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Abstract 

Studies have shown that a significant fraction of the time, 
workstations are idle. In this paper we present a new 
scheduling policy called Linger-Longer that exploits the 
fine-grained availability of workstations to run sequential 
and parallel jobs. We present a two-level workload char- 
acterization study and use it to simulate a cluster of work- 
stations running our new policy. We compare two varia- 
tions of our policy to two previous policies: Immediate- 
Eviction and Pause-and-Migrate. Our study shows that 
the Linger-Longer policy can improve the throughput of 
foreign jobs on cluster by 60% with only a 0.5% slow- 
down of foreground jobs. For parallel computing, we 
showed that the Linger-Longer policy outperforms re- 
configuration strategies when the processor utilization by 
the local process is 20% or less in both synthetic bulk 
synchronous and real data-parallel applications. 

1. Introduction 
Studies have shown that up to three-quarters of the 

time workstations are idlefll]. Systems such as Con- 
dor[9], LSF[19], and NOW[2] have been created to use 
these available resources. Such systems define a "social 
contract" that permits foreign jobs to run only when a 
workstation's owner is not using the machine. To enforce 
this contract, foreign jobs are stopped and migrated as 
soon as the owner resumes use of their computer. We 
propose a policy, called Linger-Longer, that refines the 
social contract to permit fine-grained cycle stealing. By 
permitting foreign jobs to linger on a machine at low pri- 
ority even when foreground tasks are active, we can im- 
prove the throughput of background jobs in shared clus- 
ters by 60% while holding the slowdown of foreground 
jobs to only 0.5%. 

The motivation for the Linger-Longer approach is 
simple: even when users are "actively" using worksta- 
tions, the processor is idle for a substantial fraction of the 
time. In addition, a significant amount of memory is usu- 
ally available. To minimize the effect on the owner's 
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workload, current techniques do not use these fine-grain 
idle cycles.1 Linger-Longer exploits these fine-grained 
idle periods to run foreign jobs with very low priority (so 
low that foreground jobs are allowed to starve the back- 
ground task). Our approach enables the system to utilize 
most idle cycles while limiting the slowdown of the 
owner's workload to an acceptable level. To improve job 
response time, Linger-Longer will not let the foreign jobs 
linger forever on a busy machine. We employ a cost 
model to predict when the benefit of running on a free 
node outweighs the overhead of a migration. 

The primary beneficiaries of the Linger-Longer sched- 
uling policy are large compute-bound sequential jobs. 
Since most of these jobs are batch (no user interaction 
during execution), and consist of a family of related jobs 
that are submitted as a unit and must all be completed 
prior to the results being used (e.g., a collection of simu- 
lation runs with different parameters), job throughput 
rather than response time is the primary performance met- 
ric. We will concentrate on throughput as the metric we 
try to optimize. 

A key question about Linger-Longer is whether a 
scheduling policy that can delay users' local jobs will be 
accepted. For several reasons, we think this problem can 
be overcome. First, as shown in Section 4.1, the delay 
that users will experience with our approach is very low. 
Second, existing systems that exploit free workstations 
also have an indirect impact on users due to the time re- 
quired to re-load virtual memory pages and caches after a 
foreign job has been evicted. 

In the rest of this paper, we present an overview of the 
Linger-Longer policy and evaluate its performance via 
simulation. Section 2 describes the Linger-Longer policy 
and explains its prediction model for migration. Section 3 
characterizes the utilization of workstations, evaluates the 
potential for lingering, and presents a study of the avail- 
able CPU time and physical memory on user worksta- 

1 Part of the motivation for this policy is to promote user accep- 
tance of foreign jobs running on their system. However, after 10 
years of experience with environments such as Condor, user 
acceptance seems to have been reached. 
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tions. Section 4 evaluates Linger-Longer scheduling im- 
pact and measures cluster-level performance by simulat- 
ing a medium scale cluster of 64 nodes with sequential 
jobs. Running parallel jobs using Linger-Longer is also 
investigated in Section 5. Finally, Sections 6 and 7 present 
related work and conclusions respectively. 

2. Fine-Grain Cycle Stealing 
We use the term cycle stealing to mean running jobs 

that don't belong to the workstation's owner. The idle 
cycles of machines can be defined at different levels. Tra- 
ditionally, studies have investigated using machines only 
when they are not in use by the owner. Thus, the machine 
state can be divided into two states: idle and non-idle. In 
addition to processor utilization, user interaction such as 
keyboard and mouse activity has been used to detect if the 
owner is actively using their machine. Achafl] showed 
that for their definition of idleness, machines are in a non- 
idle state for 50% of the time. However, even while the 
machine is in use by the owner, substantial resources are 
available to run other jobs. 

