
Linger Longer: Fine-Grain Cycle Stealing for Networks of Workstations+

Kyung Dong Ryu Jeffrey K. Hollingsworth

Computer Science Department
University of Maryland

College Park, MD 20742
{kdryu, hollings}@cs.umd. edu

Abstract

Studies have shown that a significant fraction of the time,
workstations are idle. In this paper we present a new
scheduling policy called Linger-Longer that exploits the
fine-grained availability of workstations to run sequential
and parallel jobs. We present a two-level workload char-
acterization study and use it to simulate a cluster of work-
stations running our new policy. We compare two varia-
tions of our policy to two previous policies: Immediate-
Eviction and Pause-and-Migrate. Our study shows that
the Linger-Longer policy can improve the throughput of
foreign jobs on cluster by 60% with only a 0.5% slow-
down of foreground jobs. For parallel computing, we
showed that the Linger-Longer policy outperforms re-
configuration strategies when the processor utilization by
the local process is 20% or less in both synthetic bulk
synchronous and real data-parallel applications.

1. Introduction
Studies have shown that up to three-quarters of the

time workstations are idlefll]. Systems such as Con-
dor[9], LSF[19], and NOW[2] have been created to use
these available resources. Such systems define a "social
contract" that permits foreign jobs to run only when a
workstation's owner is not using the machine. To enforce
this contract, foreign jobs are stopped and migrated as
soon as the owner resumes use of their computer. We
propose a policy, called Linger-Longer, that refines the
social contract to permit fine-grained cycle stealing. By
permitting foreign jobs to linger on a machine at low pri-
ority even when foreground tasks are active, we can im-
prove the throughput of background jobs in shared clus-
ters by 60% while holding the slowdown of foreground
jobs to only 0.5%.

The motivation for the Linger-Longer approach is
simple: even when users are "actively" using worksta-
tions, the processor is idle for a substantial fraction of the
time. In addition, a significant amount of memory is usu-
ally available. To minimize the effect on the owner's

-jThis work was supported in part by NSF awards ASC-9703212
&ÄSC-9711364, and DOE Grant DE-FG02-93ER25176.

kj*nc gaiter DJseacm* i

20000505 056

workload, current techniques do not use these fine-grain
idle cycles.1 Linger-Longer exploits these fine-grained
idle periods to run foreign jobs with very low priority (so
low that foreground jobs are allowed to starve the back-
ground task). Our approach enables the system to utilize
most idle cycles while limiting the slowdown of the
owner's workload to an acceptable level. To improve job
response time, Linger-Longer will not let the foreign jobs
linger forever on a busy machine. We employ a cost
model to predict when the benefit of running on a free
node outweighs the overhead of a migration.

The primary beneficiaries of the Linger-Longer sched-
uling policy are large compute-bound sequential jobs.
Since most of these jobs are batch (no user interaction
during execution), and consist of a family of related jobs
that are submitted as a unit and must all be completed
prior to the results being used (e.g., a collection of simu-
lation runs with different parameters), job throughput
rather than response time is the primary performance met-
ric. We will concentrate on throughput as the metric we
try to optimize.

A key question about Linger-Longer is whether a
scheduling policy that can delay users' local jobs will be
accepted. For several reasons, we think this problem can
be overcome. First, as shown in Section 4.1, the delay
that users will experience with our approach is very low.
Second, existing systems that exploit free workstations
also have an indirect impact on users due to the time re-
quired to re-load virtual memory pages and caches after a
foreign job has been evicted.

In the rest of this paper, we present an overview of the
Linger-Longer policy and evaluate its performance via
simulation. Section 2 describes the Linger-Longer policy
and explains its prediction model for migration. Section 3
characterizes the utilization of workstations, evaluates the
potential for lingering, and presents a study of the avail-
able CPU time and physical memory on user worksta-

1 Part of the motivation for this policy is to promote user accep-
tance of foreign jobs running on their system. However, after 10
years of experience with environments such as Condor, user
acceptance seems to have been reached.

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

tions. Section 4 evaluates Linger-Longer scheduling im-
pact and measures cluster-level performance by simulat-
ing a medium scale cluster of 64 nodes with sequential
jobs. Running parallel jobs using Linger-Longer is also
investigated in Section 5. Finally, Sections 6 and 7 present
related work and conclusions respectively.

2. Fine-Grain Cycle Stealing
We use the term cycle stealing to mean running jobs

that don't belong to the workstation's owner. The idle
cycles of machines can be defined at different levels. Tra-
ditionally, studies have investigated using machines only
when they are not in use by the owner. Thus, the machine
state can be divided into two states: idle and non-idle. In
addition to processor utilization, user interaction such as
keyboard and mouse activity has been used to detect if the
owner is actively using their machine. Achafl] showed
that for their definition of idleness, machines are in a non-
idle state for 50% of the time. However, even while the
machine is in use by the owner, substantial resources are
available to run other jobs.

We introduce a new technique to make more idle time
available. In terms of CPU utilization there are long idle
intervals when the processor is waiting for user input, I/O,
or the network. These intervals between run bursts by
owners' jobs can be made available to others' jobs. We
term running foreign jobs, while the user processes are
active, lingering. Since the owner has priority over foreign
jobs using their personal machine, use of these idle inter-
vals should not affect the performance of the owner's
jobs.

