that our approach can yield significant improvement. Our approach uses an audio-visual HMM to characterize the audio-visual recording; this is trained using audio-visual data. This HMM is used directly for the recognition problem and is projected into the audio subspace for the synthetic video problem. We are also preparing to transfer this approach to the problem of target classification in SAR imagery, where target and shadow returns form the two distinct signal classes.

• Hidden Markov Models in Face Recognition
Research conducted in face detection and face recognition resulted in the completion of a Ph.D. thesis by Ara Nefian in August 1999. The use of hidden Markov models (HMM) for faces is motivated by their partial invariance to variations in scaling and by the structure of the faces. The most significant facial features of a frontal face include the hair, forehead, eyes, nose, and mouth. These features occur in a natural order, from top to bottom, even if the images undergo small rotations in the image plane, and/or rotations in the plane perpendicular to the image plane. Therefore, the image of a face may be modeled using a one-dimensional HMM by assigning each of these regions to a state. The observation vectors are obtained from the DCT or KLT coefficients. A one-dimensional HMM may be generalized, to give it the appearance of a two-dimensional structure, by allowing each state in a one-dimensional HMM to be an HMM. In this way, the HMM consists of a set of super states, along with a set of embedded states. Therefore, this is referred to as an embedded HMM. The super states may then be used to model two-dimensional data along one direction, with the embedded HMM modeling the data along the other direction. Both the standard HMM and the embedded HMM were tested for face recognition and detection. Compared to other methods, the proposed system offers a more flexible framework for face recognition and detection and can be used more efficiently in scale-invariant systems.

• Partial Differential Equations and Nonlinear Image Processing
The Ph.D. thesis of M. Akmal Butt concerned the optimization of the discrete distance transforms and the presentation of new methodologies for the efficient implementation of PDE-based algorithms. New optimal discrete distance transforms under various optimization criteria were found and new methods developed for their faster implementation. The new algorithms were applied to the problems of multiscale image analysis, shape recovery, gridless halftoning, ray tracing, and image segmentation.
• **Defeating Countermeasures Using Wavelets**
In the ideal case with high target contrast and a benign background, simple algorithms for target tracking can work well. However, in practical situations, simple algorithms often fail to yield robust performance. Moreover, when aircraft are equipped with countermeasures, such as flares, the problem is further exacerbated. We have been investigating a wavelet transform formulation that promises to help in addressing this difficult tracking problem. The transform effectively maps the input signal space to a physically meaningful parameter space, where motion parameters (i.e. position, velocity, and size) are explicit in the representation. A set of local energy densities is defined by partially integrating the wavelet transform energy on subsets of the parameter space. These energy densities are then used to extract motion parameters. The algorithm consists basically of a frame-by-frame sequential optimization of motion parameters by maximizing the associated energy densities. Because the wavelet is a space-time filter, it tends to integrate the noise, resulting in noise suppression. The effectiveness of the algorithm against aircraft equipped with flare decoys has been demonstrated with experiments on real data.

• **Complex Multidimensional Filter Design**
The Remez exchange algorithm for FIR linear-phase filter design has been extended to the case where the desired filter response is specified in both magnitude and phase. This new theoretical result makes possible the rapid design of optimal filters whose complex frequency response characteristics are fully specified. One application is in minimum-delay filter design, where nearly linear phase filters are needed to avoid inter-symbol interference. Another significant application is in the phase-only processing needed in a wave-propagation filter such as migration for seismic or SAR processing. The new filter design algorithm has guaranteed convergence to the optimum under a mild set of conditions. Our work has given proofs of the conditions where this method will converge, and we developed a two-phase algorithm that uses the quickly converging Remez solution as the starting point of a second iteration that will find the true optimum in all cases. This second iteration is only needed when the theoretical conditions on the number of alternations is not met and the Remez exchange algorithm has converged to a sub-optimum filter. In a related line of research, we have recently generalized these complex-valued filters to the multidimensional case so that 2-D and 3-D migration filters can be designed as transformations of 2-D phase-only designs. This transformation strategy has also been used to design filter families that embed several low dimensional filters in a higher dimensional filter which can then be projected onto a lower dimension to extract one member of the family. For example, a set of 1-D migration filters with varying cutoff frequencies will define the ideal magnitude (and phase) characteristic of a 2-D fan filter. If the fan filter is designed by a transformation method, the various members of the filter family can be generated from one base filter.

• **Theory of Adaptive Filterbanks**
Significant progress has been made on the theory and implementation of adaptive filterbanks. Such filterbanks have been demonstrated to improve performance in subband image coding applications where the adaptive filters help to ease blocking effects and improve robustness to channel errors. Adaptive filterbanks have also been applied in the
problem of denoising of SAR images and found to outperform other denoising methods based on wavelet transforms.