We introduce a new technique to make more idle time 
available. In terms of CPU utilization there are long idle 
intervals when the processor is waiting for user input, I/O, 
or the network. These intervals between run bursts by 
owners' jobs can be made available to others' jobs. We 
term running foreign jobs, while the user processes are 
active, lingering. Since the owner has priority over foreign 
jobs using their personal machine, use of these idle inter- 
vals should not affect the performance of the owner's 
jobs. 

Delay of local jobs should be avoided. If not, users 
will not permit their workstations to participate in the 
pool. Priority scheduling is a simple way to enforce this 
policy. Current operating systems schedule processes 
based on their priority, and use a complex dynamic prior- 
ity allocation algorithm for efficiency and fairness. To 
implement lingering, we need a somewhat stronger defi- 
nition of priority for local and foreign job classes. Fore- 
ground processes have the highest priority and can starve 
background processes. In addition, when a background 
process is running, an interrupt that results in a foreground 
process becoming runnable, causes the foreground proc- 
ess to be scheduled onto the processor even if the back- 
ground job's scheduling quanta has not expired. 

Two strategies have been used in the past to migrate 
foreign jobs: Immediate-Eviction and Pause-and-Migrate. 
In Immediate-Eviction, the foreign job is migrated as soon 
as the machine becomes non-idle. Because this can cause 
unnecessary, expensive migrations for short non-idle in- 
tervals, an alternative policy, called Pause-and-Migrate, 
that suspends the foreign processes for a fixed time prior 

to migration is often used. The fixed suspend time should 
not be long because the foreign job makes no progress in 
the suspend state. With Linger-Longer scheduling, foreign 
jobs can run even while the machine is in use by the 
owner; therefore migration becomes an optional move to a 
machine with lower utilization rather than a necessity to 
avoid interference with the owner's jobs. Although mi- 
gration can increase the foreign job's available resources, 
there is a cost to move the process's state. Also, the ad- 
vantage of running on the idle machine depends on the 
difference in available processor time between the idle 
machines and current non-idle one. To maximize proces- 
sor time available to a foreign job, we need a policy that 
determines the linger duration. 

When to migrate in a Linger-Longer scheduler de- 
pends on the local CPU utilization on the source and des- 
tination nodes, the duration of non-idle state and the mi- 
gration cost. The question is when will the foreign job 
benefit from migration. Given the local CPU utilization 
and migration cost, the minimum duration of non-idle 
interval (called an episode) before migration is advanta- 
geous can be found. Any idle period shorter than the 
minimum duration will not provoke a migration. We can 
compute the minimum duration by comparing the two 
timing diagrams in Figure 1. In the non-idle state, utiliza- 
tion by the workstation owner starts at tt and ends at t4. 
The average utilization of the non-idle node is h, and the 
average utilization on an idle node is I. We assume the 
execution time of the foreign job exceeds the duration of 
the non-idle state, so the foreign job completion time tfl 
comes after t4. Migration happens at t2, and the cost is 
Tmigr. The following equations compute the total job CPU 
time TC,M and Tc,s with and without migration respec- 
tively. 

7c,s =(l-D-('i-'o) + Q--W <U-h) + (l-l)-(tfl -u) 
TCM =0--l)<h-to) + (l-h)-(t2-tl) + (l-l)-(tf2-t3) 

Since the same amount of work should be done for 
both cases, Tos = TOM . We can solve the relationship 
between parameters. 

tf\ -t/2 = (?4 ~h)-jzj- (h ~h) 

And, to get benefit from the migration, T^ <= Tfl. We 
can then express it with interval variables as: 

'nidle ^ Hingr + 
1-1 
h-l 

lmigr 

where Tnidte = t4-ti is the non-idle state duration, TUngr = t3 

- ti is the lingering duration and the migration cost is de- 
noted as Tmigr. If we knew the non-idle state would last 
long enough to make migration advantageous, an immedi- 
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Figure 1: Migration Timing in Linger Longer 

The timeline for migration using Linger-Longer scheduling. The top case shows a foreign job that remains on a node throughout an 
episode of processor activity due to local jobs. The lower case shows migration after an initial linger interval (t, to t2) where the for- 
eign job remained on the non-idle node. 

ate migration would be the best choice. But because we 
don't know when the non-idle state will end, we have to 
predict it. We use the observations of Harchol-Balter and 
Downey[5], and Leland and Ott[8], which states that the 
median remaining life of a process is equal to its current 
age. So if a process has run for T units of time, we predict 
its total running time will be 2T. Our use of this predictor 
is somewhat different since we use it to infer the duration 
of a non-idle episode rather than predict process lifetime. 
With this prediction, we can then compute the Linger du- 
ration by letting Tnidie be 2TUngr. If it is expected that the 
migration will benefit, it's better to migrate early. The 
lingering duration Tlingr will be: 

*!ingr (h-r mgr 

So, the foreign job should linger Tiingr before migrat- 
ing. For the non-idle interval shorter than TUngr migration 
will be avoided. The migration cost consists of fixed part 
and variable part. The fixed part is for handling the proc- 
ess-related work at the source and destination nodes. The 
process transfer time varies on the network bandwidth and 
the process size. The simple equation is used for our ex- 
periments and can be easily extended for the different 
environment. 