Delay of local jobs should be avoided. If not, users
will not permit their workstations to participate in the
pool. Priority scheduling is a simple way to enforce this
policy. Current operating systems schedule processes
based on their priority, and use a complex dynamic prior-
ity allocation algorithm for efficiency and fairness. To
implement lingering, we need a somewhat stronger defi-
nition of priority for local and foreign job classes. Fore-
ground processes have the highest priority and can starve
background processes. In addition, when a background
process is running, an interrupt that results in a foreground
process becoming runnable, causes the foreground proc-
ess to be scheduled onto the processor even if the back-
ground job's scheduling quanta has not expired.

Two strategies have been used in the past to migrate
foreign jobs: Immediate-Eviction and Pause-and-Migrate.
In Immediate-Eviction, the foreign job is migrated as soon
as the machine becomes non-idle. Because this can cause
unnecessary, expensive migrations for short non-idle in-
tervals, an alternative policy, called Pause-and-Migrate,
that suspends the foreign processes for a fixed time prior

to migration is often used. The fixed suspend time should
not be long because the foreign job makes no progress in
the suspend state. With Linger-Longer scheduling, foreign
jobs can run even while the machine is in use by the
owner; therefore migration becomes an optional move to a
machine with lower utilization rather than a necessity to
avoid interference with the owner's jobs. Although mi-
gration can increase the foreign job's available resources,
there is a cost to move the process's state. Also, the ad-
vantage of running on the idle machine depends on the
difference in available processor time between the idle
machines and current non-idle one. To maximize proces-
sor time available to a foreign job, we need a policy that
determines the linger duration.

When to migrate in a Linger-Longer scheduler de-
pends on the local CPU utilization on the source and des-
tination nodes, the duration of non-idle state and the mi-
gration cost. The question is when will the foreign job
benefit from migration. Given the local CPU utilization
and migration cost, the minimum duration of non-idle
interval (called an episode) before migration is advanta-
geous can be found. Any idle period shorter than the
minimum duration will not provoke a migration. We can
compute the minimum duration by comparing the two
timing diagrams in Figure 1. In the non-idle state, utiliza-
tion by the workstation owner starts at tt and ends at t4.
The average utilization of the non-idle node is h, and the
average utilization on an idle node is I. We assume the
execution time of the foreign job exceeds the duration of
the non-idle state, so the foreign job completion time tfl
comes after t4. Migration happens at t2, and the cost is
Tmigr. The following equations compute the total job CPU
time TC,M and Tc,s with and without migration respec-
tively.

7c,s =(l-D-('i-'o) + Q--W <U-h) + (l-l)-(tfl -u)
TCM =0--l)<h-to) + (l-h)-(t2-tl) + (l-l)-(tf2-t3)

Since the same amount of work should be done for
both cases, Tos = TOM . We can solve the relationship
between parameters.

tf\ -t/2 = (?4 ~h)-jzj- (h ~h)

And, to get benefit from the migration, T^ <= Tfl. We
can then express it with interval variables as:

'nidle ^ Hingr +
1-1
h-l

lmigr

where Tnidte = t4-ti is the non-idle state duration, TUngr = t3

- ti is the lingering duration and the migration cost is de-
noted as Tmigr. If we knew the non-idle state would last
long enough to make migration advantageous, an immedi-

NO MIGRATION

V///////A
t1 t4

mm

NON-IDLE INTERVAL <Tnldl.)

MIGRATION t2 t3 Jt-L.

{^^^^»^I
MIGRATION COST (Tmlgr) FOREIGN JOB

LOCAL JOB
MIGRATION

Figure 1: Migration Timing in Linger Longer

The timeline for migration using Linger-Longer scheduling. The top case shows a foreign job that remains on a node throughout an
episode of processor activity due to local jobs. The lower case shows migration after an initial linger interval (t, to t2) where the for-
eign job remained on the non-idle node.

ate migration would be the best choice. But because we
don't know when the non-idle state will end, we have to
predict it. We use the observations of Harchol-Balter and
Downey[5], and Leland and Ott[8], which states that the
median remaining life of a process is equal to its current
age. So if a process has run for T units of time, we predict
its total running time will be 2T. Our use of this predictor
is somewhat different since we use it to infer the duration
of a non-idle episode rather than predict process lifetime.
With this prediction, we can then compute the Linger du-
ration by letting Tnidie be 2TUngr. If it is expected that the
migration will benefit, it's better to migrate early. The
lingering duration Tlingr will be:

*!ingr (h-r mgr

So, the foreign job should linger Tiingr before migrat-
ing. For the non-idle interval shorter than TUngr migration
will be avoided. The migration cost consists of fixed part
and variable part. The fixed part is for handling the proc-
ess-related work at the source and destination nodes. The
process transfer time varies on the network bandwidth and
the process size. The simple equation is used for our ex-
periments and can be easily extended for the different
environment.

Tmigr =Processing_Time(source) + Process_size / net-
workjbandwidth + Processing_Time(destination)

We denote the policy of lingering on a node for TUngr,
LL. An alternative strategy of never leaving a node (called
Linger-Forever) is denoted LF. This policy attempts to
maximize the overall throughput of a cluster at the ex-
pense of the response time of those unfortunate foreign
jobs that land (and are stuck) on nodes with high utiliza-
tion.

3. Workload Analysis and Characterization
To evaluate our Linger-Longer approach, we need to

characterize the workload of workstations to be used in
such a system. The performance of the various scheduling
disciplines for shared clusters depends on the characteris-
tics of the workstation cluster such as time of day, day of
week, and schedule of the primary users. We use the
traces of the utilization patterns of existing workstations.
Dusseau[4] and Acha[l] have also used this approach.
Also, to evaluate our scheduling policy, we need data
about individual requests for processors, at the granularity
of scheduler dispatch records because of the fine-grained
interaction between foreground and background proc-
esses.

