Microelectronics Status Analysis
and Secondary Part Procureability
Assessment of the THAAD Weapon System.

(5-20448 & 5-20449)

Final Technical Report for Period
21 January 1999 through 30 September 1999
October 1999

Prepared by:
Gary A. Maddux

Systems Management & Production Lab
The University of Alabama in Huntsville
Huntsville, Alabama 35899

Prepared for:
U.S. Army Aviation & Missile Command
Redstone Arsenal, AL 35898
Attn.: Mr. Andrew Mullins
Title and Subtitle: Microelectronics Status Analysis and Secondary Part Procureability Assessment of the THAAD Weapon System.

Authors: Gary A. Maddux

Performing Organization:

Univ. of Alabama in Huntsville
Huntsville, AL 35899

Funding Numbers: 5-20448 & 5-20449

Performer's Report Number: 5-20448 & 5-20449

Sponsoring Organization:

AMSAM-RD-SE-MT (A. MULLINS)
U.S. Army Aviation & Missile Command
Redstone Arsenal, AL 35898

Supplementary Notes: Approved for Public Release; Distribution is unlimited.

Abstract:

The Manufacturing Science and Technology Division (MS&TD), AMCOM has the mission and function of providing microelectronic technology assessments, and producibility and supportability analyses for the THAAD weapon system. MS&TD evaluates the impacts of nonavailability of microelectronic parts on the life cycle supportability of the THAAD weapon system and evaluates the producibility of the THAAD weapon system. MS&TD required engineering support in performing microelectronic technology and availability assessments for several hundred items and in assessing the impact of nonavailability on the THAAD weapon system. MS&TD also required engineering support in performing producibility analyses of the THAAD weapon system. In order to facilitate the assessment of this system, the UAH Systems Management and Production Laboratory was tasked to conduct an in-depth analysis as to the life cycle health of the THAAD weapon system's component parts.

Subject Terms: obsolescence; THAAD

Number of Pages: 3

Price Code: A

Security Classification of Report:

Security Classification of This Page:

Security Classification of Abstract:

Limitation of Abstract:
PLEASE CHECK THE APPROPRIATE BLOCK BELOW

☐ DAO# ____________ copies are being forwarded. Indicate whether Statement A, B, C, D, E, F, or X applies.

☐ DISTRIBUTION STATEMENT A:
 APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

☐ DISTRIBUTION STATEMENT B:
 DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES ONLY; (indicate Reason and Date). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office).

☐ DISTRIBUTION STATEMENT C:
 DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND THEIR CONTRACTS (Indicate Reason and Date). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office).

☐ DISTRIBUTION STATEMENT D:
 DISTRIBUTION AUTHORIZED TO DoD AND U.S. DoD CONTRACTORS ONLY; (Indicate Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office).

☐ DISTRIBUTION STATEMENT E:
 DISTRIBUTION AUTHORIZED TO DoD COMPONENTS ONLY; (Indicate Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office).

☐ DISTRIBUTION STATEMENT F:
 FUTURE DISSEMINATION ONLY AS DIRECTED BY (Indicate Controlling DoD Office and Date) or HIGHER DoD AUTHORITY.

☐ DISTRIBUTION STATEMENT X:
 DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE WITH DoD DIRECTIVE 5230.25. WITHHOLDING OF UNCLASSIFIED TECHNICAL DATA FROM PUBLIC DISCLOSURE, 6 Nov 1984 (indicate date of determination). CONTROLLING DoD OFFICE IS (Indicate Controlling DoD Office).

☐ This document was previously forwarded to DTIC on ____________ (date) and the AD number is _____________.

☐ In accordance with provisions of DoD instructions. The document requested is not supplied because:
 ☐ It will be published at a later date. (Enter approximate date, if known).
 ☐ Other. (Give Reason)

GARY A. MADDUX
Print or Type Name

Authorized Signature/Date

Passed 21 Oct 99

Telephone Number

256 890 6343 223
PREFACE

This technical report was prepared by the staff of the Research Institute, The University of Alabama in Huntsville. The purpose of this report is to provide documentation of the work performed and results obtained under Delivery Order 34 of AMCOM Contract No. DAAH01-98-D-R001. Mr. Gary Maddux was the principal investigator. Ms. Donna Griffith served as lead engineer. Mr. Andrew Mullins, Manufacturing Science and Technology Division, Systems Engineering and Production Directorate, Research, Development, and Engineering Center, U.S. Army Aviation & Missile Command, provided technical coordination.

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision unless so designated by other official documentation.

Except as provided by the Contract Data Requirements List DD Form 1423, hereof, the distribution of any contract report in any state of development or completion is prohibited without the approval of the Contracting Officer.

Prepared for: Commander
U.S. Army Aviation & Missile Command
Redstone Arsenal, AL 35898

I have reviewed this report, dated October 1999 and the report contains no classified information.

Principal Investigator

October 1999
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>OBJECTIVES</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>STATEMENT OF WORK</td>
<td>1</td>
</tr>
<tr>
<td>4.0</td>
<td>ASSESSMENT OF THAAD WEAPON SYSTEM</td>
<td>3</td>
</tr>
<tr>
<td>5.0</td>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>3</td>
</tr>
</tbody>
</table>
1.0 Introduction

The Manufacturing Science and Technology Division (MS&TD), SEPD, RDEC, AMCOM has the mission and function of providing microelectronic technology assessments, and producibility and supportability analyses for the THAAD weapon system. MS&TD evaluates the impacts of nonavailability of microelectronic parts on the life cycle supportability of the THAAD weapon system and evaluates the producibility of the THAAD weapon system. MS&TD required engineering support in performing microelectronic technology and availability assessments for several hundred items and in assessing the impact of nonavailability on the THAAD weapon system. MS&TD also required engineering support in performing producibility analyses of the THAAD weapon system.