Tmigr =Processing_Time(source) + Process_size / net- 
workjbandwidth + Processing_Time(destination) 

We denote the policy of lingering on a node for TUngr, 
LL. An alternative strategy of never leaving a node (called 
Linger-Forever) is denoted LF. This policy attempts to 
maximize the overall throughput of a cluster at the ex- 
pense of the response time of those unfortunate foreign 
jobs that land (and are stuck) on nodes with high utiliza- 
tion. 

3. Workload Analysis and Characterization 
To evaluate our Linger-Longer approach, we need to 

characterize the workload of workstations to be used in 
such a system. The performance of the various scheduling 
disciplines for shared clusters depends on the characteris- 
tics of the workstation cluster such as time of day, day of 
week, and schedule of the primary users. We use the 
traces of the utilization patterns of existing workstations. 
Dusseau[4] and Acha[l] have also used this approach. 
Also, to evaluate our scheduling policy, we need data 
about individual requests for processors, at the granularity 
of scheduler dispatch records because of the fine-grained 
interaction between foreground and background proc- 
esses. 

It is not practical to record fine-grained requests for 
the long time periods required to capture the time of day 
and day of week changes in free workstations. As a re- 
sult, we adopt a two level strategy to characterize the 
workload. First, we measure the fine-grained run-idle 
bursts at various level of processor utilization from 0% 
(idle) to 100% (full) utilization. We model a fine-grained 
workload as a random variable that is parameterized by 
the average utilization over a two-second window. This 
permits using a course-grained trace of workstation utili- 
zation to generate fine-grained requests for the processor. 

3.1 Fine-Grain Workload Analysis 
To analyze the fine-grained utilization of the CPU, we 

model processor activity as a sequence of run and idle 
periods that represent the intervals of time when the work- 
station owner's processes are either running or blocked. 
Since we give priority to any request by one of the local 
processes, a single run burst may represent the dispatch- 
ing and execution of several local processes. Also, there is 
no upper bound on the length of a processor request since 



runburst(lO%) ■ 
hyperx distr. ■ 

lS"burst(10%)   
hyperx distr.  

0      0.01    0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09    0.1 
Time (sec) 

/^l_y run burst(50%)   
hyperx distr.   

0.8 ft*" 11 
1 

0.6 ■(1 
1 i 

0.4 
1 
I 
i 

■ 

0.2 
1 

■ 

0 0.01 0.02    0.03    0.04    0.05    0.06    0.07    0.08    0.09     0.1 
Time (sec) 

^"^a"                           idle burst(50%)   
_^r                                                hyperx distr.  

0.8 

o 
.£ 
3 
E 
Ö 

0.6 

0.4 

0.2 

• 

0.01    0.02    0.03   0.04    0.05   0.06   0.07   0.08   0.09    0.1 
Time (sec) 

0      0.01    0.02   0.03    0.04   0.05    0.06   0.07   0.08   0.09    0.1 
Time (sec) 

Figure 2: Run and Idle Burst Histograms 

The CDF for the run and idle duration of local jobs. The first row is for 10% utilization, the second 50%. 

we aggregate multiple consecutive dispatches due to time 
quanta into a single request. 

To gather the fine-grained workload data, we used the 
tracing facility available on IBM's AIX operating system 
to record scheduler dispatch events. We gathered this data 
for several twenty-minute intervals on a collection of 
workstations in the University of Maryland, Computer 
Science Department. We then processed the data to ex- 
tract different levels of utilization, and characterized the 
run-idle intervals for each level of utilization. We divided 
each trace file into two-second intervals and then com- 
puted the mean CPU utilization for each interval of time. 

We divided utilization into 21 buckets ranging from 
0% to 100% processor utilization. For each of the 21 
utilization levels, we created a histogram of the duration 
of run and idle intervals for all two-second intervals 
whose average utilization was closest to that bucket. A 
selection of these histograms is shown in Figure 2. The 
solid line in the figure shows two sample distributions for 
low (10%) and medium (50%) CPU utilization. For the 
simulation, we generate a 2-stage hyper-exponential dis- 
tribution from the mean and variance using a method-of- 
moment estimate[16 pg. 479]. The dashed line shows the 
CDF of the generated data. The curves almost exactly 
match in run and idle burst distributions. 

To generate fine-grained workloads, we use linear in- 
terpolation between the two closest of the 21 levels of 

utilization. The values we derived from our analysis of the 
dispatch records are shown in Figure 3. The top-left curve 
shows the mean value of the run burst duration as a func- 
tion of processor utilization. The upper-right graph shows 
the variance in the run burst. The bottom two graphs in 
Figure 3 show the idle duration mean and variance, re- 
spectively. 