It is not practical to record fine-grained requests for
the long time periods required to capture the time of day
and day of week changes in free workstations. As a re-
sult, we adopt a two level strategy to characterize the
workload. First, we measure the fine-grained run-idle
bursts at various level of processor utilization from 0%
(idle) to 100% (full) utilization. We model a fine-grained
workload as a random variable that is parameterized by
the average utilization over a two-second window. This
permits using a course-grained trace of workstation utili-
zation to generate fine-grained requests for the processor.

3.1 Fine-Grain Workload Analysis
To analyze the fine-grained utilization of the CPU, we

model processor activity as a sequence of run and idle
periods that represent the intervals of time when the work-
station owner's processes are either running or blocked.
Since we give priority to any request by one of the local
processes, a single run burst may represent the dispatch-
ing and execution of several local processes. Also, there is
no upper bound on the length of a processor request since

runburst(lO%) ■
hyperx distr. ■

lS"burst(10%)
hyperx distr.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (sec)

/^l_y run burst(50%)
hyperx distr.

0.8 ft*" 11
1

0.6 ■(1
1 i

0.4
1
I
i

■

0.2
1

■

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (sec)

^"^a" idle burst(50%)
_^r hyperx distr.

0.8

o
.£
3
E
Ö

0.6

0.4

0.2

•

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (sec)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (sec)

Figure 2: Run and Idle Burst Histograms

The CDF for the run and idle duration of local jobs. The first row is for 10% utilization, the second 50%.

we aggregate multiple consecutive dispatches due to time
quanta into a single request.

To gather the fine-grained workload data, we used the
tracing facility available on IBM's AIX operating system
to record scheduler dispatch events. We gathered this data
for several twenty-minute intervals on a collection of
workstations in the University of Maryland, Computer
Science Department. We then processed the data to ex-
tract different levels of utilization, and characterized the
run-idle intervals for each level of utilization. We divided
each trace file into two-second intervals and then com-
puted the mean CPU utilization for each interval of time.

We divided utilization into 21 buckets ranging from
0% to 100% processor utilization. For each of the 21
utilization levels, we created a histogram of the duration
of run and idle intervals for all two-second intervals
whose average utilization was closest to that bucket. A
selection of these histograms is shown in Figure 2. The
solid line in the figure shows two sample distributions for
low (10%) and medium (50%) CPU utilization. For the
simulation, we generate a 2-stage hyper-exponential dis-
tribution from the mean and variance using a method-of-
moment estimate[16 pg. 479]. The dashed line shows the
CDF of the generated data. The curves almost exactly
match in run and idle burst distributions.

To generate fine-grained workloads, we use linear in-
terpolation between the two closest of the 21 levels of

utilization. The values we derived from our analysis of the
dispatch records are shown in Figure 3. The top-left curve
shows the mean value of the run burst duration as a func-
tion of processor utilization. The upper-right graph shows
the variance in the run burst. The bottom two graphs in
Figure 3 show the idle duration mean and variance, re-
spectively.

3.2 Coarse-Grain Workload Analysis
To generate the long-term variations in processor

utilization, we use the traces collected by Arpaci et. al[4].
These traces cover data from 132 machines measured
over 40 days, and contain samples every two seconds of:
CPU usage, memory usage, keyboard activity, and a
Boolean indicating idle/non-idle state. An idle interval is a
period of time with the CPU less than 10% used and no
keyboard action for 1 minute (called the recruitment
threshold).

To assess the potential for Linger-Longer, we meas-
ured the overall CPU utilization and compared it to the
CPU utilization during idle and non-idle intervals. On
average, 46% of the time a machine was in a non-idle
state. From the trace, we found that even non-idle inter-
vals have very low usage, although it is somewhat higher
than idle time. For example, 76% of the time in non-idle
intervals, the processor utilization is less than 10%. The
reason that these intervals of time are considered non-idle
is due to keyboard activity and the requirement that a

0 10 23X4050607080!
CPU Usage (%)

10 2030436060708090 100
CPU Usage (%)

IdeBuret Variance

0 10 20X40506070809D100
CPU Usage CX)

10 20X40506070X90 100
CPU Usage C*)

Figure 3: Workload Parameters

The mean and variance of the run and idle bursts seen in the
fine-grained'workload traces as a function of the processor
utilization.

workstation have low utilization at least for 1 minute to be
considered idle. This data hints at the potential leverage
for a Linger-Longer approach to use short idle periods.

To meet our goal of allowing foreign jobs to linger on
a workstation and at the same time not to interfere with
local jobs, we need to ensure that enough real memory is
available to accommodate the foreign job. Like processor
time, we propose to use priority as a mechanism to ensure
that foreign jobs do not consume memory needed by local
jobs.2 The idea is to divide memory into two pools: one
for the local jobs and the other for foreign jobs. Whenever
a page is placed on the free-list by a local job, the foreign
job is able to use the page. Likewise, when the local job
runs out of pages, it reclaims them from the foreign job
prior to paging out any of its pages. A similar technique
was employed in the Stealth scheduler[7].