In order to facilitate the assessment of this system, the Systems Management and Production Laboratory at The University of Alabama in Huntsville Research Institute was tasked to conduct an in-depth analysis as to the life cycle health of the THAAD weapon system’s component parts.

2.0 Objective

The purpose of the work performed under this task order was to provide engineering support to analyze the availability of microelectronics used in the THAAD weapon system and to investigate and develop solutions for problem parts. Determination of the producibility of the THAAD weapon system and/or subsystems was required.

3.0 Statement of Work

The statement of work, as outlined in delivery order 34, was as follows:

3.1 UAH shall analyze the availability of microelectronic parts used in the THAAD weapon system. The analyses shall be for microelectronics specifically identified by the MS&TD. UAH shall assess the impact of the nonavailability of the microelectronics on system supportability. UAH shall evaluate problem resolution approaches. UAH shall identify opportunities for insertion of new electronic technologies to resolve microelectronic availability and obsolescence problems. The analyses shall be performed using government-furnished databases and automated tools. Other available sources of information shall be used as required. Analyses results shall be recorded in databases, which shall be compatible with current government databases and delivered in digital and written report format to the government. Results also shall be presented and documented in a final report. All results shall be delivered to the government.
3.1.1 UAH shall define microelectronic component obsolescence assessment methods. UAH shall analyze current government obsolescence assessment methods. Additional approaches shall be developed as required. Analysis methods, data sources, criteria and reporting formats shall be documented within all written reports.

3.1.2 UAH shall research and analyze the THAAD weapon system microelectronic component availability data. Commercial and government databases shall be searched for data on microelectronic obsolescence and availability. Alternate sources, part numbers and qualified substitutes for obsolete or unavailable parts shall be identified. Compliance with military and commercial standards shall be verified. Specific alternate and substitute parts for those determined obsolete or determined to pose obsolescence potential shall be recommended.

3.1.3 UAH shall assess the THAAD weapon system readiness, producibility, and supportability impacts resulting from microelectronic obsolescence. Specific component availability and obsolescence problems affecting the THAAD weapon system shall be identified. Quantitative statistics to demonstrate the impacts at the system, Line replaceable unit (LRU), circuit board and component levels shall be derived. Potential approaches to resolve availability and obsolescence problems and reduction of their impacts on system supportability shall be proposed.

3.1.4 UAH shall identify opportunities for insertion of new microelectronic technologies into the THAAD weapon system. LRUs or boards which are candidates for redesign based on their use of obsolete microelectronics shall be identified.

3.1.5 UAH shall investigate the use of the technology insertion program to resolve deficient technical data package (TDP), eliminate sole source TDPs, and delete Reliability, Availability, and Maintainability (RAM) problems. Benefits in terms of improved performance, producibility, readiness and life cycle costs shall be demonstrated.

3.2 UAH shall analyze the producibility of the THAAD weapon system and subsystems. The analyses shall be performed on parts specifically identified by the government. UAH shall analyze TDP data (listings, engineering documentation and changes thereto) to advise the government if the present baseline and/or detail drawings are adequate for competitive procurement and/or manufacture. UAH shall, during TDP analysis, document any cost reduction opportunities in the TDP, using value engineering methodology as a generally accepted practice of cost analysis. UAH shall provide a written report for each TDP analyzed. The report shall detail any deficiencies and provide recommended solutions. UAH shall provide recommended TDP updates where applicable.
3.3 UAH shall perform an engineering analysis on producibility problems identified during the procurement cycle of the THAAD weapon system secondary items. The analysis shall require review of drawings, specifications, and related materials. UAH shall determine and recommend solutions to the producibility problems and provide rationale to support recommendations. UAH shall, during engineering analysis, document any cost reduction opportunities in the TDP, using value engineering methodology as a generally accepted practice of cost analysis. Results of the analysis shall be prepared and furnished in a written report.

4.0 Assessment of the THAAD Weapon System

Under this task members of the UAH Systems Management and Production Lab performed a detailed engineering analysis on the component parts of the THAAD weapon system. Specifically, microelectronic components were analyzed according to their availability and expected life cycle. To ascertain this information, UAH worked with the electronics industry, the THAAD Project Office, and other government agencies.

The results of this task were published in the Microcircuit Obsolescence Assessment of the THAAD Weapon System and delivered to MS&TD under separate cover.

5.0 Conclusion and Recommendations

During the time frame allocated by the delivery order, members of the UAH Systems Management and Production Lab, with the cooperation of representatives from AMCOM Systems Engineering and Production Directorate and the THAAD Project Office investigated the life cycle supportability of the microelectronics of the THAAD weapon system. Because of the rapidly changing microelectronics industry, it is imperative that this assessment be refreshed on a periodic basis. Only through the diligent monitoring of a complex system can its sustainability issues be properly addressed. It is recommended that the THAAD Project Office adopt a proactive obsolescence management philosophy so that the total cost of ownership is reduced over the system's life cycle.