3.2 Coarse-Grain Workload Analysis 
To generate the long-term variations in processor 

utilization, we use the traces collected by Arpaci et. al[4]. 
These traces cover data from 132 machines measured 
over 40 days, and contain samples every two seconds of: 
CPU usage, memory usage, keyboard activity, and a 
Boolean indicating idle/non-idle state. An idle interval is a 
period of time with the CPU less than 10% used and no 
keyboard action for 1 minute (called the recruitment 
threshold). 

To assess the potential for Linger-Longer, we meas- 
ured the overall CPU utilization and compared it to the 
CPU utilization during idle and non-idle intervals. On 
average, 46% of the time a machine was in a non-idle 
state. From the trace, we found that even non-idle inter- 
vals have very low usage, although it is somewhat higher 
than idle time. For example, 76% of the time in non-idle 
intervals, the processor utilization is less than 10%. The 
reason that these intervals of time are considered non-idle 
is due to keyboard activity and the requirement that a 
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Figure 3: Workload Parameters 

The mean and variance of the run and idle bursts seen in the 
fine-grained'workload traces as a function of the processor 
utilization. 

workstation have low utilization at least for 1 minute to be 
considered idle. This data hints at the potential leverage 
for a Linger-Longer approach to use short idle periods. 

To meet our goal of allowing foreign jobs to linger on 
a workstation and at the same time not to interfere with 
local jobs, we need to ensure that enough real memory is 
available to accommodate the foreign job. Like processor 
time, we propose to use priority as a mechanism to ensure 
that foreign jobs do not consume memory needed by local 
jobs.2 The idea is to divide memory into two pools: one 
for the local jobs and the other for foreign jobs. Whenever 
a page is placed on the free-list by a local job, the foreign 
job is able to use the page. Likewise, when the local job 
runs out of pages, it reclaims them from the foreign job 
prior to paging out any of its pages. A similar technique 
was employed in the Stealth scheduler[7]. 

To evaluate fully the availability of pages for foreign 
jobs, a complete simulation of the priority-based page 
replacement scheme is required. However, as an approxi- 
mation of the available local memory, we analyzed the 
same workstation trace data used to evaluate processor 
availability to estimate available free memory. Each has 
64Mbyte main memory. The CDF of available memory is 
shown in Figure 4. This graph shows that 90% of time, 

3 0.4 

Figure 4: Distribution of Available Memory 

The solid line shows the overall free memory and the two 
dashed lines show the free memory during idle and non-idle 
intervals. The y-axis shows the fraction of time that at least x 
KB of memory are available. Each workstation has 64 Mbyte 
main memory. 

more than 14 Mbytes of memory available for foreign 
jobs, and that 95% of the time at least 10 MB of memory 
is available. Interestingly, there is no significant differ- 
ence in the available memory between idle and non-idle 
states.3 We feel that the amount of free memory generally 
available is sufficient to accommodate one compute- 
bound foreign job of moderate size. 

4. Sequential Job Performance 
In this section, we investigate how the Linger-Longer 

scheduling policy impacts the behavior of an owner's lo- 
cal processes, and then evaluate the performance of run- 
ning sequential jobs in a 64 node cluster. 

4.1 Linger-Longer Scheduling Impact 
To understand the behavior of a Linger-Longer sched- 

uling discipline we need to evaluate the impact of addi- 
tional context switches of the priority-based linger 
mechanism on the node's foreground jobs. In this section 
we present a simulation study of the delay induced in a 
local process by a lingering foreign job. 

A key question to evaluating the overhead of priority- 
based preemption is the time required to switch from the 
foreign job to the local one. There are two significant 
sources of delay in saving and restoring the context of a 
process: the time required to save the state of the registers 
and the time (via caches misses) to reload the process' 
cache state. On current microprocessors, the time to re- 
store cache state dominates the register restore time. Pag- 
ing by the VM system could increase the effective context 

2 To implement this, we have added priority to the Linux paging 
mechanism. 

3 One possible explanation for this that current versions of the 
UNIX operating system employ an aggressive policy to maintain 
a large free list. 
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Figure 5: Local job Delay Ratio (LDR) and 
Fine-grain Cycle Stealing Ratio (FCSR) 

Each curve shows the impact of three different effective 
context switch times (100, 300, and 500 microseconds). The 
graph (a) shows the delay experienced by foreground jobs 
at various level of utilization. The graph (b) shows the per- 
cent of the available idle processor time made available to 
a compute bound foreign job at different levels of local job 
processor utilization. 

switch time, but our analysis of trace data shows signifi- 
cant memory available, and an implementation of Linger- 
Longer would include page priority (similar to processor 
priority). To estimate the effective context switch time, we 
use the results obtained by Mogul and Borg[10], and se- 
lected an effective context-switch time of 100 microsec- 
onds. 