To evaluate fully the availability of pages for foreign
jobs, a complete simulation of the priority-based page
replacement scheme is required. However, as an approxi-
mation of the available local memory, we analyzed the
same workstation trace data used to evaluate processor
availability to estimate available free memory. Each has
64Mbyte main memory. The CDF of available memory is
shown in Figure 4. This graph shows that 90% of time,

3 0.4

Figure 4: Distribution of Available Memory

The solid line shows the overall free memory and the two
dashed lines show the free memory during idle and non-idle
intervals. The y-axis shows the fraction of time that at least x
KB of memory are available. Each workstation has 64 Mbyte
main memory.

more than 14 Mbytes of memory available for foreign
jobs, and that 95% of the time at least 10 MB of memory
is available. Interestingly, there is no significant differ-
ence in the available memory between idle and non-idle
states.3 We feel that the amount of free memory generally
available is sufficient to accommodate one compute-
bound foreign job of moderate size.

4. Sequential Job Performance
In this section, we investigate how the Linger-Longer

scheduling policy impacts the behavior of an owner's lo-
cal processes, and then evaluate the performance of run-
ning sequential jobs in a 64 node cluster.

4.1 Linger-Longer Scheduling Impact
To understand the behavior of a Linger-Longer sched-

uling discipline we need to evaluate the impact of addi-
tional context switches of the priority-based linger
mechanism on the node's foreground jobs. In this section
we present a simulation study of the delay induced in a
local process by a lingering foreign job.

A key question to evaluating the overhead of priority-
based preemption is the time required to switch from the
foreign job to the local one. There are two significant
sources of delay in saving and restoring the context of a
process: the time required to save the state of the registers
and the time (via caches misses) to reload the process'
cache state. On current microprocessors, the time to re-
store cache state dominates the register restore time. Pag-
ing by the VM system could increase the effective context

2 To implement this, we have added priority to the Linux paging
mechanism.

3 One possible explanation for this that current versions of the
UNIX operating system employ an aggressive policy to maintain
a large free list.

-500 usec

—M—300 usec

-* - -100 usec

20 40 60 80

local CPU Usage (%)

(a)

40%

20%

-500 usec

-300 usec

-100 usec

40 60

local CPU Usage (%)

(b)

Figure 5: Local job Delay Ratio (LDR) and
Fine-grain Cycle Stealing Ratio (FCSR)

Each curve shows the impact of three different effective
context switch times (100, 300, and 500 microseconds). The
graph (a) shows the delay experienced by foreground jobs
at various level of utilization. The graph (b) shows the per-
cent of the available idle processor time made available to
a compute bound foreign job at different levels of local job
processor utilization.

switch time, but our analysis of trace data shows signifi-
cant memory available, and an implementation of Linger-
Longer would include page priority (similar to processor
priority). To estimate the effective context switch time, we
use the results obtained by Mogul and Borg[10], and se-
lected an effective context-switch time of 100 microsec-
onds.

To evaluate the behavior of Linger-Longer we simu-
lated a single node with a single compute bound (always
runnable) process and various levels of processor utiliza-
tion by foreground jobs. For each simulation, we com-
puted two metrics: the local job delay ratio (LDR) and
fine-grain cycle stealing ratio (FCSR). The LDR metric
records the average slowdown experienced by local jobs
due to the extra context switch delay introduced by back-
ground jobs. The FCSR metric records the fraction of the
available idle processor cycles that are used by the foreign
job.

Figure 5 shows the LDR and FCSR metrics for three
different effective context switch times at various level of
processor utilization by local jobs. For the chosen effec-
tive context switch time of 100 microseconds, the delay
seen by the application process is about 1%. For context
switch times up to 300 microseconds, the delay remains

under 5%. However, when the effective context switch
time is 500 microseconds, the overhead is 8%. In all of
these cases, Lingering was able to make productive use of
over 90% of the available processor idle cycles.

4.2 Sequential Jobs in a Cluster
We now turn our attention to the cluster level behavior

of our scheduling policy. We first evaluate the behavior
of a cluster running a collection of sequential jobs. We
evaluated the Linger-Longer, Linger-Forever, Immediate-
Eviction, and Pause-and-Migrate policies on a simulated
cluster of workstations. We used a two-level workload
generator to produce a foreground user workload for a 64-
node cluster. Figure 6 shows the process that we use to
generate fine-grained processor requests from long-term
trace data. We randomly select a trace of a single node
and map it to a logical node in our simulation. To draw a
representative sample of jobs from different times of the
day, each node in the simulation was started at a randomly
selected offset into a different machine trace. The fine-
grain resource usage is generated by looking up appropri-
ate parameters, mean and variance, based on the current
coarse-grain resource data from the trace files.

We then ran two different types of sequential foreign
jobs on the cluster. Workload-1 contains 128 foreign jobs
each requiring 600 processor seconds. This workload was
designed to represent a cluster with a significant demand
being placed on the foreign job scheduler, since on aver-
age each node had two foreign jobs to execute. Workload-
2 contains 16 jobs each requiring 1,800 CPU seconds
each. This workload was designed to simulate a somewhat
lighter workload on the cluster since only V* of the nodes
are required to run the foreign jobs. All foreign jobs are 8
Megabytes and migration takes places over a 10 Mbps
Ethernet at an effective rate of 3Mbps (to limit the load
placed on the network by process migration). We also
assume that the foreign job is suspended for the entire
duration of the migration. For each configuration, we
computed four metrics:

Average completion time: The average time to comple-
tion of a foreign job. This includes waiting time before
initially being executed, paused time, and migration
time.

