ISEB 4

Proceedings of the
4th International Symposium on
Environmental Biotechnology

10-12 April 2000
Noordwijkerhout, The Netherlands
The relationship between corrosion and the biological sulfur cycle

Brenda B. Little, Richard I. Ray and Robert K. Pope

NAVAL RESEARCH LABORATORY, STENNIS SPACE CENTER, MS 39525

INTRODUCTION

Most microbiologically influenced corrosion (MIC) takes place in the presence of microbial consortia in which many different physiological types of bacteria interact in complex ways within the structure of biofilms. Microbiologically-mediated oxidation and reduction reactions of sulfur and sulfurous compounds are important contributors to MIC. Sulfur and sulfurous compounds, including sulfides, bisulfides, hydrogen sulfide (H₂S), thiosulfates, polythionates and sulfuric acid, may be trapped or bound up in biofilms causing direct corrosion of materials. H₂S and sulfuric acid may become gaseous or waterborne.

SULFUR, SULFATE AND THIOSULFATE REDUCTION

Reduction of elemental sulfur or thiosulfate results in production of H₂S. H₂S acidifies a corrosive medium and catalyzes the penetration of hydrogen into steels, a process known as H₂S-induced cracking or sulfide stress cracking. Crolet and Magot described a group of bacteria isolated from an oilfield production facility capable of reducing thiosulfate (S₂O₃²⁻), not sulfate, to sulfide. Corrosion penetration rates of carbon steel in the presence of these organisms was in excess of 1 cm per year. Sulfate-reducing bacteria (SRB) can stimulate corrosion by producing sulfide minerals. McNeil and Odom developed a thermodynamic model to predict metal susceptibility to MIC by SRB. Some metal oxides can be destabilized and act as a source of metal ions to react with the sulfide. The model is limited to thermodynamic predictions as to whether or not a reaction will take place and does not consider metal toxicity to the organisms, tenacity of the resulting sulfide or others factors that influence corrosion rate.

Reviews by Miller and Tiller, Iverson and Postgate provide examples and details of MIC of iron and mild steel under anaerobic conditions caused by SRB. MIC failures have been reported for mild steel piping and equipment exposed in the marine environment, soil, oil refining industry, fossil fuel and nuclear power plants and process industries.

The impact of oxygen on obligate anaerobic SRB was examined by Hardy and Brown using mild steel and weight loss measurements. Successive aerating-deaeration shifts caused variation in the corrosion rate. The highest corrosion rates were observed during periods of aeration. Lee et al. determined that corrosion of mild steel could not be initiated by SRB in the absence of ferrous ions. In their experiments, there was no correlation between corrosion rates and SRB in the absence of ferrous ions. The impact of biogenic sulfides on the corrosion of copper alloys has received a considerable amount of attention.

Several investigators have demonstrated that there is no direct correlation between numbers of sulfate-reducing bacteria and the likelihood that corrosion has occurred.
or will occur. 12,13 Jack et al.12 prepared a review of 30 months of electrochemical, weight-loss data, water chemistry and microbiological data for an oilfield waterflood operation in which produced brine was injected to displace oil from the reservoir. They concluded that SRB numbers could be used as an index of biocide performance in these field systems. No other correlations between corrosion measurements and microbial numbers were found.

SULFUR/SULFIDE OXIDATION

Corrosion associated with sulfur oxidation reactions involves autotrophic organisms. Elemental sulfur, thiosulfates, metal sulfides, H₂S, and tetrathionates can be oxidized to sulfuric acid. The specific oxidation reactions leading to production of sulfuric acid varies with the starting reduced sulfur species.

Corrosion in sewers and other concrete structures is often due to the oxidation of sulfides generated by the activities of SRB and may occur in many steps. Concrete is a moderately porous mixture of highly alkaline inorganic precipitates and mineral aggregate. Strong acids react with concrete materials destroying its structural integrity. Anaerobic conditions in sewage support SRB that convert sulfate and organic sulfides to H₂S, which volatilizes to the sewer atmosphere and redissolves in condensate on the sewer crown. A second community of microorganisms, including Thiobacillus, at the crown oxidizes the sulfide to corrosive sulfuric acid. Mittleman and Danko14 determined that similar cycling of sulfur, i.e., sulfate reduction and sulfide oxidation, by microorganisms was responsible for concrete and carbon steel deterioration in a dam in South America.