To evaluate the behavior of Linger-Longer we simu- 
lated a single node with a single compute bound (always 
runnable) process and various levels of processor utiliza- 
tion by foreground jobs. For each simulation, we com- 
puted two metrics: the local job delay ratio (LDR) and 
fine-grain cycle stealing ratio (FCSR). The LDR metric 
records the average slowdown experienced by local jobs 
due to the extra context switch delay introduced by back- 
ground jobs. The FCSR metric records the fraction of the 
available idle processor cycles that are used by the foreign 
job. 

Figure 5 shows the LDR and FCSR metrics for three 
different effective context switch times at various level of 
processor utilization by local jobs. For the chosen effec- 
tive context switch time of 100 microseconds, the delay 
seen by the application process is about 1%. For context 
switch times up to 300 microseconds, the delay remains 

under 5%. However, when the effective context switch 
time is 500 microseconds, the overhead is 8%. In all of 
these cases, Lingering was able to make productive use of 
over 90% of the available processor idle cycles. 

4.2 Sequential Jobs in a Cluster 
We now turn our attention to the cluster level behavior 

of our scheduling policy. We first evaluate the behavior 
of a cluster running a collection of sequential jobs. We 
evaluated the Linger-Longer, Linger-Forever, Immediate- 
Eviction, and Pause-and-Migrate policies on a simulated 
cluster of workstations. We used a two-level workload 
generator to produce a foreground user workload for a 64- 
node cluster. Figure 6 shows the process that we use to 
generate fine-grained processor requests from long-term 
trace data. We randomly select a trace of a single node 
and map it to a logical node in our simulation. To draw a 
representative sample of jobs from different times of the 
day, each node in the simulation was started at a randomly 
selected offset into a different machine trace. The fine- 
grain resource usage is generated by looking up appropri- 
ate parameters, mean and variance, based on the current 
coarse-grain resource data from the trace files. 

We then ran two different types of sequential foreign 
jobs on the cluster. Workload-1 contains 128 foreign jobs 
each requiring 600 processor seconds. This workload was 
designed to represent a cluster with a significant demand 
being placed on the foreign job scheduler, since on aver- 
age each node had two foreign jobs to execute. Workload- 
2 contains 16 jobs each requiring 1,800 CPU seconds 
each. This workload was designed to simulate a somewhat 
lighter workload on the cluster since only V* of the nodes 
are required to run the foreign jobs. All foreign jobs are 8 
Megabytes and migration takes places over a 10 Mbps 
Ethernet at an effective rate of 3Mbps (to limit the load 
placed on the network by process migration). We also 
assume that the foreign job is suspended for the entire 
duration of the migration. For each configuration, we 
computed four metrics: 

Average completion time: The average time to comple- 
tion of a foreign job. This includes waiting time before 
initially being executed, paused time, and migration 
time. 

Variation: the standard deviation of job execution time 
(time from first starting execution to completion). 

Family Time: The completion time of the last job in the 
family of processes submitted as a group. 

Throughput: The average amount of processor time used 
by foreign jobs per second when the number of jobs 
in the system was held constant. 
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Metric LL LF IE PM 

Workload-1 Avg.         Job 1044 1026 1531 1531 

(many jobs) Variation 13.7% 20.5% 27.7% 22.5% 

Family Time 1847 1844 2616 2521 

Throughput 52.2 55.5 34.6 34.6 

Workload-2 Avg.         Job 1859 1861 1860 1862 

(few jobs) Variation 0.9% 1.3% 1.3% 1.6% 

Family Time 1896 1925 1925 1956 

Throughput 15.0 14.7 14.5 14.5 

The process of generating long-term processor utilization requests. By combining coarse-grained traces of workstation use with a short- 
term stochastic model of processor requests, long duration run-idle intervals can be generated. ] 

The results of the simulation are summarized in the ta- 
ble in Figure 7. For the first workload, the average job 
completion time and throughput are much better for the 
Linger-Longer and Linger-Forever policies. Average job 
completion time is 47% faster with Linger-Longer than 
Immediate-Eviction or Pause-and-Migrate, and Linger- 
Forever's jobs completion time is 49% faster than either 
of the non-lingering policies. There is virtually no differ- 
ence between the IE and PM in terms of average comple- 
tion time. For the second workload, the average job com- 
pletion time of all four policies is almost identical. Notice 
that the average job completion time ranges from 1,859 to 
1,860 seconds; this implies that on average they were run- 
ning 97% of the time. Since there is sufficient idle capac- 
ity in the cluster to run these jobs, all four policies per- 
form about the same. 

In terms of the variation in response time for work- 
load-1, the LL policy is much better than either IE or PM. 
This improvement results from LL's ability to run jobs on 
any semi-available node, and thus expedite their departure 
from the system; so the benefit of lingering on a non-idle 
node exceeds the advantage of waiting for a fully free 
node. The LF policy has a somewhat higher variance due 
the fact that some jobs may end up on nodes that had tem- 
porarily low utilization when the job was placed there, but 
which subsequently had higher load. For workload-2, the 
availability of resources means that each policy has rela- 
tively little variation in its job completion time. 