Variation: the standard deviation of job execution time
(time from first starting execution to completion).

Family Time: The completion time of the last job in the
family of processes submitted as a group.

Throughput: The average amount of processor time used
by foreign jobs per second when the number of jobs
in the system was held constant.

Fine-Grain Workload(burst)
characteristics

EH
Coarse-Grain Workload Trace

(off-line)
Sequence of CPU Usage

Sequence of Available MemorF

Fine-Grain
Workload

Simulator

I ot-.ii \
Workload ^ Sequence of Bun/Idle Bursts

G&neratoorJ

Workstation

5
Workstation

4% 12% 10% 60% 80% 9%
12M 14M 20M 18M 10M 16M

Figure 6: Local Workload Generation

Metric LL LF IE PM

Workload-1 Avg. Job 1044 1026 1531 1531

(many jobs) Variation 13.7% 20.5% 27.7% 22.5%

Family Time 1847 1844 2616 2521

Throughput 52.2 55.5 34.6 34.6

Workload-2 Avg. Job 1859 1861 1860 1862

(few jobs) Variation 0.9% 1.3% 1.3% 1.6%

Family Time 1896 1925 1925 1956

Throughput 15.0 14.7 14.5 14.5

The process of generating long-term processor utilization requests. By combining coarse-grained traces of workstation use with a short-
term stochastic model of processor requests, long duration run-idle intervals can be generated.]

The results of the simulation are summarized in the ta-
ble in Figure 7. For the first workload, the average job
completion time and throughput are much better for the
Linger-Longer and Linger-Forever policies. Average job
completion time is 47% faster with Linger-Longer than
Immediate-Eviction or Pause-and-Migrate, and Linger-
Forever's jobs completion time is 49% faster than either
of the non-lingering policies. There is virtually no differ-
ence between the IE and PM in terms of average comple-
tion time. For the second workload, the average job com-
pletion time of all four policies is almost identical. Notice
that the average job completion time ranges from 1,859 to
1,860 seconds; this implies that on average they were run-
ning 97% of the time. Since there is sufficient idle capac-
ity in the cluster to run these jobs, all four policies per-
form about the same.

In terms of the variation in response time for work-
load-1, the LL policy is much better than either IE or PM.
This improvement results from LL's ability to run jobs on
any semi-available node, and thus expedite their departure
from the system; so the benefit of lingering on a non-idle
node exceeds the advantage of waiting for a fully free
node. The LF policy has a somewhat higher variance due
the fact that some jobs may end up on nodes that had tem-
porarily low utilization when the job was placed there, but
which subsequently had higher load. For workload-2, the
availability of resources means that each policy has rela-
tively little variation in its job completion time.

The third metric is 'Family Time". This metric is de-
signed to show the completion time of a family of se-
quential jobs that are submitted at once. This is a metric
designed to characterize the responsiveness of a cluster to
a collection of jobs that represent a family of jobs. For
workload-1, the LL and LF metrics provide 36% im-
provement over the PM policy and 42% improvement
over the IE policy. For workload-2, the LL and LF poli-

Figure 7: Cluster Performance

For each of the four scheduling policies (LL, LF, IE, and PM),
four performance metrics are shown for two different workloads.

cies provide slight (1-3%) improvement over the IE and
PM policies.

The fourth metric we computed for the cluster-level
simulations was throughput. The throughput metric is
designed to measure the ability of each scheduling policy
to make processing time available to foreign jobs. This
metric is computed using a slightly different simulation
configuration. In this case, we hold the number of jobs in
the system (running or queued to run) constant for a
simulated one-hour execution of the cluster. The number
of jobs in the system is 128 for workload-1 and 16 for
workload-2. The throughput metric is designed to show
the steady-state behavior of each policy at delivering cy-
cles to foreign jobs. Using the throughput metric, the LL
policy provides at 50% improvement over the PM policy.
Likewise the LF policy permits a 60% improvement over
the PM policy. For workload-2, the throughput was very
similar for all policies. Again, this is to be expected since
the cluster is lightly loaded. For both workloads the delay,
measured as the average increase in completion time of a
CPU request, for local (foreground) processes was less
than 0.5%. This average is somewhat less than the 1%

1500

?

SAVOMGRTlluE

□ AV3 LINGER TOE

■ AVQ RUN TINE

0AVGINQT1NE

i 1000

!
500

nn
M "

k
-

IF IE

(a)

Figure 8: Average Completion Time

The chart (a) shows the breakdown of the average time spent
in each state (queued, running, lingering, or migrating) for
workload-1 (many foreign jobs). The chart (b) shows the
same information for workload-2 (few foreign jobs).

delay reported in the previous section since not all non-
idle nodes have foreign processes lingering.

To better understand the ability of Linger-Longer to
improve average job completion time, we profiled the
amount of time jobs spent in each possible state: queued,
running, lingering (running on a non-idle node), paused,
migrating. The results are summarized in Figure 8. Figure
8(a) shows the behavior of workload-1. The major differ-
ence between the linger and non-linger policies is due to
the reduced queue time. The time spent running (run time
plus linger time) is somewhat larger for the linger poli-
cies, but the reduction in queuing delays more than offsets
this increase. Figure 8(b) shows the breakdown for work-
load-2. With the exception that LL and LF spent small
fraction of the time lingering, there is no noticeable dif-
ference between any of these cases.