Sulfide oxidation reactions are important to the formation of sulfuric acid in coal mines and in sulfur deposits. If FeS₂ containing coals are exposed to moisture and oxygen, spontaneous FeS₂ oxidation starts, resulting in production of ferric iron and sulfuric acid. The pH of the water phase will drop during the oxidation process. Acidophilic pyrite oxidizing bacteria, indigenous in coals, thrive at low pH and continue the oxidation to pH values lower than 2. The ferric iron produced in these reactions acts as an oxidizing agent to solubilize other metal sulfides. Reviews on pyrite oxidation have been published by Lowson,15 Nordstrom,16 and Evangelou.17 The South African Rail Company, a carrier for large quantities of low-grade coal, reported accelerated corrosion of 3Cr12 steel due to the presence and activities of T. ferrooxidans and the fungus, Hormoconis resinæ. The individual organisms caused an approximate doubling of the corrosion rate compared to sterile conditions. The corrosion pattern included scaling, pitting, and stress-crusting.18 Similar situations are found where pipelines are buried in soils that contain coal ash, industrial waste, landfills or railway right-of-ways through coal outcroppings and rivers in the coal mining regions.

CONCLUSION

Sulfur and sulfur compounds can produce pitting, crevice corrosion, dealloying, stress corrosion cracking and stress-oriented hydrogen induced cracking of susceptible metals and alloys. Determination of specific mechanisms for corrosion due to microbiologically mediated oxidation and reduction of sulfur and sulfur compounds is complicated by (1) the variety of potential metabolic/energy sources and by-products (2) the coexistence of reduced and oxidized sulfur species (3) competing reactions with inorganic and organic compounds, and (4) the versatility
and adaptability of microorganisms in biofilms. The microbial ecology of sulfur-rich environments is poorly understood because of the association of aerobes and anaerobes and the mutualism or succession of heterotrophs to autotrophs. The physical scale over which the sulfur cycle influences corrosion varies with the type environment. The complete sulfur cycle of oxidation and reduction can take place in macroenvironments, including sewers and polluted harbors or within the microenvironment of biofilms in process equipment.

ACKNOWLEDGEMENTS

This work was performed under Program Element 0601153N, NRL Contribution Number NRL/BA/7303-90-0002.

REFERENCES

Title and Subtitle
The relationship between corrosion and the biological sulfur cycle

Author(s)
Brenda B. Little, Richard I. Ray, and Robert K. Pope

Performing Organization and Address
Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004

Sponsoring/Monitoring Agency Name(s) and Address(es)
Naval Research Laboratory
Washington, DC 20375-5320

Supplementary Notes
Proceedings of the 4th International Symposium on Environmental Biotechnology, 10-12 April 2000, Noordwijkherout, the Netherlands

Abstract
Most microbiologically influenced corrosion (MIC) takes place in the presence of microbial consortia in which many different physiological types of bacteria interact in complex ways within the structure of biofilms. Microbiologically-mediated oxidation and reduction reactions of sulfur and sulfur compounds are important contributors to MIC. Sulfur and sulfur compounds, including sulfides, bisulfides, hydrogen sulfide (H₂S), thiosulfates, polythionates and sulfuric acid, may be trapped or bound up in biofilms causing direct corrosion of materials. H₂S and sulfuric acid may become gaseous or waterborne.

Subject Terms
MIC, oxidation, sulfur compounds, sulfate reduction, anaerobic SRB, and Hormoconis resinae

Number of Pages
4

Security Classification of Report
Unclassified

Security Classification of This Page
Unclassified

Security Classification of Abstract
Unclassified

Limitation of Abstract
SAR