1.2 Progress in Optical Devices for Information Processing

Research in optical devices was carried out in two work units that were focused on optical devices for information processing and semiconductor quantum wave devices. The work in this area produced significant results in the following areas: diffraction gratings, lenses, and couplers; multilayer optical waveguides; optical interconnects for massively parallel processors; quantum wave heterostructures; quantum wave interference filters; ballistic electron emission spectroscopy; silicon-based quantum wave devices; scanning tunneling microscopy; quasi-bound-state analysis techniques; and infrared lasers. Several research highlights are described briefly below.

- **Volume Diffractive Coupler**
  A new device for diffracting light in a waveguide or substrate has been invented. This device and its method of fabrication will provide high diffraction efficiency, low cost to fabricate and install, and will reduce the need for separate optical components such as graded index lenses. A typical application for the device would be to operate on an astigmatic three-dimensionally diverging beam from a semiconductor laser and diffract it into a guided wave in a slab waveguide in an integrated circuit.

- **Silicon-Based Quantum Semiconductor Devices**
  A new design methodology has been developed for silicon-based semiconductor devices for use as optical emitters, detectors, modulators and switches. The devices are based on quantum wave Fabry-Perot filters implemented by a number of thin semiconductor layers. The research has developed a design process for determining the complex set of layers needed to create devices with differing functionality. Once the layers are designed, they can be grown by molecular beam epitaxy or metalorganic chemical vapor deposition. A primary advantage of these devices is that their fabrication is compatible with conventional silicon microelectronics technology, which allows them to be incorporated directly into silicon integrated circuits.

- **Electron-Wave Interference Effects in a $\text{Ga}_{1-x}\text{Al}_x\text{As}$ Single-Barrier Structure Measured by BEE Spectroscopy**
  Ballistic electron emission spectroscopy (BEES) was performed on a GaAs/Ga$_{0.8}$Al$_{0.2}$As/GaAs single-barrier structure at 77 and 7 K. The single-interface model widely used for such structures was found to be inadequate in describing the BEES second-derivative spectrum. A more complete model that incorporates electron-wave interference effects was shown to describe the data accurately and consistently over many spatial locations and samples. This model reproduces all measured features in the BEES second-derivative spectrum resulting from electron-wave interference. At 77 K (7K), the conduction band offset for $x = 0.2$ is determined to be 145 meV or $Q_c = 0.58$ (150 meV or $Q_c = 0.60$) in agreement with accepted values.
• Finite Substrate Thickness Diffractive Lenses
A novel approach to the analysis of finite-substrate-thickness cylindrical lenses has been developed. This approach is based on the boundary element method (BEM), and allows the use of both exact and approximate Green’s functions. The method allows the analysis of lenses with thicknesses of thousands of wavelengths for both TE and TM polarizations, and it can be used to study multiple resonance effects. The method has been used to solve problems that previously could not be analyzed with the BEM method.

• Quasibound States in Arbitrary-Geometry Semiconductor Quantum Heterostructures
A unified set of four numerical methods has been developed for determining the quasibound-state eigenenergies and their lifetimes in quantum heterostructures having arbitrary potential profiles. The methods are applicable to devices of arbitrary geometries and potential profiles and are highly efficient and accurate.

1.3 Progress in Electromagnetic Analysis and Measurement

Research in EM analysis and measurement was carried out in two work units that were focused on time and frequency analysis techniques and on antenna range measurements. Significant research results were obtained in the following areas: finite-difference time-domain numerical techniques; pulse excited antennas; ground-penetrating radars; insulated linear antennas; and compensation techniques for spherical antenna ranges. Some highlights of this research are described briefly below.

• Ground-Penetrating Radars for Mine Detection
During this period, a major portion of the research on this work unit was concerned with the important problem of the detection of buried land mines. The first fully three-dimensional electromagnetic simulation of an actual detection system (the separated-aperture sensor) was performed. The simulation contained all of the details of the antennas (two dipoles with the reflectors an matching networks), the lossy soil, and the buried mine. The finite-difference time-domain (FDTD) numerical method was used for the simulation, and the computations were performed on computers at the University of Minnesota High-Performance Computing Research Center. The theoretical results were in good agreement with measurement. This research showed that such simulations can replace costly experimental measurements in the early stages of the design of such detectors.