The overall trends seen in the cluster level simulation
show that Linger-Longer and Linger-Forever provide sig-
nificant increased performance to a cluster when there are
more jobs than available nodes, and that there is no dif-
ference in performance a low levels of cluster utilization.

5. Parallel Job Performance
The trade-offs in using Linger-Longer scheduling for

parallel programs are more complex. When a single proc-
ess of a job is slowed down due to a local job running on
the node, this can result in all of the nodes being slowed
down due to synchronization between processes. On the
other hand, when a migration is taking place, any attempt
to communicate with the migrating process will be de-
layed until the migration has been completed. However,
we feel the strongest argument for using Linger-Longer is
the potential gain in the throughput of a cluster due to the
ability to run more parallel jobs at once. Improved

0 10 20 30 40 50 60 70

local CPU Utilization (%)

Figure 9: Parallel Job slowdown

The graph shows the slowdown of an eight-node parallel job
vs. processor utilization by the foreground processes.

throughput likely will come at the expense of response
time, but we feel that throughput is the most important
performance metric for shared clusters. To evaluate these
different options, we simulated various configurations to
determine the impact of lingering on parallel jobs.

5.1 Synthetic Parallel Jobs
To evaluate the impact of lingering on a single parallel

job, we first simulated a bulk-synchronous style of com-
munication where each process computes serially for
some period of time, and then an opening barrier is per-
formed to start a communication phase. During the com-
munication phase, each process can exchange messages
with other processes. The communication phase ends with
an optional barrier. This synthetic parallel job model has
been successfully used in [4] to explore various perform-
ance factors. We simulated an eight-process application
with a 100 msec between each synchronization phase, and
a NEWS4 style of message passing within a communica-
tion phase.

The graph in Figure 9 shows the slowdown (compared
to running on 8 idle nodes) experienced in the applica-
tion's execution time when one node is non-idle and the
CPU utilization by the foreground processes are varied
from 0% to 90%. At utilization above 50%, the slowdown
is so large that lingering slows down the jobs dramati-
cally. A useful comparison of this slowdown is to consider
alternatives to running on the non-idle node. The
NOW[4] project has proposed migrating to an idle node
when the user returns, however if there is a substantial
load on the cluster we would have to keep idle nodes in
reserve (i.e. not running other parallel jobs) to have one
available. Alternatively, Acha et al.[l] proposed re-

4 A process exchange messages only with it's neighbors in terms
of data partitioning.

10 100 1000

Synchonlzation Granularity (msec)

10000
20 16 12

Number of Nodes

Figure 10: Synchronization Granularity vs.
Slowdown

The graph shows the slowdown of running a parallel program
with 1, 2, 4, or 8 non-idle nodes compared with running on all
8 idle nodes as a function of the synchronization granularity
when the non-idle nodes have 20% utilization by local jobs.

configuring the application to use fewer nodes. However,
many applications are restricted to running on a power of
two number of nodes (or a square number of nodes).
Thus the unavailability of a single node could preclude
using many otherwise available nodes. Within this con-
text, our slowdown of only 1.1 to 1.5 when the load is less
than 40% is an attractive alternative.

One of the key parameters in understanding the per-
formance of parallel jobs using Linger-Longer is the fre-
quency of synchronization. Figure 10 shows the relation-
ship between the granularity of communication and the
slowdown experienced by an eight process bulk synchro-
nous program. The x-axis is the computation time be-
tween communications in milli-seconds. Each of the four
curves shows the slowdown when 1, 2, 4, and 8 nodes
have 20% processor utilization by local jobs. The results
show that larger synchronization granularity produces less
slowdown. Also, for this level of loading, lingering pro-
vides an attractive alternative to reconfiguration since,
even when four nodes are non-idle, the slowdown remains
under a factor 1.5. (Note that reconfiguration with four
nodes unavailable would have a slowdown of at least 2.)

We wanted to provide a head-to-head comparison of
the Linger-Longer policy with the reconfiguration strat-
egy. To do this, we simulated a 32 node parallel cluster.
For each scheduling policy we considered the effect if the
average processor utilization by the local jobs on a non-
idle workstations was 20%. We defined the average syn-
chronization frequency to be 500 msec. In this simulation,
we. didn't consider the time required to reconfigure the
application to use fewer nodes, and assumed that the ap-
plication was constrained to run on a power of two num-
ber of nodes. The results of running this simulation are

Figure 11: Linger Longer vs. Reconfiguration

The graph shows the completion time of a parallel job run-
ning on a cluster using several different scheduling policies.
The x-axis shows the number of idle nodes. The first four
curves show the Linger-Longer policy running using 8, 16, or
32 nodes. The fifth curve shows the reconfigure policy. For
all curves, the local utilization of non-idle nodes is 20%.

shown in Figure 11. In each
Linger-Longer policy using 8
reconfiguration policy using
able. The Linger-Longer with
idle nodes are available in the
k processes on k idle nodes,
nodes available and some non

graph, the curves show the
, 16, and 32 nodes, and the
the maximum nodes avail-
it nodes means if k or more
cluster, the parallel job runs
otherwise it runs on all idle
idle nodes by lingering.

The graph shows the results for 20%. The Linger-
Longer policy outperforms the reconfiguration, when ei-
ther 8 or 16 nodes are used. However, using 32 nodes and
a Linger-Longer policy out performs reconfiguration
when 5 or fewer non-idle nodes are used.

5.2 Real Parallel Jobs
To validate the results from the synthetic bulk syn-

chronous application case, we ran several real parallel
applications with Linger-Longer. To do so, we combined
two different types of simulators: our Linger-Longer
simulator generating local workloads and a CVM [6]
simulator which can run shared memory parallel applica-
tions using ATOM binary rewriting tool [13]. We chose
three common shared-memory parallel applications: sor
(Jacobi relaxation), water(a molecular dynamics; from
SPLASH-2 benchmark suite [17]) and f f t (fast Fourier
transformation) which have different computation and
communication patterns.

First, we looked at how Linger-Longer on non-idle
nodes slows down the parallel jobs. An 8 node cluster is
used to ran each application. The number of non-idle
nodes and its local utilization were controlled. The results
are summarized in Figure 12. For all 3 cases, when only
one non-idle node is involved even with 40% local utili-

fft

|—♦—tusg 10% -»-Iusg20% ~A-lusg 30% ~~!£Husg40%)

„^

,x-
c / A

,^~*-*
6 3
w ss - -^

HSHöI
f^f—f""?^^-«—♦—♦

1

0

|—♦—Iusg10% —»—105920% —A—Iusg30% ~~¥'~Iusg40% |

/* •*
c .S
5 4"

^3 ^^ *N ys^ _^jf^ Mk

J^C=l~^7-X^-^
0

-lusg 10% -*-lusg20% -itr-lusg30%-"K-lusg4O%|

^

^.^1=^^=4^

012345678

nonidenode

3 4 5

nonidle node

12 3 4 5 6 7 8

noridenode

(a) (b) (c)

Figure 12: Slowdown by Non-idle nodes and their Local CPU Usage
The graphs show the slowdown of parallel jobs: sor (a), water (b) and, fft(c) as the number of non-idle nodes varies from 0 to
all 8 with Linger-Longer. The cluster size is 8. The curves in each graph represent the different local utilization of non-idle nodes.

zation the slowdown (compared to running on eight idle
nodes) reaches only 1.7. When more than half the nodes
are non-idle, 0 to 20% local utilization looks endurable.
Linger-Longer with 4 non-idle nodes and 20% local utili-
zation causes only 1.5 to 1.6 slowdown. Even when all 8
nodes are non-idle, the job is slowed down by just above a
factor of 2 for all three applications. Also, we can find
that the slowdown is different on applications. Sor is the
most sensitive to local utilization and the number of non-
idle nodes. Water is less sensitive to local activity and
fft is the least. A possible explanation is that water
and fft have much more communication that sor and
the time spent waiting on communication won't be af-
fected as much by local CPU activity.

Again, we compared the Linger-Longer and reconfigu-
ration policies for three real parallel application perform-
ance. The same assumptions as in the synthetic applica-
tion case were maintained except for the fact that only a
16 node cluster was simulated. The results of running this
simulation are shown in Figure 13. In each graph, the
curves show the Linger-Longer policy using 16 and 8
nodes, and the reconfiguration policy using the maximum
power of 2 number of idle nodes available. The graphs
show the results for sor, water and fft when the
local utilization for non-idle nodes is 20%. For all cases,
the Linger-Longer policy using 16 nodes outperforms the
reconfiguration when the number of idle nodes is at least
12. Considering the cost to reconfigure the parallel job to
run time, the gain would be even bigger. However, when
less than 8 idle nodes are left, lingering with 8 nodes
looks much better than both lingering using 16 nodes and
the reconfiguration policy. This indicates that a hybrid
strategy of lingering and reconfiguration may be the best
approach.

6. Related Work
Previous work on exploiting available idle time on

workstation clusters used a conservative model that would
only run jobs when the local user was away from their
workstation and no local processes were runnable. Con-
dor[9], LSF[19], and NOW[2] use variations on a "social
contract" to strictly limit interference with local users.
However, even with these policies, there is some disrup-
tion of the local user when they return since the foreign
job must be evicted and the local state restored. The Lin-
ger-Longer approach permits slightly more disruption of
the user, but tries to limit the delay to an acceptable level.
One system that used non-idle workstations was the
Stealth distributed scheduler[7]. It implemented a priority-
based approach to running background jobs. However
none of the tradeoffs in how long to run foreign jobs, or
the potential of running parallel jobs was investigated.

Prior studies that investigated running parallel jobs on
shared workstation clusters also employed fairly conser-
vative eviction policies. Dusseau, et al.[4] used a policy
based on immediate eviction. They were able to use a
cluster of 60 machines to achieve the performance of a
dedicated parallel computer with 32 processors. Acha et
al.[l] used a different approach that reconfigured the par-
allel job to use fewer nodes when one became unavail-
able. This approach permitted running more jobs on a
given cluster, although the performance of any single job
would be somewhat reduced.

Process migration and load balancing have been stud-
ied extensively. MOSIX[3] provides load-balancing and
preemptive migration for traditional UNIX processes.
DEMOS/MP[12], Accent[18], Locus[15], and V[14] all
provided manual or semi-automated migration of proc-
esses.

10

water fft

-reconfiguration - -16 node linger node linger | -reconfiguration —♦— 16node linger ~±~-8nodelinger| | -*-reconfiguration -4-16 node linger -A- 8 node linger |

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

idenode

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

idenode

1615 141312 11 10 9 8 7 6 5 4 3 2 1 0

Idenode

(a) (b) (c)
Figure 13: Linger-Longer vs. Reconfiguration for Shared-Memory Parallel Applications

The graphs show the slowdown of 3 parallel jobs running on a cluster of 8 nodes using several different scheduling policies. The x-
axis shows the number of idle nodes. The first curve shows the reconfigure policy. The other 2 curves show Linger-Longer policy
running using 16 or 8 nodes. For all curves, the local utilization of non-idle nodes is 20%.

7. Conclusions
In this paper we provided a workload characterization

study that described the fine-grained requests for proces-
sor time at various levels of utilization and evaluated
traces of workstation load at the 2-second level for long
time durations. We then presented a technique to com-
pose the workload and to generate fine-grained workloads
for long intervals of time.

We have devised a new approach, called Linger-
Longer to using available workstations to perform se-
quential and parallel computation. We presented a cost
model that determines how long a process should linger
on a non-idle node. The results for our proposed approach
are encouraging, we showed that for typical clusters lin-
gering can increase throughput by 60%, and on average
cause only a 0.5% slowdown of foreground user proc-
esses.

For parallel computing, we showed that the Linger-
Longer policy outperforms reconfiguration strategies
when the processor utilization by the local process is 20%
or less in both bulk synchronous and real data-parallel
applications. However, reconfiguration outperforms Lin-
gering for higher levels of local process utilization. The
throughput improvement that would be possible by mak-
ing more nodes available to run parallel jobs would likely
offset some of this slowdown. An end-to-end evaluation
of cluster throughput for parallel jobs is currently being
investigated.

Currently, we are implementing the prototype based
on the Linux operating system running on Pentium PCs.
The strict priority-based scheduler and page allocation
module have been developed and being evaluated.

Acknowledgements

The authors thank Pete Keleher and Dejan Perkovic
for helping us combine their CVM simulator with the
Linger-Longer simulator. Anurag Acharya and Remzi H.
Arpaci have been very kind to provide the workload trace
data. We also appreciate the useful comments of Bryan
Buck and the anonymous reviewers.

References

1. A. Acharya, G. Edjlali, and J. Saltz, "The Utility of
Exploiting Idle Workstations for Parallel Computa-
tion," SIGMETRICS'97. May 1997, Seattle, WA, pp.
225-236.

2. R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu,
T. E. Anderson, and D. A. Patterson, "The Interaction
of Parallel and Sequentail Workloads on a Network of
Workstations," SIGMETRICS. May 1995, Ottawa, pp.
267-278.

3. A. Barak, O. Laden, and Y. Yarom, "The NOW Mosix
and its Preemptive Process Migration Scheme," Bul-
letin of the IEEE Technical Committee on Operating
Systems and Application Environments, 7(2), 1995,
pp. 5-11.

4. A. C. Dusseau, R. H. Arpaci, and D. E. Culler, "Ef-
fective distributed scheduling of parallel workloads,"
SIGMETIRCS. May 1996, Philadelphia, PA, pp. 25-
36.

5. M. Harchol-Balter and A. B. Downey, "Exploiting
process lifetime distributions for dynamic load bal-
ancing," SIGMETRICS. May 23-26, 1996, Philadel-
phia, PA, pp. 13-24.

6. P. Keleher, "The Relative Importance of Concurrent
Writers and Weak Consistency Models," ICDCS. May
1996, Hong Kong, pp. 91-98.

7. P. Krueger and R. Chawla, "The Stealth Distributed
Scheduler," International Conference on Distributed

11

Computing Systems (ICDCS). May 1991, Arlington, 14.
TX, pp. 336-343.

8. W. E. Leland and T. J. Ott, "Loadbalancing heuristics
and process behavior," SIGMETRICS. May 1986, 15.
North Carolina, pp. 54-69.

9. M. Litzkow, M. Livny, and M. Mutka, "Condor - A
Hunter of Idle Workstations," International Confer- 16.
ence on Distributed Computing Systems. June 1988,
pp. 104-111.

10. J. C. Mogul and A. Borg, "The effect of context 17.
switches on cache performance," ASPLOS. Apr. 1991,
Santa Clara, CA, pp. 75-84.

11. M. W. Mutka and M. Livny, "The available capacity
of a privately owned workstation environment," Per-
formance Evaluation, 12, 1991, pp. 269-284. 18.

12. M. L. Powell and B. P. Miller, "Process migration in
DEMOS/MP," SOSP. 1983, pp. 110-119. 19.

13. A. Srivastava and A. Eustace, "ATOM: A system for
Building Customized Program Analysis Tools," SIG-
PLAN Conference on Programming Language Design
and Implementation. May 1994, Orlando, FL, pp.
196-205.

M. M. Theimer, K. A. Lantz, and D. R. Cheriton,
"Premptable Remote Execution Facilities for the V-
System," SOSP. Dec. 1985, pp. 2-12.
G. Thiel, "Locus Operating System, A Transparent
System," Computer Communications, 14(6), 1991, pp.
336-346.
K. S. Trivedi, Probability and Statistics with Reli-
ability, Queuing, and Computer Science Applications.
1982: Prentice-Hall.
S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, "The SPLASH-2 Programs: Characterization
and Methodological Considerations," Proceedings of
the 22nd Annual International Symposium on Com-
puter Architecture, pp. 24-37.
E. R. Zayas, "Attacking the Process Migration Bottle-
neck," SOSP. 1987, pp. 13-24.
S. Zhou, X. Zheng, J. Wang, and P. Delisle, "Utopia:
a Load Sharing Facility for Large, Heterogeneous
Distributed Computer Systems," SPE, 23(12), 1993,
pp. 1305-1336.

12