The third metric is 'Family Time". This metric is de- 
signed to show the completion time of a family of se- 
quential jobs that are submitted at once. This is a metric 
designed to characterize the responsiveness of a cluster to 
a collection of jobs that represent a family of jobs. For 
workload-1, the LL and LF metrics provide 36% im- 
provement over the PM policy and 42% improvement 
over the IE policy. For workload-2, the LL and LF poli- 

Figure 7: Cluster Performance 

For each of the four scheduling policies (LL, LF, IE, and PM), 
four performance metrics are shown for two different workloads. 

cies provide slight (1-3%) improvement over the IE and 
PM policies. 

The fourth metric we computed for the cluster-level 
simulations was throughput. The throughput metric is 
designed to measure the ability of each scheduling policy 
to make processing time available to foreign jobs. This 
metric is computed using a slightly different simulation 
configuration. In this case, we hold the number of jobs in 
the system (running or queued to run) constant for a 
simulated one-hour execution of the cluster. The number 
of jobs in the system is 128 for workload-1 and 16 for 
workload-2. The throughput metric is designed to show 
the steady-state behavior of each policy at delivering cy- 
cles to foreign jobs. Using the throughput metric, the LL 
policy provides at 50% improvement over the PM policy. 
Likewise the LF policy permits a 60% improvement over 
the PM policy. For workload-2, the throughput was very 
similar for all policies. Again, this is to be expected since 
the cluster is lightly loaded. For both workloads the delay, 
measured as the average increase in completion time of a 
CPU request, for local (foreground) processes was less 
than 0.5%. This average is somewhat less than the 1% 
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Figure 8: Average Completion Time 

The chart (a) shows the breakdown of the average time spent 
in each state (queued, running, lingering, or migrating) for 
workload-1 (many foreign jobs). The chart (b) shows the 
same information for workload-2 (few foreign jobs). 

delay reported in the previous section since not all non- 
idle nodes have foreign processes lingering. 

To better understand the ability of Linger-Longer to 
improve average job completion time, we profiled the 
amount of time jobs spent in each possible state: queued, 
running, lingering (running on a non-idle node), paused, 
migrating. The results are summarized in Figure 8. Figure 
8(a) shows the behavior of workload-1. The major differ- 
ence between the linger and non-linger policies is due to 
the reduced queue time. The time spent running (run time 
plus linger time) is somewhat larger for the linger poli- 
cies, but the reduction in queuing delays more than offsets 
this increase. Figure 8(b) shows the breakdown for work- 
load-2. With the exception that LL and LF spent small 
fraction of the time lingering, there is no noticeable dif- 
ference between any of these cases. 

The overall trends seen in the cluster level simulation 
show that Linger-Longer and Linger-Forever provide sig- 
nificant increased performance to a cluster when there are 
more jobs than available nodes, and that there is no dif- 
ference in performance a low levels of cluster utilization. 

5. Parallel Job Performance 
The trade-offs in using Linger-Longer scheduling for 

parallel programs are more complex. When a single proc- 
ess of a job is slowed down due to a local job running on 
the node, this can result in all of the nodes being slowed 
down due to synchronization between processes. On the 
other hand, when a migration is taking place, any attempt 
to communicate with the migrating process will be de- 
layed until the migration has been completed. However, 
we feel the strongest argument for using Linger-Longer is 
the potential gain in the throughput of a cluster due to the 
ability to run more parallel jobs at once. Improved 
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Figure 9: Parallel Job slowdown 

The graph shows the slowdown of an eight-node parallel job 
vs. processor utilization by the foreground processes. 

throughput likely will come at the expense of response 
time, but we feel that throughput is the most important 
performance metric for shared clusters. To evaluate these 
different options, we simulated various configurations to 
determine the impact of lingering on parallel jobs. 

5.1  Synthetic Parallel Jobs 
To evaluate the impact of lingering on a single parallel 

job, we first simulated a bulk-synchronous style of com- 
munication where each process computes serially for 
some period of time, and then an opening barrier is per- 
formed to start a communication phase. During the com- 
munication phase, each process can exchange messages 
with other processes. The communication phase ends with 
an optional barrier. This synthetic parallel job model has 
been successfully used in [4] to explore various perform- 
ance factors. We simulated an eight-process application 
with a 100 msec between each synchronization phase, and 
a NEWS4 style of message passing within a communica- 
tion phase. 

The graph in Figure 9 shows the slowdown (compared 
to running on 8 idle nodes) experienced in the applica- 
tion's execution time when one node is non-idle and the 
CPU utilization by the foreground processes are varied 
from 0% to 90%. At utilization above 50%, the slowdown 
is so large that lingering slows down the jobs dramati- 
cally. A useful comparison of this slowdown is to consider 
alternatives to running on the non-idle node. The 
NOW[4] project has proposed migrating to an idle node 
when the user returns, however if there is a substantial 
load on the cluster we would have to keep idle nodes in 
reserve (i.e. not running other parallel jobs) to have one 
available.  Alternatively,  Acha et al.[l]  proposed re- 

4 A process exchange messages only with it's neighbors in terms 
of data partitioning. 
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Figure 10: Synchronization Granularity vs. 
Slowdown 

The graph shows the slowdown of running a parallel program 
with 1, 2, 4, or 8 non-idle nodes compared with running on all 
8 idle nodes as a function of the synchronization granularity 
when the non-idle nodes have 20% utilization by local jobs. 

configuring the application to use fewer nodes. However, 
many applications are restricted to running on a power of 
two number of nodes (or a square number of nodes). 
Thus the unavailability of a single node could preclude 
using many otherwise available nodes. Within this con- 
text, our slowdown of only 1.1 to 1.5 when the load is less 
than 40% is an attractive alternative. 

One of the key parameters in understanding the per- 
formance of parallel jobs using Linger-Longer is the fre- 
quency of synchronization. Figure 10 shows the relation- 
ship between the granularity of communication and the 
slowdown experienced by an eight process bulk synchro- 
nous program. The x-axis is the computation time be- 
tween communications in milli-seconds. Each of the four 
curves shows the slowdown when 1, 2, 4, and 8 nodes 
have 20% processor utilization by local jobs. The results 
show that larger synchronization granularity produces less 
slowdown. Also, for this level of loading, lingering pro- 
vides an attractive alternative to reconfiguration since, 
even when four nodes are non-idle, the slowdown remains 
under a factor 1.5. (Note that reconfiguration with four 
nodes unavailable would have a slowdown of at least 2.) 

We wanted to provide a head-to-head comparison of 
the Linger-Longer policy with the reconfiguration strat- 
egy. To do this, we simulated a 32 node parallel cluster. 
For each scheduling policy we considered the effect if the 
average processor utilization by the local jobs on a non- 
idle workstations was 20%. We defined the average syn- 
chronization frequency to be 500 msec. In this simulation, 
we. didn't consider the time required to reconfigure the 
application to use fewer nodes, and assumed that the ap- 
plication was constrained to run on a power of two num- 
ber of nodes. The results of running this simulation are 

Figure 11: Linger Longer vs. Reconfiguration 

The graph shows the completion time of a parallel job run- 
ning on a cluster using several different scheduling policies. 
The x-axis shows the number of idle nodes. The first four 
curves show the Linger-Longer policy running using 8, 16, or 
32 nodes. The fifth curve shows the reconfigure policy. For 
all curves, the local utilization of non-idle nodes is 20%. 

shown in Figure 11. In each 
Linger-Longer policy using 8 
reconfiguration policy using 
able. The Linger-Longer with 
idle nodes are available in the 
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nodes available and some non 

graph, the curves show the 
, 16, and 32 nodes, and the 
the maximum nodes avail- 
it nodes means if k or more 
cluster, the parallel job runs 
otherwise it runs on all idle 
idle nodes by lingering. 

The graph shows the results for 20%. The Linger- 
Longer policy outperforms the reconfiguration, when ei- 
ther 8 or 16 nodes are used. However, using 32 nodes and 
a Linger-Longer policy out performs reconfiguration 
when 5 or fewer non-idle nodes are used. 

5.2 Real Parallel Jobs 
To validate the results from the synthetic bulk syn- 

chronous application case, we ran several real parallel 
applications with Linger-Longer. To do so, we combined 
two different types of simulators: our Linger-Longer 
simulator generating local workloads and a CVM [6] 
simulator which can run shared memory parallel applica- 
tions using ATOM binary rewriting tool [13]. We chose 
three common shared-memory parallel applications: sor 
(Jacobi relaxation), water(a molecular dynamics; from 
SPLASH-2 benchmark suite [17]) and f f t (fast Fourier 
transformation) which have different computation and 
communication patterns. 

First, we looked at how Linger-Longer on non-idle 
nodes slows down the parallel jobs. An 8 node cluster is 
used to ran each application. The number of non-idle 
nodes and its local utilization were controlled. The results 
are summarized in Figure 12. For all 3 cases, when only 
one non-idle node is involved even with 40% local utili- 
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Figure 12: Slowdown by Non-idle nodes and their Local CPU Usage 
The graphs show the slowdown of parallel jobs: sor (a), water (b) and, fft(c) as the number of non-idle nodes varies from 0 to 
all 8 with Linger-Longer. The cluster size is 8. The curves in each graph represent the different local utilization of non-idle nodes. 

zation the slowdown (compared to running on eight idle 
nodes) reaches only 1.7. When more than half the nodes 
are non-idle, 0 to 20% local utilization looks endurable. 
Linger-Longer with 4 non-idle nodes and 20% local utili- 
zation causes only 1.5 to 1.6 slowdown. Even when all 8 
nodes are non-idle, the job is slowed down by just above a 
factor of 2 for all three applications. Also, we can find 
that the slowdown is different on applications. Sor is the 
most sensitive to local utilization and the number of non- 
idle nodes. Water is less sensitive to local activity and 
fft is the least. A possible explanation is that water 
and fft have much more communication that sor and 
the time spent waiting on communication won't be af- 
fected as much by local CPU activity. 

Again, we compared the Linger-Longer and reconfigu- 
ration policies for three real parallel application perform- 
ance. The same assumptions as in the synthetic applica- 
tion case were maintained except for the fact that only a 
16 node cluster was simulated. The results of running this 
simulation are shown in Figure 13. In each graph, the 
curves show the Linger-Longer policy using 16 and 8 
nodes, and the reconfiguration policy using the maximum 
power of 2 number of idle nodes available. The graphs 
show the results for sor, water and fft when the 
local utilization for non-idle nodes is 20%. For all cases, 
the Linger-Longer policy using 16 nodes outperforms the 
reconfiguration when the number of idle nodes is at least 
12. Considering the cost to reconfigure the parallel job to 
run time, the gain would be even bigger. However, when 
less than 8 idle nodes are left, lingering with 8 nodes 
looks much better than both lingering using 16 nodes and 
the reconfiguration policy. This indicates that a hybrid 
strategy of lingering and reconfiguration may be the best 
approach. 

6. Related Work 
Previous work on exploiting available idle time on 

workstation clusters used a conservative model that would 
only run jobs when the local user was away from their 
workstation and no local processes were runnable. Con- 
dor[9], LSF[19], and NOW[2] use variations on a "social 
contract" to strictly limit interference with local users. 
However, even with these policies, there is some disrup- 
tion of the local user when they return since the foreign 
job must be evicted and the local state restored. The Lin- 
ger-Longer approach permits slightly more disruption of 
the user, but tries to limit the delay to an acceptable level. 
One system that used non-idle workstations was the 
Stealth distributed scheduler[7]. It implemented a priority- 
based approach to running background jobs. However 
none of the tradeoffs in how long to run foreign jobs, or 
the potential of running parallel jobs was investigated. 

Prior studies that investigated running parallel jobs on 
shared workstation clusters also employed fairly conser- 
vative eviction policies. Dusseau, et al.[4] used a policy 
based on immediate eviction. They were able to use a 
cluster of 60 machines to achieve the performance of a 
dedicated parallel computer with 32 processors. Acha et 
al.[l] used a different approach that reconfigured the par- 
allel job to use fewer nodes when one became unavail- 
able. This approach permitted running more jobs on a 
given cluster, although the performance of any single job 
would be somewhat reduced. 

Process migration and load balancing have been stud- 
ied extensively. MOSIX[3] provides load-balancing and 
preemptive migration for traditional UNIX processes. 
DEMOS/MP[12], Accent[18], Locus[15], and V[14] all 
provided manual or semi-automated migration of proc- 
esses. 
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Figure 13: Linger-Longer vs. Reconfiguration for Shared-Memory Parallel Applications 

The graphs show the slowdown of 3 parallel jobs running on a cluster of 8 nodes using several different scheduling policies. The x- 
axis shows the number of idle nodes. The first curve shows the reconfigure policy. The other 2 curves show Linger-Longer policy 
running using 16 or 8 nodes. For all curves, the local utilization of non-idle nodes is 20%. 

7. Conclusions 
In this paper we provided a workload characterization 

study that described the fine-grained requests for proces- 
sor time at various levels of utilization and evaluated 
traces of workstation load at the 2-second level for long 
time durations. We then presented a technique to com- 
pose the workload and to generate fine-grained workloads 
for long intervals of time. 

We have devised a new approach, called Linger- 
Longer to using available workstations to perform se- 
quential and parallel computation. We presented a cost 
model that determines how long a process should linger 
on a non-idle node. The results for our proposed approach 
are encouraging, we showed that for typical clusters lin- 
gering can increase throughput by 60%, and on average 
cause only a 0.5% slowdown of foreground user proc- 
esses. 

For parallel computing, we showed that the Linger- 
Longer policy outperforms reconfiguration strategies 
when the processor utilization by the local process is 20% 
or less in both bulk synchronous and real data-parallel 
applications. However, reconfiguration outperforms Lin- 
gering for higher levels of local process utilization. The 
throughput improvement that would be possible by mak- 
ing more nodes available to run parallel jobs would likely 
offset some of this slowdown. An end-to-end evaluation 
of cluster throughput for parallel jobs is currently being 
investigated. 

Currently, we are implementing the prototype based 
on the Linux operating system running on Pentium PCs. 
The strict priority-based scheduler and page allocation 
module have been developed and being evaluated. 
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