• Pulse Excited Antennas
A study of methods to improve the performance of pulse excited antennas used in ground penetrating radars, such as those used for land mine detection has produced significant progress. Internal reflections within these antennas and multiple reflections between the antennas and the surface of the ground produce clutter than can obscure the return from the buried target (mine). A comprehensive study of the vee antenna showed that with the proper resistive loading this antenna can significantly reduce the clutter. The theoretical predictions were in good agreement with measurements. This study also showed
quantitatively the difficulty associated with identifying a given return as being from a mine and not from another buried object such as a rock.

- **Range Compensation in Spherical Far-Field and Compact Ranges**
  Work has been completed on the plane wave, pattern subtraction, range compensation algorithm and a corresponding algorithm for modeling an antenna measurement range field using a small, selectable number of plane waves. The plane wave model of the range consists of a plane wave incident from the direction of the range antenna plus a small number of plane waves representing multipath reflections and equipment leakages. The range compensation algorithm removes errors introduced into an antenna pattern measurement by deviations of the range field from an ideal plane wave by estimating the response of the antenna to each of the plane waves in the model that represent the multipath reflections and equipment leakages and subtracting these errors from the measured pattern. Measurements have been performed that demonstrate the performance of the range compensation and plane wave modeling algorithms using an actual anechoic chamber.

2 Work Units and Principal Investigators

**Work Unit One:** Multidimensional Digital Signal Processing and Modeling
Dr. Russell M. Mersereau

**Work Unit Two:** Stereo and Multiview Image Processing
Dr. Ronald W. Schafer and Dr. Monson H. Hayes

**Work Unit Three:** Nonlinear Systems for Image and Video Signal Processing
Dr. Ronald W. Schafer

**Work Unit Four:** Linear Multidimensional Multiresolution Processing
Dr. James H. McClellan and Dr. Mark J. T. Smith

**Work Unit Five:** Optical Devices for Information Processing
Dr. Thomas K. Gaylord
Dr. Elias N. Glytsis

**Work Unit Six:** Semiconductor Quantum Wave Devices
Dr. Thomas K. Gaylord
Dr. Elias N. Glytsis

**Work Unit Seven:** Electromagnetic Analysis and Measurements in the Time and Frequency Domains
Dr. Glenn S. Smith

**Work Unit Eight:** Far-Field, Compact and Near-Field Antenna Measurement Facility Compensation
Dr. Edward B. Joy
3 Doctoral Degrees Awarded

F.-H. Lin – December 1996
Thesis: *Rate-Quality Based Video Coding*

S. Bayrakeri – May 1997
Thesis: *Scalable Video Coding using Spatio-Temporal Interpolation*

R. Rao – May 1998
Thesis: *Audio Visual Interaction in Multimedia*

H. Aydinoglu, – June 1997
Thesis: *Stereo Image Compression*

D. L. Brundrett – June 1997
Thesis: *Analysis, Design, and Applications of Subwavelength Gratings*

T. P. Montoya – March 1998
Thesis: *Vee Dipole Antennas for use in Short-Pulse Ground-Penetrating Radars*

A. Saidi – March 1998
Thesis: *Root Contours of Low-Order Two-Dimensional System Functions*

Q. H. Pham – June 1998
Thesis: *Hierarchical Processing Algorithms for Object Recognition*

D. Leatherwood – July 1998
Thesis: *Plane Wave, Pattern Subtraction, Range Compensation for Spherical Surface Antenna Pattern Measurements*

M. A. Butt – August 1998
Thesis: *Continuous and Discrete Approaches to Morphological Image Analysis with Applications: PDEs, Curve Evolution, and Distance Transforms*

D. K. Guthrie – December 1998
Thesis: *Analysis of Quantum Semiconductor Heterostructures by Ballistic Electron Emission Spectroscopy*

R. Rau – December 1998
Thesis: *Postprocessing Tools for Ultra-wideband SAR Images*

A. Nefian – August 1999
Thesis: *A Hidden Markov Model-Based Approach for Face Detection and Recognition*
4 Publications

MULTIDIMENSIONAL DIGITAL SIGNAL PROCESSING:

Work Unit One:

Work Unit Two:


Work Unit Three:

Work Unit Four:


DEVICES FOR INFORMATION PROCESSING:

Work Unit Five:


\textbf{Work Unit Six:}

3. T. K. Gaylord, E. N. Glytsis, and P. N. First, "Silicon-based optical emitters, detectors, modulators, and switches using bound and quasibound energy levels," Georgia Tech Record of Invention No. 1710 of June 1, 1996.

\textbf{ELECTROMAGNETIC ANALYSIS AND MEASUREMENT:}

\textbf{Work Unit Seven:}


Work Unit Eight:


